首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
Secretory proteins perform a variety of important “remote-control” functions for bacterial survival in the environment. The availability of complete genome sequences has allowed us to make predictions about the composition of bacterial machinery for protein secretion as well as the extracellular complement of bacterial proteomes. Recently, the power of proteomics was successfully employed to evaluate genome-based models of these so-called secretomes. Progress in this field is well illustrated by the proteomic analysis of protein secretion by the gram-positive bacterium Bacillus subtilis, for which ~90 extracellular proteins were identified. Analysis of these proteins disclosed various “secrets of the secretome,” such as the residence of cytoplasmic and predicted cell envelope proteins in the extracellular proteome. This showed that genome-based predictions reflect only ~50% of the actual composition of the extracellular proteome of B. subtilis. Importantly, proteomics allowed the first verification of the impact of individual secretion machinery components on the total flow of proteins from the cytoplasm to the extracellular environment. In conclusion, proteomics has yielded a variety of novel leads for the analysis of protein traffic in B. subtilis and other gram-positive bacteria. Ultimately, such leads will serve to increase our understanding of virulence factor biogenesis in gram-positive pathogens, which is likely to be of high medical relevance.  相似文献   

2.
The genome sequence of Bacillus subtilis was published in 1997 and since then many other bacterial genomes have been sequenced, among them Bacillus licheniformis in 2004. B. subtilis and B. licheniformis are closely related and feature similar saprophytic lifestyles in the soil. Both species can secrete numerous proteins into the surrounding medium enabling them to use high-molecular-weight substances, which are abundant in soils, as nutrient sources. The availability of complete genome sequences allows for the prediction of the proteins containing signals for secretion into the extracellular milieu and also of the proteins which form the secretion machinery needed for protein translocation through the cytoplasmic membrane. To confirm the predicted subcellular localization of proteins, proteomics is the best choice. The extracellular proteomes of B. subtilis and B. licheniformis have been analyzed under different growth conditions allowing comparisons of the extracellular proteomes and conclusions regarding similarities and differences of the protein secretion mechanisms between the two species.  相似文献   

3.
One of the most salient features of Bacillus subtilis and related bacilli is their natural capacity to secrete a variety of proteins into their environment, frequently to high concentrations. This has led to the commercial exploitation of bacilli as major "cell factories" for secreted enzymes. The recent sequencing of the genome of B. subtilis has provided major new impulse for analysis of the molecular mechanisms underlying protein secretion by this organism. Most importantly, the genome sequence has allowed predictions about the composition of the secretome, which includes both the pathways for protein transport and the secreted proteins. The present survey of the secretome describes four distinct pathways for protein export from the cytoplasm and approximately 300 proteins with the potential to be exported. By far the largest number of exported proteins are predicted to follow the major "Sec" pathway for protein secretion. In contrast, the twin-arginine translocation "Tat" pathway, a type IV prepilin-like export pathway for competence development, and ATP-binding cassette transporters can be regarded as "special-purpose" pathways, through which only a few proteins are transported. The properties of distinct classes of amino-terminal signal peptides, directing proteins into the various protein transport pathways, as well as the major components of each pathway are discussed. The predictions and comparisons in this review pinpoint important differences as well as similarities between protein transport systems in B. subtilis and other well-studied organisms, such as Escherichia coli and the yeast Saccharomyces cerevisiae. Thus, they may serve as a lead for future research and applications.  相似文献   

4.
The availability of the complete genome sequence of Bacillus subtilis has allowed the prediction of all exported proteins of this Gram-positive eubacterium. Recently, approximately 180 secretory and 114 lipoprotein signal peptides were predicted to direct protein export from the cytoplasm. Whereas most exported proteins appear to use the Sec pathway, 69 of these proteins could potentially use the Tat pathway, as their signal peptides contain RR- or KR-motifs. In the present studies, proteomic techniques were applied to verify how many extracellular B. subtilis proteins follow the Tat pathway. Strikingly, the extracellular accumulation of 13 proteins with potential RR/KR-signal peptides was Tat-independent, showing that their RR/KR-motifs are not recognized by the Tat machinery. In fact, only the phosphodiesterase PhoD was shown to be secreted in a strictly Tat-dependent manner. Sodium azide-inhibition of SecA strongly affected the extracellular appearance of de novo synthesized proteins, including the lipase LipA and two other proteins with predicted RR/KR-signal peptides. The SecA-dependent export of pre-LipA is particularly remarkable, because its RR-signal peptide conforms well to stringent criteria for the prediction of Tat-dependent export in Escherichia coli. Taken together, our observations show that the Tat pathway makes a highly selective contribution to the extracellular proteome of B. subtilis.  相似文献   

