首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Activation of prothrombin (Pro) by factor Xa to form thrombin occurs by proteolysis of Arg271-Thr272 and Arg320-Ile321, resulting in expression of regulatory exosites I and II. Cleavage of Pro by thrombin liberates fragment 1 and generates the zymogen analog, prethrombin 1 (Pre 1). The properties of exosite I on Pre 1 and its factor Xa activation intermediates were characterized in spectroscopic and equilibrium binding studies using the fluorescein-labeled probe, hirudin(54-65) ([5F]Hir(54-65)-(SO3-)). Prethrombin 2 (Pre 2), formed by factor Xa cleavage of Pre 1 at Arg271-Thr272, had the same affinity for hirudin(54-65) peptides as Pre 1 in the absence or presence of near-saturating fragment 2 (F2). Pre 2 and thrombin also had indistinguishable affinities for F2. By contrast, cleavage of Pre 1 at Arg320-Ile321, to form active meizothrombin des-fragment 1 MzT(-F1), showed a 11- to 20-fold increase in affinity for hirudin(54-65), indistinguishable from the 13- to 20-fold increase seen for conversion of Pre 2 to thrombin. Thus, factor Xa cleavage of Pre 1 at Arg271-Thr272 does not effect exosite I expression, whereas cleavage at Arg320-Ile321 results in concomitant activation of the catalytic site and exosite I. Furthermore, expression of exosite I on the Pre 1 activation intermediates is not modulated by F2, and exosite II is not activated conformationally. The differential expression of exosite I affinity on the Pre 1 activation intermediates and the previously demonstrated role of (pro)exosite I in factor Va-dependent substrate recognition suggest that changes in exosite I expression may regulate the rate and direction of the Pre 1 activation pathway.  相似文献   

2.
Bothrojaracin (BJC) is a 27-kD snake venom protein from Bothrops jararaca that has been characterized as a potent thrombin inhibitor. BJC binds to exosites I and II, with a dissociation constant of 0.7 nM, and influences but does not block the proteinase catalytic site. BJC also binds prothrombin through an interaction that has not been characterized. In the present work we characterize the interaction of BJC with prothrombin quantitatively for the first time, and identify the BJC binding site on human prothrombin. Gel filtration chromatography demonstrated calcium-independent, 1:1 complex formation between fluorescein-labeled BJC ([5F]BJC) and prothrombin, whereas no interactions were observed with activation fragments 1 or 2 of prothrombin. Isothermal titration calorimetry showed that binding of BJC to prothrombin is endothermic, with a dissociation constant of 76 +/- 32 nM. The exosite I-specific ligand, hirudin(54-65) (Hir(54-65) (SO(3)(-)), displaced competitively [5F]BJC from prothrombin. Titration of the fluorescent hirudin(54-65) derivative, [5F]Hir(54-65)(SO(3)(-)), with human prothrombin showed a dissociation constant of 7.0 +/- 0.2 microM, indicating a approximately 100-fold lower binding affinity than that exhibited by BJC. Both ligands, however, displayed a similar, approximately 100-fold increase in affinity for exosite I when prothrombin was activated to thrombin. BJC efficiently displaced [5F]Hir(54-65)(SO(3)(-)) from complexes formed with thrombin or prothrombin with dissociation constants of 0.7 +/- 0.9 nM and 11 +/- 80 nM, respectively, indicating that BJC and Hir(54-65)(SO(3)(-)) compete for the same exosite on these molecules. The results indicate that BJC is a potent and specific probe of the partially exposed anion-binding exosite (proexosite I) of human prothrombin.  相似文献   

