首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 372 毫秒
1.
Treatment of rat liver cytosol with hydrogen peroxide (H2O2) or sodium molybdate (MoO4(2-)) inhibits thermal inactivation of glucocorticoid receptor steroid-binding capacity at 25 degrees C. Dithiothreitol (DTT) prevents the stabilization of receptors by H2O2. Heating (25 degrees C) of immune pellets formed by immunoadsorption of L-cell murine glucocorticoid receptor complexes to protein-A-Sepharose with an anti-receptor monoclonal antibody (BuGR2) results in dissociation of the M 90,000 heat shock protein (hsp90) from the steroid binding protein. Such thermal-induced dissociation of hsp90 is inhibited by H2O2. Pretreatment of immunoadsorbed receptor complexes with the thiol derivatizing agent, methyl methanethiosulfonate (MMTS) prevents the ability of H2O2 to stabilize the hsp90-receptor interaction. These data suggest a role for hsp90 in maintaining an active steroid-binding conformation of the glucocorticoid receptor.  相似文献   

2.
Hydrogen peroxide produces all of the effects on glucocorticoid receptors that are produced by molybdate, including stabilization of the receptor 90-kDa heat shock protein (hsp90) complex (Tienrungroj, W., Meshinchi, S., Sanchez, E. R., Pratt, S. E., Grippo, J. F., Holmgren, A., and Pratt, W. B. (1987) J. Biol. Chem. 262, 6992-7000). When the glucocorticoid receptor is exposed simultaneously to molybdate and peroxide at concentrations that are optimal for receptor stabilization if each agent is present alone, there is an irreversible loss of steroid binding activity. The effect is accompanied by a covalent modification of the receptor, which is demonstrated by an increase in its apparent Mr on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Preincubation of the receptor with the sulfhydryl-modifying reagents methyl methanethiosulfonate or N-ethylmaleimide prevents covalent modification, suggesting that cysteine moieties are the site of attack. The covalently modified receptor can still bind to DNA. Molybdate-peroxide treatment does not covalently modify the 15-kDa tryptic fragment containing the DNA-binding domain and 11 of the 20 cysteine moieties in the receptor. However, the 27-kDa tryptic fragment, which contains the steroid-binding domain and 5 cysteines, is covalently modified. The 27-kDa tryptic fragment is covalently modified by the molybdate-peroxide combination when [3H]dexamethasone 21-mesylate is covalently bound to Cys-644. This leaves some combination of 4 cysteines in the steroid-binding domain (628, 649, 671, and 742) as the modified groups. These modifications occur in a region of the receptor that is known to contain its sites of interaction with both hsp90 and molybdate, with the latter having a well-established avidity for sulfur. These observations raise the possibility that the covalent modification caused by the molybdate-peroxide combination represents a modification of sulfur ligands involved in molybdate stabilization of the receptor.  相似文献   

3.
The glucocorticoid receptor is present in the cytosol of cell extracts as a large nonactivated (i.e. non-DNA-binding) approximately 9 S (Mr 300,000) complex. Experimental evidence indicates that the purified nonactivated glucocorticoid receptor contains a single steroid-binding protein and two approximately 90-kDa nonsteroid-binding subunits identified as heat shock protein (hsp) 90. Translation of the glucocorticoid receptor mRNA in vitro in reticulocyte lysates produces a large nonactivated glucocorticoid receptor complex similar to that found in cytosols. The cell-free synthesized glucocorticoid receptor is able to bind steroid and can be activated further to the DNA-binding form. To test the hypothesis of an active role played by hsp90 in the stabilization of a competent steroid-binding conformation of the glucocorticoid receptor, we have synthesized the receptor in a reticulocyte lysate that has been depleted of hsp90 by immunoadsorption with AC88 anti-hsp90. Although the translation capacity of the reticulocyte system was reduced considerably upon hsp90 removal, the glucocorticoid receptor was synthesized, and a significant number of molecules were found to bind [3H]triamcinolone acetonide. Chromatography on DEAE-cellulose showed that most of the receptor molecules synthesized in hsp90-depleted lysate had lost the capacity to form an oligomeric receptor complex. Addition of purified rat liver hsp90 to the hsp90-depleted lysate before translation did not increase steroid binding nor did it restore formation of the heteromeric receptor complex. Analysis of [35S] methionine-labeled glucocorticoid receptor molecules synthesized in the hsp90-depleted lysate showed the production of polypeptides differing from the expected chromatographic pattern on DEAE-cellulose. Upon addition of purified hsp90 to the hsp90-depleted lysate, before translation, the 35S-labeled synthesized receptor fractionated on DEAE-cellulose as an intermediate peak between activated and nonactivated receptor forms. The data suggest that hsp90 alone may not be sufficient for the formation of the nonactivated steroid receptor complex.  相似文献   