5.
Mitochondria are eukaryotic organelles that originated from a single bacterial endosymbiosis some 2 billion years ago. The transition from the ancestral endosymbiont to the modern mitochondrion has been accompanied by major changes in its protein content, the so-called proteome. These changes included complete loss of some bacterial pathways, amelioration of others and gain of completely new complexes of eukaryotic origin such as the ATP/ADP translocase and most of the mitochondrial protein import machinery. This renewal of proteins has been so extensive that only 14-16% of modern mitochondrial proteome has an origin that can be traced back to the bacterial endosymbiont. The rest consists of proteins of diverse origin that were eventually recruited to function in the organelle. This shaping of the proteome content reflects the transformation of mitochondria into a highly specialized organelle that, besides ATP production, comprises a variety of functions within the eukaryotic metabolism. Here we review recent advances in the fields of comparative genomics and proteomics that are throwing light on the origin and evolution of the mitochondrial proteome.  相似文献   

6.
7.
Becher D  Büttner K  Moche M  Hessling B  Hecker M 《Proteomics》2011,11(15):2971-2980
Owing to the low number of proteins necessary to render a bacterial cell viable, bacteria are extremely attractive model systems to understand how the genome sequence is translated into actual life processes. One of the most intensively investigated model organisms is Bacillus subtilis. It has attracted world-wide research interest, addressing cell differentiation and adaptation on a molecular scale as well as biotechnological production processes. Meanwhile, we are looking back on more than 25 years of B. subtilis proteomics. A wide range of methods have been developed during this period for the large-scale qualitative and quantitative proteome analysis. Currently, it is possible to identify and quantify more than 50% of the predicted proteome in different cellular subfractions. In this review, we summarize the development of B. subtilis proteomics during the past 25 years.  相似文献   

8.
Gram-positive sporulating Bacillus subtilis secretes high levels of protein. Its complete genome sequence, published in 1997, encodes 4,106 proteins. Bioinformatic searches have predicted that about half of all B. subtilis proteins are related to the cell membrane through export to the extracellular medium, insertion, and attachment. Key features of the B. subtilis protein secretion machinery are the absence of an Escherichia coli SecB homolog and the presence of an SRP (signal recognition particle) that is structurally rather similar to human SRP. In addition, B. subtilis contains five type I signal peptidases (SipS, T, U, V, and W). Our in vitro assay system indicated that co-operation between the SRP-protein targeting system to the cell membrane and the Sec protein translocation machinery across the cytoplasmic membrane constitutes the major protein secretion pathway in B. subtilis. Furthermore, the function of the SRP-Sec pathway in protein localization to the cell membrane and spore was analyzed.  相似文献   

9.
10.
Hecker M  Völker U 《Proteomics》2004,4(12):3727-3750
Using Bacillus subtilis as a model system for functional genomics, this review will provide insights how proteomics can be used to bring the virtual life of genes to the real life of proteins. Physiological proteomics will generate a new and broad understanding of cellular physiology because the majority of proteins synthesized in the cell can be visualized. From a physiological point of view two major proteome fractions can be distinguished: proteomes of growing cells and proteomes of nongrowing cells. In the main analytical window almost 50% of the vegetative proteome expressed in growing cells of B. subtilis were identified. This proteomic view of growing cells can be employed for analyzing the regulation of entire metabolic pathways and thus opens the chance for a comprehensive understanding of metabolism and growth processes of bacteria. Proteomics, on the other hand, is also a useful tool for analyzing the adaptational network of nongrowing cells that consists of several partially overlapping regulation groups induced by stress/starvation stimuli. Furthermore, proteomic signatures for environmental stimuli can not only be applied to predict the physiological state of cells, but also offer various industrial applications from fermentation monitoring up to the analysis of the mode of action of drugs. Even if DNA array technologies currently provide a better overview of the gene expression profile than proteome approaches, the latter address biological problems in which they can not be replaced by mRNA profiling procedures. This proteomics of the second generation is a powerful tool for analyzing global control of protein stability, the protein interaction network, protein secretion or post-translational modifications of proteins on the way towards the elucidation of the mystery of life.  相似文献   