3.
Activation of prothrombin by factor Xa is accompanied by expression of regulatory exosites I and II on the blood coagulation proteinase, thrombin. Quantitative affinity chromatography and equilibrium binding studies with a fluorescein-labeled derivative of the exosite I-specific peptide ligand, hirudin(54-65) ([5F]Hir(54-65) (SO(3)(-)), were employed to identify and characterize this site on human and bovine prothrombin and its expression on thrombin. [5F]Hir(54-65)(SO(3)(-)) showed distinctive fluorescence excitation spectral differences in complexes with prothrombin and thrombin and bound to human prothrombin and thrombin with dissociation constants of 3.2 +/- 0.3 micrometer and 25 +/- 2 nm, respectively, demonstrating a 130-fold increase in affinity for the active proteinase. The bovine proteins similarly showed a 150-fold higher affinity of [5F]Hir(54-65)(SO(3)(-)) for thrombin compared with prothrombin, despite a 2-5-fold lower affinity of the peptides for the bovine proteins. Unlabeled, Tyr(63)-sulfated and nonsulfated hirudin peptides bound competitively with [5F]Hir(54-65)(SO(3)(-)) to human and bovine prothrombin and thrombin, exhibiting similar, 40-70-fold higher affinities for the proteinases, although nonsulfated Hir(54-65) bound with 7-17-fold lower affinity than the sulfated analog. These studies characterize proexosite I for the first time as a specific binding site for hirudin peptides on both human and bovine prothrombin that is present in a conformationally distinct, low affinity state and is activated with a approximately 100-fold increase in affinity when thrombin is formed.  相似文献   

4.
The specificity of thrombin for procoagulant and anticoagulant substrates is regulated allosterically by Na+. Ordered cleavage of prothrombin (ProT) at Arg320 by the prothrombinase complex generates proteolytically active, meizothrombin (MzT), followed by cleavage at Arg271 to produce thrombin and fragment 1.2. The alternative pathway of initial cleavage at Arg271 produces the inactive zymogen form, the prethrombin 2 (Pre 2).fragment 1.2 complex, which is cleaved subsequently at Arg320. Cleavage at Arg320 of ProT or prethrombin 1 (Pre 1) activates the catalytic site and the precursor form of exosite I (proexosite I). To determine the pathway of expression of Na+-(pro)exosite I linkage during ProT activation, the effects of Na+ on the affinity of fluorescein-labeled hirudin-(54-65) ([5F]Hir-(54-65)(SO-3)) for the zymogens, ProT, Pre 1, and Pre 2, and for the proteinases, MzT and MzT-desfragment 1 (MzT(-F1)) were quantitated. The zymogens showed no significant linkage between proexosite I and Na+, whereas cleavage at Arg320 caused the affinities of MzT and MzT(-F1) for [5F]Hir-(54-65)(SO-3) to be enhanced by Na+ 8- to 10-fold and 5- to 6-fold, respectively. MzT and MzT(-F1) showed kinetically different mechanisms of Na+ enhancement of chromogenic substrate hydrolysis. The results demonstrate for the first time that MzT is regulated allosterically by Na+. The results suggest that the distinctive procoagulant substrate specificity of MzT, in activating factor V and factor VIII on membranes, and the anticoagulant, membrane-modulated activation of protein C by MzT bound to thrombomodulin are regulated by Na+-induced allosteric transition. Further, the Na+ enhancement in MzT activity and exosite I affinity may function in directing the sequential ProT activation pathway by accelerating thrombin formation from the MzT fast form.  相似文献   

5.
The substrate specificity of thrombin is regulated by binding of macromolecular substrates and effectors to exosites I and II. Exosites I and II have been reported to be extremely linked allosterically, such that binding of a ligand to one exosite results in near-total loss of affinity for ligands at the alternative exosite, whereas other studies support the independence of the interactions. An array of fluorescent thrombin derivatives and fluorescein-labeled hirudin(54-65) ([5F]Hir(54-65)(SO(3)(-))) were used as probes in quantitative equilibrium binding studies to resolve whether the affinities of the exosite I-specific ligands, Hir(54-65)(SO(3)(-)) and fibrinogen, and of the exosite II-specific ligands, prothrombin fragment 2 and a monoclonal antibody, were affected by alternate exosite occupation. Hir(54-65)(SO(3)(-)) and fibrinogen bound to exosite I with dissociation constants of 16-28 nm and 5-7 microm, respectively, which were changed < or =2-fold by fragment 2 binding. Native thrombin and four thrombin derivatives labeled with different probes bound fragment 2 and the antibody with dissociation constants of 3-12 microm and 1.8 nm, respectively, unaffected by Hir(54-65)(SO(3)(-)). The results support a ternary complex binding model in which exosites I and II can be occupied simultaneously. The thrombin catalytic site senses individual and simultaneous binding of exosite I and II ligands differently, resulting in unique active site environments for each thrombin complex. The results indicate significant, ligand-specific allosteric coupling between thrombin exosites I and II and catalytic site perturbations but insignificant inter-exosite thermodynamic linkage.  相似文献   