4.
This brief review explores some recent observations relating to the structure of untransformed glucocorticoid and progesterone receptors and the mechanism by which the receptors are transformed to the DNA-binding state. In their molybdatestabilized, untransformed state, progesterone and glucocorticoid receptors exist as a heteromeric 8-9S complex containing one unit of steroid binding phosphoprotein and one or two units of the 90 kD heat shock protein hsp90. When the receptors are transformed, the steroid-binding protein dissociates from hsp90. In cytosol preparations, temperature-mediated dissociation proceeds much more rapidly in the presence of hormone. The dissociated receptor binds to DNA with high affinity, regardless of whether it is in the hormone-bound or the hormone-free state. These observations raise the possibility that the primary, and perhaps the only, role for the hormone is to promote dissociation of the receptor-hsp90 complex. Molybdate, vanadate, and tungstate inhibit receptor transformation to the DNA-binding form, an effect that appears to reflect the ability of these transition metal oxyanions to stabilize the complex between the steroid receptor and hsp90. By promoting the formation of disulfide bonds, hydrogen peroxide also stabilizes the glucocorticoid receptor-hsp90 complex and prevents receptor transformation. A small, heat-stable factor present in all cytosol preparations inhibits receptor transformation, and, when the factor is removed, glucocorticoid receptors are rapidly transformed. This ubiquitous factor has the physical properties of a metal anion, and it is proposed that molybdate and vanadate affect steroid receptor complexes by interacting with a metal anion-binding site that is normally occupied by this endogenous receptor-stabilizing factor.  相似文献   

5.
Hydrogen peroxide and diamide inactivate the steroid-binding capacity of unoccupied glucocorticoid receptors in rat liver cytosol at 0 degrees C, and steroid-binding capacity is reactivated with dithiothreitol. Treatment of cytosol with peroxide or sodium molybdate, but not diamide, inhibits the irreversible inactivation (i.e., inactivation not reversed by dithiothreitol) of steroid-binding capacity that occurs when cytosol is incubated at 25 degrees C. Pretreatment of cytosol with the thiol derivatizing agent methyl methanethiosulfonate at 0 degrees C prevents the ability of peroxide, but not molybdate, to stabilize binding capacity at 25 degrees C. As derivatization of thiol groups prevents peroxide stabilization of steroid-binding capacity and as treatment with dithiothreitol reverses the effect, we propose that peroxide acts by promoting the formation of new disulfide linkages. The receptor in our rat liver cytosol preparations is present as three major degradation products of Mr 40,000, 52,000, and 72,000 in addition to the Mr 94,000 intact receptor. Like the intact receptor, these three forms exist in the presence of molybdate as an 8-9S complex, they bind glucocorticoid in a specific manner, and they copurify with the intact Mr 94,000 receptor on sequential phosphocellulose and DNA-cellulose chromatography. Despite the existence of receptor cleavage products, it is clear that peroxide does not stabilize steroid-binding capacity by inhibiting receptor cleavage.  相似文献   