11.
Tjalsma H 《Proteomics》2007,7(1):73-81
Proteomics-based verification of computer-assisted predictions on bacterial protein export have indicated that problems occur with the distinction between (Sec-type) signal peptides that govern protein secretion, and lipoprotein signal peptides or amino-terminal membrane anchors that cause protein retention in the membrane. Therefore, the main aim of this study was to investigate whether feature-based predictions by the SecretomeP (SecP) algorithm will aid the proteomics-based analysis of protein export in Bacillus subtilis. The SecP algorithm is trained to recognize features such as secondary structure and disordered regions, which are generally present in secreted proteins. The results showed that membrane-retained proteins receive, in general, high SecP scores, similar to the scores of secretory proteins. Importantly, the SecP algorithm aided in the re-evaluation of a class of previously identified proteins that remain attached to the membrane despite the presence of an apparent Sec-type signal peptide. These so-called 'Sec-attached' proteins receive on average a lower SecP score, and several of these proteins could be unmasked as transmembrane proteins by combined SecP and signal peptide analyses. Finally, the present study suggests that feature-based outlier analysis may provide leads towards the discovery of novel special-purpose pathways for bacterial protein export.  相似文献   

12.
With the emergence of mass spectrometry in protein science and the availability of complete genome sequences, proteomics has gone through a rapid development. The soil bacterium Bacillus subtilis, as one of the first DNA sequenced species, represents a model for Gram-positive bacteria and its proteome was extensively studied throughout the years. Having the final goal to elucidate how life really functions, one basic requirement is to know the entirety of cellular proteins. This review presents how far we have got in unraveling the proteome of B. subtilis. The application of gel-based and gel-free technologies, the analyses of different subcellular proteome fractions, and the pursuance of various physiological strategies resulted in a coverage of more than one-third of B. subtilis theoretical proteome.  相似文献   

13.
The now finished genome sequence of Bacillus licheniformis DSM 13 allows the prediction of the genes involved in protein secretion into the extracellular environment as well as the prediction of the proteins which are translocated. From the sequence 296 proteins were predicted to contain an N-terminal signal peptide directing most of them to the Sec system, the main transport system in Gram-positive bacteria. Using 2-DE the extracellular proteome of B. licheniformis grown in different media was studied. From the approximately 200 spots visible on the gels, 89 were identified that either contain an N-terminal signal sequence or are known to be secreted by other mechanisms than the Sec pathway. The extracellular proteome of B. licheniformis includes proteins from different functional classes, like enzymes for the degradation of various macromolecules, proteins involved in cell wall turnover, flagellum- and phage-related proteins and some proteins of yet unknown function. Protein secretion is highest during stationary growth phase. Furthermore, cells grown in complex medium secrete considerably higher protein amounts than cells grown in minimal medium. Limitation of phosphate, carbon and nitrogen sources results in the secretion of specific proteins that may be involved in counteracting the starvation.  相似文献   

14.
Unlike Bacillus subtilis and Escherichia coli, the gram-positive lactic acid bacterium Lactococcus lactis does not possess the SecDF protein, a component of the secretion (Sec) machinery involved in late secretion stages and required for the high-capacity protein secretion in B. subtilis. In this study, we complemented the L. lactis Sec machinery with SecDF from B. subtilis and evaluated the effect on the secretion of two forms of staphylococcal nuclease, NucB and NucT, which are efficiently and poorly secreted, respectively. The B. subtilis SecDF-encoding gene was tested in L. lactis at different levels. Increased quantities of the precursor and mature forms were observed only at low levels of SecDF and at high NucT production levels. This SecDF secretion enhancement was observed at the optimal growth temperature (30 degrees C) and was even greater at 15 degrees C. Furthermore, the introduction of B. subtilis SecDF into L. lactis was shown to have a positive effect on a secreted form of Brucella abortus L7/L12 antigen.  相似文献   

15.
Proteomics seeks to monitor the global complement of proteins within a cell or organism and accompanying plasticity with respect to development and environment. The proteome is dynamic, the product of current and past gene expression, countless protein-protein interactions and selective proteolytic systems. Consequently the snapshot that a proteomic measurement yields must be integrated into proteome flux; the flow of nutrients and energy through the protein pathways that catalyze and drive life. The thylakoid membrane proteome poses many technical challenges for proteomics. Integral membrane proteins present awkward physico-chemical properties and the abundant photosynthetic machinery conceals much less abundant and no less important proteins such as channels and transporters that control the interaction of stroma and lumen. Discussed here are contrasting approaches to thylakoid proteomics; 'shotgun' techniques that provide throughput benefits by cleaving proteins into smaller more-manageable peptide chunks versus intact protein techniques that provide more detailed and accurate pictures. A two-dimensional chromatography system directly interfaced to electrospray-ionization mass spectrometry has allowed the direct visualization of large reaction-center proteins (up to 83 kDa) from both Photosystems 1 and 2 providing an attractive avenue for characterization of thylakoid membrane proteomes under different conditions because of the ability to resolve molecular heterogeneity resulting from post-translational modifications such as phosphorylation and oxidation. A high-resolution spectrum of Bacteriorhodopsin recorded to an accuracy of 8 ppm using Fourier-transform mass spectrometry demonstrates the first application of this technique to intact polytopic integral membrane proteins.  相似文献   