6.
Regulatory exosite I of thrombin is present on prothrombin in a precursor state (proexosite I) that specifically binds the Tyr(63)-sulfated peptide, hirudin(54-65) (Hir(54-65)(SO(3)(-))) and the nonsulfated analog. The role of proexosite I in the mechanism of factor Va acceleration of prothrombin activation was investigated in kinetic studies of the effects of peptide binding. The initial rate of human prothrombin activation by factor Xa was inhibited by the peptides in the presence of factor Va but not in the absence of the cofactor. Factor Xa and factor Va did not bind the peptide with significant affinity compared with prothrombin. Maximum inhibition reduced the factor Va-accelerated rate to a level indistinguishable from the rate in the absence of the cofactor. The effect of Hir(54-65)(SO(3)(-)) on the kinetics of prothrombin activation obeyed a model in which binding of the peptide to proexosite I prevented productive prothrombin interactions with the factor Xa-factor Va complex. Comparison of human and bovine prothrombin as substrates demonstrated a similar correlation between peptide binding and inhibition of factor Va acceleration. Inhibition of prothrombin activation by hirudin peptides was opposed by assembly on phospholipid vesicles of the membrane-bound factor Xa-factor-Va-prothrombin complex. Factor Va interactions of human and bovine prothrombin activation are concluded to share a common mechanism in which proexosite I participates in productive interactions of prothrombin as the substrate of the factor Xa-factor Va complex, possibly by directly mediating productive prothrombin-factor Va binding.  相似文献   

7.
Incorporation of prothrombin into the prothrombinase complex is essential for rapid thrombin generation at sites of vascular injury. Prothrombin binds directly to anionic phospholipid membrane surfaces where it interacts with the enzyme, factor Xa, and its cofactor, factor Va. We demonstrate that HD1, a thrombin-directed aptamer, binds prothrombin and thrombin with similar affinities (K(d) values of 86 and 34 nm, respectively) and attenuates prothrombin activation by prothrombinase by over 90% without altering the activation pathway. HD1-mediated inhibition of prothrombin activation by prothrombinase is factor Va-dependent because (a) the inhibitory activity of HD1 is lost if factor Va is omitted from the prothrombinase complex and (b) prothrombin binding to immobilized HD1 is reduced by factor Va. These data suggest that HD1 competes with factor Va for prothrombin binding. Kinetic analyses reveal that HD1 produces a 2-fold reduction in the k(cat) for prothrombin activation by prothrombinase and a 6-fold increase in the K(m), highlighting the contribution of the factor Va-prothrombin interaction to prothrombin activation. As a high affinity, prothrombin exosite 1-directed ligand, HD1 inhibits prothrombin activation more efficiently than Hir(54-65)(SO(3)(-)). These findings suggest that exosite 1 on prothrombin exists as a proexosite only for ligands whose primary target is thrombin rather than prothrombin.  相似文献   