6.
P R Housley 《Biochemistry》1990,29(14):3578-3585
Fluoride, in the presence of aluminum ions, reversibly inhibits the temperature-mediated inactivation of unoccupied glucocorticoid receptors in cytosol preparations from mouse L cells. The effect is concentration-dependent, with virtually complete stabilization of specific glucocorticoid-binding capacity at 2 mM fluoride and 100 microM aluminum. These concentrations of aluminum and fluoride are ineffective when used separately. Aluminum fluoride also stabilizes receptors toward inactivation by gel filtration and ammonium sulfate precipitation. Aluminum fluoride prevents temperature-dependent transformation of steroid-receptor complexes to the DNA-binding state. Aluminum fluoride does not inhibit calf intestine alkaline phosphatase, and unoccupied receptors inactivated by this enzyme in the presence of aluminum fluoride can be completely reactivated by dithiothreitol. The effects of aluminum fluoride are due to stabilization of the complex between the glucocorticoid receptor and the 90-kDa mammalian heat-shock protein hsp90, which suggests that aluminum fluoride interacts directly with the receptor. Endogenous thermal inactivation of receptors in cytosol is not accompanied by receptor dephosphorylation. However, inactivation is correlated with dissociation of hsp90 from the unoccupied receptor. These results support the proposal that hsp90 is required for the receptor to bind steroid and dissociation of hsp90 is sufficient to inactivate the unoccupied receptor.  相似文献   

7.
Glucocorticoid receptor phosphorylation in mouse L-cells   总被引:1,自引:0,他引:1  
This paper summarizes our observations on the phosphorylation state of untransformed and transformed glucocorticoid receptors isolated from 32P-labeled L-cells. The 300-350-kDa 9S untransformed murine glucocorticoid receptor complex is composed of a 100-kDa steroid-binding phosphoprotein and one or possibly two units of the 90-kDa heat shock protein (hsp90), which is also a phosphoprotein. Transformation of this complex to the 4S DNA-binding state is accompanied by dissociation of hsp90. When receptors in cytosol are transformed by heating at 25 degrees C, there is no gross change in the degree of phosphorylation of the steroid-binding protein. Both receptors that are bound to DNA after transformation under cell-free conditions and receptors that are located in the nucleus of cells incubated at 37 degrees C in the presence of glucocorticoid are labeled with 32P. The results of experiments in which the 32P-labeled receptor was submitted to limited proteolysis suggest that the 16-kDa DNA-binding domain is phosphorylated and that the 28-kDa steroid-binding domain is not.  相似文献   

8.
We have used bifunctional reagents to examine the subunit composition of the non-DNA-binding form of the rat and human glucocorticoid receptor. Treatment of intact cells and cell extracts with a reversible cross-linker, followed by electrophoretic analysis of immunoadsorbed receptor revealed that three proteins of apparent approximate molecular masses, 90, 53 and 14 kDa are associated with the receptor. The first of these was identified immunochemically as a 90-kDa heat-shock protein (hsp90). The complex isolated from HeLa cells contained 2.2 mol hsp90/mol steroid-binding subunit. Cross-linking of the receptor complex in the cytosol completely prevented salt-induced dissociation of the subunits. The cross-linked receptor was electrophoretically resolved into two oligomeric complexes of apparent molecular mass 288 kDa and 347 kDa, reflecting the association of the 53-kDa protein with a fraction of the receptor. Since no higher oligomeric complexes could be generated by cross-linking cell extracts under different conditions, we conclude that most of the untransformed cytosolic receptor is devoid of additional components.  相似文献   

9.
The molybdate-stabilized rat liver glucocorticoid receptor complex was purified 9000-fold with a 46% yield by steroid-affinity chromatography and DEAE-Sephacel ion-exchange chromatography. The purified glucocorticoid receptor was identified as a 90-92-kDa protein by SDS/polyacrylamide gel electrophoresis. Raising the temperature to 25 degrees C in the absence of molybdate resulted in increased binding of the receptor complex to DNA-cellulose or nuclei, similar to the effect on the cytosolic complex. The purified complex has a sedimentation coefficient of 9-10 S before and after heat treatment in the absence of molybdate. The appearance of smaller 3-4-S species was unrelated to the extent of DNA-cellulose binding of the complex. The process termed 'transformation', i.e. increasing the affinity for DNA, is not concomitant with subunit dissociation or loss of RNA. Highly purified glucocorticoid receptor could be covalently modified with biotin to retain its steroid-binding activity but with a 50% decrease in nuclear binding capacity. The biotin-modified complex reacts with streptavidin in solution without losing its steroid.  相似文献   