16.
We have merged four different views of the human plasma proteome, based on different methodologies, into a single nonredundant list of 1175 distinct gene products. The methodologies used were 1) literature search for proteins reported to occur in plasma or serum; 2) multidimensional chromatography of proteins followed by two-dimensional electrophoresis and mass spectroscopy (MS) identification of resolved proteins; 3) tryptic digestion and multidimensional chromatography of peptides followed by MS identification; and 4) tryptic digestion and multidimensional chromatography of peptides from low-molecular-mass plasma components followed by MS identification. Of 1,175 nonredundant gene products, 195 were included in more than one of the four input datasets. Only 46 appeared in all four. Predictions of signal sequence and transmembrane domain occurrence, as well as Genome Ontology annotation assignments, allowed characterization of the nonredundant list and comparison of the data sources. The "nonproteomic" literature (468 input proteins) is strongly biased toward signal sequence-containing extracellular proteins, while the three proteomics methods showed a much higher representation of cellular proteins, including nuclear, cytoplasmic, and kinesin complex proteins. Cytokines and protein hormones were almost completely absent from the proteomics data (presumably due to low abundance), while categories like DNA-binding proteins were almost entirely absent from the literature data (perhaps unexpected and therefore not sought). Most major categories of proteins in the human proteome are represented in plasma, with the distribution at successively deeper layers shifting from mostly extracellular to a distribution more like the whole (primarily cellular) proteome. The resulting nonredundant list confirms the presence of a number of interesting candidate marker proteins in plasma and serum.  相似文献   

17.
Developments in the use of Bacillus species for industrial production   总被引:13,自引:0,他引:13  
Bacillus species continue to be dominant bacterial workhorses in microbial fermentations. Bacillus subtilis (natto) is the key microbial participant in the ongoing production of the soya-based traditional natto fermentation, and some Bacillus species are on the Food and Drug Administration's GRAS (generally regarded as safe) list. The capacity of selected Bacillus strains to produce and secrete large quantities (20-25 g/L) of extracellular enzymes has placed them among the most important industrial enzyme producers. The ability of different species to ferment in the acid, neutral, and alkaline pH ranges, combined with the presence of thermophiles in the genus, has lead to the development of a variety of new commercial enzyme products with the desired temperature, pH activity, and stability properties to address a variety of specific applications. Classical mutation and (or) selection techniques, together with advanced cloning and protein engineering strategies, have been exploited to develop these products. Efforts to produce and secrete high yields of foreign recombinant proteins in Bacillus hosts initially appeared to be hampered by the degradation of the products by the host proteases. Recent studies have revealed that the slow folding of heterologous proteins at the membrane-cell wall interface of Gram-positive bacteria renders them vulnerable to attack by wall-associated proteases. In addition, the presence of thiol-disulphide oxidoreductases in B. subtilis may be beneficial in the secretion of disulphide-bond-containing proteins. Such developments from our understanding of the complex protein translocation machinery of Gram-positive bacteria should allow the resolution of current secretion challenges and make Bacillus species preeminent hosts for heterologous protein production. Bacillus strains have also been developed and engineered as industrial producers of nucleotides, the vitamin riboflavin, the flavor agent ribose, and the supplement poly-gamma-glutamic acid. With the recent characterization of the genome of B. subtilis 168 and of some related strains, Bacillus species are poised to become the preferred hosts for the production of many new and improved products as we move through the genomic and proteomic era.  相似文献   

18.
Tjalsma H  van Dijl JM 《Proteomics》2005,5(17):4472-4482
The availability of complete bacterial genome sequences allows proteome-wide predictions of exported proteins that are potentially retained in the cytoplasmic membranes of the corresponding organisms. In practice, however, major problems are encountered with the computer-assisted distinction between (Sec-type) signal peptides that direct exported proteins into the growth medium and lipoprotein signal peptides or amino-terminal membrane anchors that cause protein retention in the membrane. In the present studies, which were aimed at improving methods to predict protein retention in the bacterial cytoplasmic membrane, we have compared sets of membrane-attached and extracellular proteins of Bacillus subtilis that were recently identified through proteomics approaches. The results showed that three classes of membrane-attached proteins can be distinguished. Two classes include 43 lipoproteins and 48 proteins with an amino-terminal transmembrane segment, respectively. Remarkably, a third class includes 31 proteins that remain membrane-retained despite the presence of typical Sec-type signal peptides with consensus signal peptidase recognition sites. This unprecedented finding indicates that unknown mechanisms are involved in membrane retention of this class of proteins. A further novelty is a consensus sequence indicative for release of certain lipoproteins from the membrane by proteolytic shaving. Finally, using non-overlapping sets of secreted and membrane-retained proteins, the accuracy of different signal peptide prediction algorithms was assessed. Accuracy for the prediction of protein retention in the membrane was increased to 82% using a majority-vote approach. Our findings provide important leads for future identification of surface proteins from pathogenic bacteria, which are attractive candidate infection markers and potential targets for drugs or vaccines.  相似文献   