8.
Staphylocoagulase (SC) is a potent nonproteolytic prothrombin (ProT) activator and the prototype of a newly established zymogen activator and adhesion protein family. The staphylocoagulase fragment containing residues 1-325 (SC-(1-325)) represents a new type of nonproteolytic activator with a unique fold consisting of two three-helix bundle domains. The N-terminal, domain 1 of SC (D1, residues 1-146) interacts with the 148 loop of thrombin and prethrombin 2 and the south rim of the catalytic site, whereas domain 2 of SC (D2, residues 147-325) occupies (pro)exosite I, the fibrinogen (Fbg) recognition exosite. Reversible conformational activation of ProT by SC-(1-325) was used to create novel analogs of ProT covalently labeled at the catalytic site with fluorescence probes. Analogs selected from screening 10 such derivatives were used to characterize quantitatively equilibrium binding of SC-(1-325) to ProT, competitive binding with native ProT, and SC domain interactions. The results support the conclusion that SC-(1-325) binds to a single site on fluorescein-labeled and native ProT with indistinguishable dissociation constants of 17-72 pM. The results obtained for isolated SC domains indicate that D2 binds ProT with approximately 130-fold greater affinity than D1, yet D1 binding accounts for the majority of the fluorescence enhancement that accompanies SC-(1-325) binding. The SC-(1-325).(pro)thrombin complexes and free thrombin showed little difference in substrate specificity for tripeptide substrates or with their natural substrate, Fbg. Lack of a significant effect of blockage of (pro)exosite I of (pro)thrombin by SC-(1-325) on Fbg cleavage indicates that a new Fbg substrate recognition exosite is expressed on the SC-(1-325).(pro)thrombin complexes. Our results provide new insight into the mechanism that mediates zymogen activation by this prototypical bacterial activator.  相似文献   

9.
In order to define structural regions in thrombin that interact with hirudin, the N alpha-dinitrofluorobenzyl analogue of an undecapeptide was synthesized corresponding to residues 54-64 of hirudin [GDFEEIPEEY(O35SO3)L (DNFB-[35S]Hir54-64)]. DNFB-[35S]Hir54-64 was reacted at a 10-fold molar excess with human alpha-thrombin in phosphate-buffered saline at pH 7.4 and 23 degrees C for 18 h. Autoradiographs of the product in reducing SDS-polyacrylamide gels revealed a single 35S-labeled band of Mr approximately 32,500. The labeled product was coincident with a band on Coomassie Blue stained gels migrating slightly above an unlabeled thrombin band at Mr approximately 31,000. Incorporation of the 35S affinity reagent peptide was found markedly reduced when reaction with thrombin was performed in the presence of 5- and 20-fold molar excesses of unlabeled hirudin peptide, showing that a specific site was involved in complex formation. The human alpha-thrombin-DNFB-Hir54-64 complex was reduced, S-carboxymethylated, and treated with pepsin. Peptic fragments were separated by reverse-phase HPLC revealing two major peaks containing absorbance at 310 nm. Automated Edman degradation of the peptide fragments allowed identification of Lys-149 of human thrombin as the major site of DNFB-Hir54-64 derivatization. These data suggest that the anionic C-terminal tail of hirudin interacts with an anion-binding exosite in human thrombin removed 18-20 A from the catalytic apparatus.  相似文献   

10.
Staphylocoagulase (SC) is a protein secreted by the human pathogen, Staphylococcus aureus, that activates human prothrombin (ProT) by inducing a conformational change. SC-bound ProT efficiently clots fibrinogen, thus bypassing the physiological blood coagulation pathway. The crystal structure of a fully active SC fragment, SC-(1-325), bound to human prethrombin 2 showed that the SC-(1-325) N terminus inserts into the Ile(16) pocket of prethrombin 2, thereby inducing expression of a functional catalytic site in the cognate zymogen without peptide bond cleavage. As shown here, SC-(1-325) binds to bovine and human ProT with similar affinity but activates the bovine zymogen only very poorly. By contrast to the approximately 2-fold difference in chromogenic substrate kinetic constants between human thrombin and the SC-(1-325).human (pro)thrombin complexes, SC-(1-325).bovine ProT shows a 3,500-fold lower k(cat)/K(m) compared with free bovine thrombin, because of a 47-fold increase in K(m) and a 67-fold decrease in k(cat). The SC-(1-325).bovine ProT complex is approximately 5,800-fold less active compared with its human counterpart. Comparison of human and bovine fibrinogen as substrates of human and bovine thrombin and the SC-(1-325).(pro)thrombin complexes indicates that the species specificity of SC-(1-325) cofactor activity is determined primarily by differences in conformational activation of bound ProT. These results suggest that the catalytic site in the SC-(1-325).bovine ProT complex is incompletely formed. The current crystal structure of SC-(1-325).bovine thrombin reveals that SC would dock similarly to the bovine proenzyme, whereas the bovine (pro)thrombin-characteristic residues Arg(144) and Arg(145) would likely interfere with insertion of the SC N terminus, thus explaining the greatly reduced activation of bovine ProT.  相似文献   