10.
Transformed and bacterially expressed glucocorticoid receptors free from Mr 90,000 heat shock protein (hsp90) have a 100-fold lower steroid-binding affinity than the hsp90-bound nontransformed receptor, suggesting that hsp90 is needed for high-affinity steroid binding [Nemoto, T., Ohara-Nemoto, Y., Denis, M., & Gustafsson, J.-A. (1990) Biochemistry 29, 1880-1886]. To investigate whether or not this phenomenon is common to all steroid receptors, we investigated the steroid-binding affinities of bacterially expressed and transformed androgen receptors. The C-terminal portion of the rat androgen receptor containing the putative steroid-binding domain was expressed as a fusion protein of protein A in Escherichia coli. The recombinant protein bound a synthetic androgen, [3H]R1881, with high affinity (Kd = 0.8 +/- 0.3 nM). Glycerol gradient analysis revealed that the recombinant protein sedimented at around the 3S region irrespective of the presence of molybdate, indicating that the receptor is present in monomeric form. The steroid-free transformed androgen receptor was obtained by exposure of rat submandibular gland cytosol to 0.4 M NaCl in the absence of steroid. High-performance ion-exchange liquid chromatography analysis showed that the transformed androgen receptor bound to [3H]R1881 with high affinity. Thus these observations indicate that, in contrast to the glucocorticoid receptor, hsp90 is not required for the high-affinity steroid binding of the androgen receptor. In addition, the hsp90-free androgen receptor prebound with radioinert R1881 was efficiently relabeled with [3H]R1881, while the triamcinolone acetonide-bound, transformed glucocorticoid receptor failed in ligand exchange. The inability to achieve ligand exchange probably reflects the low steroid-binding affinity of this entity.  相似文献   

11.
The steroid-binding domain of the human glucocorticoid receptor was expressed in Escherichia coli either as a fusion protein with protein A or under control of the T7 RNA polymerase promoter. The recombinant proteins were found to bind steroids with the normal specificity for a glucocorticoid receptor but with reduced affinity (Kd for triamcinolone acetonide approximately 70 nM). Glycerol gradient analysis of the E. coli lystate containing the recombinant protein indicated no interaction between the glucocorticoid receptor fragment and heat shock proteins. However, synthesis of the corresponding fragments of glucocorticoid receptor in vitro using rabbit reticulocyte lystate resulted in the formation of proteins that bound triamcinolone acetonide with high affinity (Kd 2nM). Glycerol gradient analysis of these proteins, with and without molybdate, indicated that the in vitro synthesised receptor fragments formed complexes with hsp90 as previously shown for the full-length rat glucocorticoid receptor. Radiosequence analysis of the recombinant steroid-binding domain expressed in E. coli and affinity labelled with dexamethasone mesylate identified binding of the steroid to Cys-638 predominantly. However, all cysteine residues within the steroid-binding domain were affinity labelled to a certain degree indicating that the recombinant protein has a structure similar to the native receptor but more open and accessible.  相似文献   