19.
20.
The vascular extracellular matrix (ECM) is essential for the structural integrity of the vessel wall and also serves as a substrate for the binding and retention of secreted products of vascular cells as well as molecules coming from the circulation. Although proteomics has been previously applied to vascular tissues, few studies have specifically targeted the vascular ECM and its associated proteins. Thus, its detailed composition remains to be characterized. In this study, we describe a methodology for the extraction of extracellular proteins from human aortas and their identification by proteomics. The approach is based on (a) effective decellularization to enrich for scarce extracellular proteins, (b) successful solubilization and deglycosylation of ECM proteins, and (c) relative estimation of protein abundance using spectral counting. Our three-step extraction approach resulted in the identification of 103 extracellular proteins of which one-third have never been reported in the proteomics literature of vascular tissues. In particular, three glycoproteins (podocan, sclerostin, and agrin) were identified for the first time in human aortas at the protein level. We also identified extracellular adipocyte enhancer-binding protein 1, the cartilage glycoprotein asporin, and a previously hypothetical protein, retinal pigment epithelium (RPE) spondin. Moreover, our methodology allowed us to screen for proteolysis in the aortic samples based on the identification of proteolytic enzymes and their corresponding degradation products. For instance, we were able to detect matrix metalloproteinase-9 by mass spectrometry and relate its presence to degradation of fibronectin in a clinical specimen. We expect this proteomics methodology to further our understanding of the composition of the vascular extracellular environment, shed light on ECM remodeling and degradation, and provide insights into important pathological processes, such as plaque rupture, aneurysm formation, and restenosis.Vascular cells, in particular vascular smooth muscle cells, produce and maintain a complex meshwork of ECM.1 The ECM is not only the scaffold for the anchorage and mobility of residing cells but also absorbs and transduces the shear and strain forces of the blood flow. It is primarily composed of elastin, collagen, proteoglycans, and glycoproteins. The elastin fibers and type I and III fibrillar collagens form a rigid network of highly cross-linked interstitial matrix. They offer elasticity (elastin) and tensile strength (collagens). Proteoglycans, because of their negative charge, attract water and confer resistance to compression. Finally, glycoproteins participate in matrix organization and are essential for cell attachment.The vascular ECM also serves as a substrate for the binding and retention of secreted, soluble proteins of vascular cells as well as molecules coming from the circulation, including lipoproteins, growth factors, cytokines, proteases, and protease inhibitors. These components are invariably associated with ECM proteins, especially proteoglycans. Together they comprise the vascular extracellular environment and are pivotal for disease processes, such as atherosclerosis and aneurysm formation (1).Although proteomics has been previously applied to vascular tissues, only one study has specifically targeted the extracellular vascular environment (2). This study was focused on the isolation of intimal proteoglycans from human carotid arteries. Moreover, most proteomics studies use whole tissue lysates, which are rich in cellular proteins that inevitably mask the identification of the less abundant proteins of the vascular extracellular environment (35). Thus, the composition of the vascular ECM and its associated proteins remains poorly defined. In the present study, we used morphologically normal human aortic samples to develop a method for the extraction of proteins present in the extracellular environment, including ECM proteins and proteins attached to the ECM. We had three specific aims: first, to reduce the contamination with cellular proteins, thereby increasing the chance of identifying scarce extracellular proteins; second, to efficiently solubilize and deglycosylate ECM proteins to improve their analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS); and third, to interface the nanoflow LC system to a recently developed injection device, which splits the flow from the analytical column, to allow the reanalysis of the same sample during a single LC-MS/MS run (RePlay, Advion).Our methodology provides a detailed overview of the aortic ECM and its associated proteins, many reported for the first time in proteomics analysis of the vasculature. Most importantly, this method could be adapted for use with other tissues to further our understanding of the composition of extracellular environment and ECM turnover under various disease conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号