11.
Hirugen, a synthetic dodecapeptide corresponding to the carboxyl-terminal amino acids 53-64 of hirudin, binds within a deep groove in thrombin that contains a cationic region referred to as the anion-binding exosite. This region is important in many of the binary interactions of thrombin with macromolecular substrates and cofactors. Fluorescein-labeled hirugen was used to probe which steps in the prothrombin activation process generate this anion-binding exosite. Two activation cleavage sites exist in bovine prothrombin. Cleavage at Arg274-Thr275 releases the activation fragments to generate the thrombin precursor, prethrombin 2. Cleavage of prothrombin within a disulfide loop at Arg323-Ile324 leads to formation of meizothrombin with no loss of peptide material but with formation of amidolytic activity. Cleavage of the same bond in prethrombin 2 generates thrombin. Hirugen, labeled at the amino terminus with fluorescein isothiocyanate, does not bind to prothrombin but does bind to thrombin (Kd = 9.6 +/- 1.2 x 10(-8) M), prethrombin 2 (Kd = 1.3 +/- 0.1 x 10(-7) M), thrombin-fragment-2 complex (Kd = 1.1 +/- 0.2 x 10(-6) M), and meizothrombin (Kd = 1.6 +/- 0.5 x 10(-8) M). Prothrombin fragment-2 and hirugen both bind independently to thrombin. A ternary complex can form with hirugen and fragment-2 and either thrombin or prethrombin 2, suggesting that fragment-2 and hirugen bind to discrete sites. Hirugen also alters the active site conformation of thrombin as detected by modulation of synthetic substrate hydrolytic activity. These studies suggest that conformational changes, rather than alleviating steric hindrance, are responsible for the formation of the hirugen-binding site during prothrombin activation. Furthermore, this conformational change can be effected by the cleavage of either of the two bonds required for activation of prothrombin.  相似文献   

12.
The blood coagulation proteinase, thrombin, converts factor V into factor Va through a multistep activation pathway that is regulated by interactions with thrombin exosites. Thrombin exosite interactions with human factor V and its activation products were quantitatively characterized in equilibrium binding studies based on fluorescence changes of thrombin covalently labeled with 2-anilinonaphthalene-6-sulfonic acid (ANS) linked to the catalytic site histidine residue by Nalpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl ([ANS]FPR-thrombin). Exosite I was shown to play a predominant role in the binding of factor V and factor Va from the effect of the exosite I-specific ligand, hirudin54-65, on the interactions. Factor V and factor Va bound to exosite I of [ANS]FPR-thrombin with similar dissociation constants of 3.4 +/- 1.3 and 1.1 +/- 0.4 microM and fluorescence enhancements of 182 +/- 41 and 127 +/- 17%, respectively. Native thrombin and labeled thrombin bound with similar affinity to factor Va. Among factor V activation products, the factor Va heavy chain was shown to contain the site of exosite I binding, whereas exosite I-independent, lower affinity interactions were observed for activation fragments E and C1, and no detectable binding was observed for the factor Va light chain. The results support the conclusion that the factor V activation pathway is initiated by exosite I-mediated binding of thrombin to a site in the heavy chain region of factor V that facilitates the initial cleavage at Arg709 to generate the heavy chain of factor Va. The results further suggest that binding of thrombin through exosite I to factor V activation intermediates may regulate their conversion to factor Va and that similar binding of thrombin to the factor Va produced may reflect a mode of interaction involved in the regulation of prothrombin activation.  相似文献   