12.
We have used three methods to measure the stoichiometry of the glucocorticoid receptor and the 90-kDa heat shock protein (hsp90) in L-cell glucocorticoid receptor complexes that were purified by immunoadsorption to protein A-Sepharose with an anti-receptor monoclonal antibody, followed by a minimal washing procedure that permits retention of receptor-associated protein. In two of the methods, receptor was quantitated by radioligand binding, and receptor-specific hsp90 was quantitated against a standard curve of purified hsp90, either on Coomassie blue stained SDS gels by laser densitometry or on Western blots by quantitative immunoblotting with 125I-labeled counterantibody. The stoichiometry values obtained by densitometry and immunoblotting are 7 and 6 mol of hsp90/mol of receptor, respectively. In a third method, which detects total receptor protein rather than just steroid-bound receptor, the ratio of hsp90 to receptor was determined by immunopurifying receptor complexes from [35S]methionine-labeled L cells, and the amount of 35S incorporated into receptor and hsp90 was corrected for the established methionine content of the respective proteins. In complexes from L cells which are labeled to steady state (48 h), the ratio of hsp90 to GR is 4:1. When immunoadsorbed receptor complexes are washed extensively with 0.5 M NaCl and 0.4% Triton X-100 in the presence of molybdate, the ratio of hsp90 to GR is 2:1. In addition to hsp90, preparations of [35S]methionine-labeled untransformed receptor complex also contain a 55-kDa protein that the conclusion that the untransformed L-cell glucocorticoid receptor exists in cytosol in a much larger heteromeric complex than considered to date.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Treatment of rat liver cytosol containing temperature-transformed, [3H]dexamethasone-bound receptors at 0 degree C with the sulfhydryl-modifying reagent methyl methanethiosulfonate (MMTS) inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol (DTT). When cytosol containing untransformed receptors is heated at 25 degrees C in the presence of MMTS, the 90-kDa heat shock protein dissociates from the receptor in the same manner as in the absence of MMTS, and the receptor will bind to DNA-cellulose if DTT is added subsequently at 0 degree C. These observations are consistent with the conclusion of Bodwell et al. (Bodwell, J. E., Holbrook. N. J. and Munck, A. (1984) Biochemistry 23, 1392-1398) that sulfhydryl moieties on the receptor are absolutely required for the receptor to bind to DNA, and they show that the sulfhydryl-modifying reagent does not inhibit the temperature-mediated dissociation of the heteromeric receptor complex that accompanies transformation to the DNA-binding state. When steroid-receptor complexes that are prebound to DNA-cellulose are exposed to MMTS, the steroid rapidly dissociates, but the receptor remains bound to DNA. Thus, the presence of steroid is not required for the receptor to remain bound to DNA in a high affinity manner. Treatment of cytosol containing transformed glucocorticoid-receptor complexes at 0 degrees C with 20 mM hydrogen peroxide also inactivates the DNA-binding activity of the receptor. The peroxide-induced inactivation is reversed by DTT. Incubation of rat liver cytosol containing untransformed glucocorticoid-receptor complexes at 25 degrees C with hydrogen peroxide prevents their transformation to the DNA-binding form as shown by their inability to bind to DNA-cellulose after addition of DTT. The presence of peroxide during heating of the cytosol also prevents dissociation of the receptor complex as assayed both by reduction in sedimentation value of the receptor and by dissociation of the 90-kDa heat shock protein from the steroid-binding protein. These results strongly suggest that critical sulfur moieties in the receptor complex must be in a reduced form for the temperature-mediated dissociation of the receptor to occur.  相似文献   

14.
Binding of heat shock proteins to the avian progesterone receptor.   总被引:13,自引:4,他引:9       下载免费PDF全文
The protein composition of the avian progesterone receptor was analyzed by immune isolation of receptor complexes and gel electrophoresis of the isolated proteins. Nonactivated cytosol receptor was isolated in association with the 90-kilodalton (kDa) heat shock protein, hsp90, as has been described previously. A 70-kDa protein was also observed and was shown by Western immunoblotting to react with an antibody specific to the 70-kDa heat shock protein. Thus, two progesterone receptor-associated proteins are identical, or closely related, to heat shock proteins. When the two progesterone receptor species, A and B, were isolated separately in the absence of hormone, both were obtained in association with hsp90 and the 70-kDa protein. However, activated receptor isolated from oviduct nuclear extracts was associated with the 70-kDa protein, but not with hsp90. A hormone-dependent dissociation of hsp90 from the cytosolic form of the receptor complex was observed within the first hour of in vivo progesterone treatment, which could explain the lack of hsp90 in nuclear receptor complexes. In a cell-free system, hsp90 binding to receptor was stabilized by molybdate but disrupted by high salt. These treatments, however, did not alter the binding of the 70-kDa protein to receptor. Association of the 70-kDa protein with the receptor could be disrupted by the addition of ATP at elevated temperatures (23 degrees C). The receptor-associated 70-kDa protein is an ATP-binding protein, as demonstrated by its affinity labeling with azido[32P]ATP. These results indicate that the two receptor-associated proteins interact with the progesterone receptor by different mechanisms and that they are likely to affect the structure or function of the receptor in different ways.  相似文献   