13.
Thrombin generation and fibrinogen (Fbg) clotting are the ultimate proteolytic reactions in the blood coagulation pathway. Staphylocoagulase (SC), a protein secreted by the human pathogen Staphylococcus aureus, activates prothrombin (ProT) without proteolysis. The SC.(pro)thrombin complex recognizes Fbg as a specific substrate, converting it directly into fibrin. The crystal structure of a fully active SC fragment containing residues 1-325 (SC-(1-325)) bound to human prethrombin 2 showed previously that SC inserts its Ile(1)-Val(2) N terminus into the Ile(16) pocket of prethrombin 2, inducing a functional active site in the cognate zymogen conformationally. Exosite I of alpha-thrombin, the Fbg recognition site, and proexosite I on ProT are blocked by domain 2 of SC-(1-325). In the present studies, active site-labeled fluorescent ProT analogs were used to quantitate Fbg binding to the SC-(1-325).ProT complex. Fbg binding and cleavage are mediated by expression of a new Fbg-binding exosite on the SC-(1-325).ProT complex, resulting in formation of an (SC-(1-325).ProT)(2).Fbg pentameric complex with a dissociation constant of 8-34 nm. In both crystal structures, the SC-(1-325).(pre)thrombin complexes form dimers, with both proteinases/zymogens facing each other over a large U-shaped cleft, through which the Fbg substrate could thread. On this basis, a molecular model of the pentameric (SC-(1-325).thrombin)(2).Fbg encounter complex was generated, which explains the coagulant properties and efficient Fbg conversion. The results provide new insight into the mechanism that mediates high affinity Fbg binding and cleavage as a substrate of SC.(pro)thrombin complexes, a process that is central to the molecular pathology of S. aureus endocarditis.  相似文献   

14.
Activation of human prothrombin to thrombin (II(a)) by factor X(a) during blood coagulation requires proteolysis of two bonds and thus involves two possible activation pathways (parallel-sequential activation model). Hydrolysis of Arg(322)-Ile(323) produces meizothrombin (MzII(a)) as an intermediate, while hydrolysis of Arg(273)-Thr(274) produces prethrombin 2-fragment 1.2 (Pre2-F1.2). A soluble lipid, dicaproylphosphatidylserine (C6PS), enhances activation by 60-fold [Koppaka et al. (1996) Biochemistry 35, 7482]. We report here that C6PS binding to factor X(a) not only enhances the rate of activation but also alters the pathway. Activation was monitored using a chromogenic substrate (S-2238) to detect both II(a) and MzII(a) active site formation and SDS-PAGE to detect Pre2-F1.2 as well as II(a) and MzII(a). Of the four kinetic constants needed to describe activation, two (MzII(a) and Pre2-F1.2 consumption) were measured directly, and two (MzII(a) and Pre2-F1.2 formation) were obtained by fitting the three time courses simultaneously to the parallel-sequential reaction model. The time courses of II(a), MzII(a), and Pre2-F1.2 formations were all well described below the C6PS critical micelle concentration (CMC) by this activation model. The rate of Arg(322)-Ile cleavage leading to MzII(a) formation increased by 150-fold, while the rate of Arg(273)-Thr cleavage leading to Pre2-F1.2 formation was inhibited slightly. At concentrations of water-soluble C6PS above its CMC, all four proteolytic reactions increased in rate by 2-5-fold at the C6PS CMC. We conclude that soluble C6PS differentially affects the rate of individual bond cleavages during prothrombin activation in solution such that activation occurs almost exclusively via MzII(a) formation. Finally, C6PS enhanced the rates of all proteolytic reactions to within a factor of 3 of the enhancement seen with PS-containing membranes. We conclude that PS-containing membranes regulate prothrombin activation by factor X(a) mainly via interaction of individual PS molecules with factor X(a).  相似文献   

15.
Membrane binding by prothrombin, mediated by its N-terminal fragment 1 (F1) domain, plays an essential role in its proteolytic activation by prothrombinase. Thrombin is produced in two cleavage reactions. One at Arg(320) yields the proteinase meizothrombin that retains membrane binding properties. The second, at Arg(271), yields thrombin and severs covalent linkage with the N-terminal fragment 1.2 (F12) region. Covalent linkage with the membrane binding domain is also lost when prethrombin 2 (P2) and F12 are produced following initial cleavage at Arg(271). We show that at the physiological concentration of prothrombin, thrombin formation results in rapid release of the proteinase into solution. Product release from the surface can be explained by the weak interaction between the proteinase and F12 domains. In contrast, the zymogen intermediate P2, formed following cleavage at Arg(271), accumulates on the surface because of a approximately 20-fold higher affinity for F12. By kinetic studies, we show that this enhanced binding adequately explains the ability of unexpectedly low concentrations of F12 to greatly enhance the conversion of P2 to thrombin. Thus, the utilization of all three possible substrate species by prothrombinase is regulated by their ability to bind membranes regardless of whether covalent linkage to the F12 region is maintained. The product, thrombin, interacts with sufficiently poor affinity with F12 so that it is rapidly released from its site of production to participate in its numerous hemostatic functions.  相似文献   

16.
Hirudin, a thrombin-specific inhibitor, comprises a compact amino-terminal core domain (residues 1-52) and a disordered acidic carboxyl-terminal tail (residues 53-65). An array of core fragments were prepared from intact recombinant hirudin by deletion of various lengths of its carboxyl-terminal tail on selective enzymatic cleavage. Hir1-56 and Hir1-53 were produced by pepsin digestion at Phe56-Glu57 and Asp53-Gly54. Hir1-52 was generated by Asp-N cleavage at Asn52-Asp53. Hir1-49 was prepared by cleavage of Gln49-Ser50 by chymotrypsin, elastase, and thermolysin. In addition, Hir1-62 (containing part of the carboxyl-terminal tail) was derived from Hir1-65 by selective removal of the three carboxyl-terminal amino acids using carboxypeptidase A. Hirudin amino-terminal core fragments were stable at extreme pH (1.47 and 12.6), high temperature (95 degrees C), and resistant to attack by various proteinases. For instance, following 24-h incubation with an equal weight of pepsin, the covalent structure of Hir1-52 remained intact and its anticoagulant activity unaffected. Unlike intact hirudin (Hir1-65) the inhibitory potency of which is a consequence of concerted binding of its amino-terminal and carboxyl-terminal domains to the active site and the fibrinogen recognition site of thrombin, the core fragments block only the active site of thrombin with binding constants of 19 nM (Hir1-56), 35 nM (Hir1-52), and 72 nM (Hir1-49). As an anticoagulant Hir1-56 is about 2-, 4-, and 30-fold more potent (on a molar basis) than Hir1-52, Hir1-49, and Hir1-43, respectively. Hir1-56 was also about 15-fold more effective than the most potent carboxyl-terminal fragment of hirudin, sulfated-Hir54-65, although they bind to independent sites on thrombin. The potential advantages of hirudin core fragments as antithrombotic agents are discussed in this report.  相似文献   

17.
Binding of prothrombin, prethrombin 1, prethrombin 2 and thrombin to fibrinogen-Sepharose was studied. Thrombin and prethrombin 2 bound to fibrinogen-Sepharose, while prethrombin 1 and prothrombin did not. Bound thrombin and prethrombin 2 were recovered from the column by eluting with 0.1 M NaCl/0.05 M Tris-HCl buffer (pH 7.4). The affinity of thrombin and prethrombin 2 to fibrinogen-Sepharose depended on ionic strength and reached a maximum at 50 mm concentration. Prethrombin 2 interacts with fibrinogen as well as thrombin; and prothrombin fragment 1.2 is not important in the formation of this complex. Thus, prethrombin 2, which is a precursor of thrombin without measurable enzymatic activity and which lacks the single cleavage at Arg-322-Ile-323 present in thrombin, has the same or very similar structural conformation as thrombin and has the same macromolecular substrate recognition site. These results confirm the earlier results that active center is not necessary in fibrinogen-thrombin interaction.  相似文献   