15.
In this work we have probed the mechanism responsible for two non-DNA-binding states of the mouse glucocorticoid receptor. In the first case, transformed receptors were treated with hydrogen peroxide. It is known that oxidizing agents promote the formation of disulfide bonds in the glucocorticoid receptor, but it has not been determined what domains are involved in any disulfide bond formation that leads to inactivation of DNA-binding activity. We show here that hydrogen peroxide inhibits DNA-binding by the 15-kDa tryptic fragment containing the DNA-binding fingers with the same concentration dependency as it inhibits DNA-binding by the uncleaved receptor. This suggests that all of the effect of peroxide is on sulfhydryl groups within the zinc fingers. After dissociation (transformation) of cytosolic heteromeric glucocorticoid receptor complexes, only a portion (40–60%) of the dissociated receptors can bind to DNA-cellulose. We show that the 15-kDA tryptic fragment derived from the portion of transformed receptors that do not bind to DNA is itself competent at DNA-binding.  相似文献   

16.
Cytosols contain a heat-stable, chelatable, anionic, molybdate-like factor that stabilizes glucocorticoid receptors in a heteromeric complex with hsp90 (refers to the 90-kDa heat shock protein) and inhibits their transformation to the DNA-binding state (Meshinchi, S., Grippo, J.F., Sanchez, E.R., Bresnick, E.H., and Pratt, W.B. (1988) J. Biol. Chem. 263, 16809-16817). In this work, we demonstrate that removal of this factor by passage of L cell cytosol through the metal-chelating resin Chelex-100 makes the glucocorticoid receptor unstable, thus markedly facilitating both its dissociation from hsp90 and its transformation to the DNA-binding state. In normal cytosol, both temperature-mediated dissociation of hsp90 and temperature-mediated receptor transformation are hormone-dependent events. In the Chelex-treated, metal-depleted cytosol, however, temperature-mediated dissociation of hsp90 and receptor transformation occur very rapidly in a manner that is no longer hormone-dependent. When boiled L cell cytosol is added to the metal-depleted receptor system, the hormone dependence of both temperature-mediated dissociation of receptor from hsp90 and receptor transformation to the DNA-binding state is reconstituted. Like boiled cytosol, molybdate stabilizes the receptor complex and inhibits its transformation in metal-depleted cytosol, but it does not reconstitute the hormone dependence of the system. These results support the proposal that an endogenous metal anion interacts with the glucocorticoid receptor to stabilize it in the heteromeric, inactive, non-DNA-binding state in cytosol and that binding of the hormone promotes conversion of the receptor to the DNA-binding state through an effect on this metal anion center.  相似文献   

17.
We have translated the rat glucocorticoid receptor in both reticulocyte lysate and in wheat germ extract. Receptor synthesized in the reticulocyte lysate is immunoadsorbed by the 8D3 monoclonal antibody directed against the 90-kDa heat shock protein (hsp90) and it has a normal ability to bind glucocorticoid in a high affinity manner. Although the wheat germ extract synthesizes the full length receptor, the receptor is not immunoadsorbed by 8D3 and we cannot demonstrate high affinity steroid binding. Receptor synthesized by the reticulocyte lysate can be immunoadsorbed by antibody directed against hsp90 as soon as the translation product is full length, suggesting that the receptor becomes associated with hsp90 late during translation or immediately at the termination of translation. When newly synthesized receptor is bound with steroid and incubated at 25 degrees C, it is converted to a form that binds to DNA. This study provides direct evidence that association of hsp90 with the glucocorticoid receptor is a very early event and that the newly formed heteromeric receptor-hsp90 complex is fully competent to undergo transformation.  相似文献   