18.
Thrombin is an allosteric protease controlled through exosites flanking the catalytic groove. Binding of a peptide derived from hirudin (Hir(52-65)) and/or of heparin to these opposing exosites alters catalysis. We have investigated the contribution of subsites S(2)' and S(3)' to this allosteric transition by comparing the hydrolysis of two sets of fluorescence-quenched substrates having all natural amino acids at positions P(2)' and P(3)'. Regardless of the amino acids, Hir(52-65) decreased, and heparin increased the k(cat)/K(m) value of hydrolysis by thrombin. Several lines of evidence have suggested that Glu(192) participates in this modulation. We have examined the role of Glu(192) by comparing the catalytic activity of thrombin and its E192Q mutant. Mutation substantially diminishes the selectivity of thrombin. The substrate with the "best" P(2)' residue was cleaved with a k(cat)/K(m) value only 49 times higher than the one having the "least favorable" P(2)' residue (versus 636-fold with thrombin). Mutant E192Q also lost the strong preference of thrombin for positively charged P(3)' residues and its strong aversion for negatively charged P(3)' residues. Furthermore, both Hir(52-65) and heparin increased the k(cat)/K(m) value of substrate hydrolysis. We conclude that Glu(192) is critical for the P(2)' and P(3)' specificities of thrombin and for the allostery mediated through exosite 1.  相似文献   

19.
Platelet activation and aggregation are mediated by thrombin cleavage of the exodomain of the PAR1 receptor. The specificity of thrombin for PAR1 is enhanced by binding to a hirudin-like region (Hir) located in the receptor exodomain. Here, we examine the mechanism of thrombin-PAR1 recognition and cleavage by steady-state kinetic measurements using soluble PAR1 N-terminal exodomains. We determined that the primary role of the PAR1 Hir sequence is to reduce the kinetic barriers to formation of the docked thrombin-PAR1 complex rather than to form high affinity ground-state interactions. In addition, the exosite I-bound Hir motif facilitates the productive interaction of the PAR1 (38)LDPR/SFL(44) sequence with the active site of thrombin. This locking process is the most energetically unfavorable step of the overall reaction. The subsequent irreversible steps of peptide bond cleavage are rapid and allosterically enhanced by the presence of the docked Hir sequence. Furthermore, the C-terminal exodomain product of thrombin cleavage, corresponding to the activated receptor, binds tightly to thrombin. This would suggest that an additional role of the Hir sequence in the thrombin-activated receptor is to sequester thrombin to the platelet surface and modulate cleavage of other platelet receptors such as the PAR4 thrombin receptor, which lacks a functional Hir sequence.  相似文献   

20.
Activation of prothrombin by factor X(a) requires proteolysis of two bonds and is commonly assumed to occur via by two parallel, sequential pathways. Hydrolysis of Arg(322)-Ile(323) produces meizothrombin (MzII(a)) as an intermediate, while hydrolysis of Arg(273)-Thr(274) produces prethrombin 2-fragment 1.2 (Pre2-F1.2). Activation by human factor X(a) of human prothrombin was examined in the absence of factor V(a) and in the absence and presence of bovine phosphatidylserine (PS)/palmitoyloleoylphosphatidylcholine (25:75) membranes. Four sets of data were collected: fluorescence of an active site probe (DAPA) was sensitive to thrombin, MzII(a), and Pre2-F1.2; a synthetic substrate (S-2238) detected thrombin or MzII(a) active site formation; and SDS-PAGE detected both intermediates and thrombin. The fluorescence data provided an internal check on the active site and SDS-PAGE measurements. Kinetic constants for conversion of intermediates to thrombin were measured directly in the absence of membranes. Both MzII(a) and Pre2-F1.2 were consumed rapidly in the presence of membranes, so kinetic constants for these reactions had to be estimated as adjustable parameters by fitting three data sets (thrombin and MzII(a) active site formation and Pre2 appearance) simultaneously to the parallel-sequential model. In the absence of membranes, this model successfully described the data and yielded a rate constant, 44 M(-1) s(-1), for the rate of MzII(a) formation. By contrast, the parallel-sequential model could not describe prothrombin activation in the presence of optimal concentrations of PS-containing membranes without assuming that a pathway existed for converting prothrombin directly to thrombin without release from the membrane-enzyme complex. The data suggest that PS membranes (1) regulate factor X(a), (2) alter the substrate specificity of factor X(a) to favor the meizothrombin intermediate, and (3) "channel" intermediate (MzII(a) or Pre2-F1.2) back to the active site of factor X(a) for rapid conversion to thrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号