18.
Incubation of molybdate-stabilized L cell cytosol with a monoclonal antibody directed against the 100-kDa glucocorticoid-binding protein causes the immune-specific adsorption to protein A-Sepharose of both the 100-kDa glucocorticoid receptor and the 90-kDa murine heat shock protein (hsp90) (Sanchez, E. R., Toft, D. O., Schlesinger, M. J., and Pratt, W. B. (1985) J. Biol. Chem. 260, 12398-12401). When the glucocorticoid receptor in cytosol is transformed to the DNA-binding state, hsp90 dissociates. In this paper, we show that temperature-mediated dissociation of hsp90 from the receptor is a hormone-dependent event in the same manner as temperature-mediated transformation to the DNA-binding state. In contrast to temperature-mediated transformation, ammonium sulfate causes both dissociation of hsp90 from the receptor and conversion of the receptor to the DNA-binding form in a manner that does not require the presence of steroid. The untransformed form of the glucocorticoid receptor and the strongly negatively charged hsp90 protein behave similarly on DEAE-cellulose chromatography, suggesting that the hsp90 component may contribute significantly to the net negative charge behavior of the non-DNA-binding form of the receptor complex.  相似文献   

19.
Glucocorticoid receptor in rat liver cytosol is inactivated (rendered unable to bind steroid) by incubation with calf intestine alkaline phosphatase or highly purified rabbit muscle phosphoprotein phosphatase (phosphorylase phosphate, protein phosphatase C). The receptor is inactivated by both enzymes even when 10 mM sodium molybdate is present. Receptors that are inactivated by phosphatases in the presence of molybdate can be reactivated to the steroid-binding state by addition of dithiothreitol, but receptors that are inactivated in the absence of molybdate cannot be reactivated. These observations suggest that dephosphorylation leads to oxidation of a moiety (-SH) on the receptor that is required for steroid binding. Molybdate apparently preserves the receptor in a form such that reduction returns the receptor to the steroid binding state. We would propose that molybdate may act by complexing with sulfur groups on the receptor.  相似文献   

20.
Protein components of the nonactivated glucocorticoid receptor.   总被引:5,自引:0,他引:5  
The nonactivated glucocorticoid receptor (Mr approximately 350,000) of WEHI-7 mouse lymphoma cells was investigated with respect to the stoichiometry of protein subunits. Cross-linking patterns obtained by affinity labeling and denaturing gel electrophoresis revealed a heterotetramer consisting of one receptor polypeptide in association with two 90- and one approximately 50-kDa subunits. The receptor stabilized by molybdate, disulfide bond formation, or chemical cross-linking was purified roughly 6000-fold by immunoaffinity chromatography and analyzed by gel electrophoresis and immunoblotting. The 90-kDa component was consistently detected in a 2:1 ratio with respect to the receptor polypeptide and was identified as the 90-kDa heat shock protein, hsp90. A 70-kDa heat shock protein was found in both stabilized and nonstabilized receptors and bound to the immunomatrix independent of receptor. The additional receptor subunit was unequivocally identified as the 59-kDa protein previously described (Tai, P.-K. K., Maeda, Y., Nakao, K., Wakim, N. G., Duhring, J. L., and Faber, L. E. (1986) Biochemistry 25, 5269-5275). This component was found only in complexes cross-linked via amino groups. It was removed from the molybdate-stabilized receptor under our purification conditions, thus leaving behind a trimer composed of the receptor polypeptide and two molecules of hsp90. In the absence of hormone, the receptor had the same subunit composition as in its presence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号