首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cane JH 《Oecologia》2011,167(1):107-116
Pollinators, even floral generalists (=polyleges), typically specialize during individual foraging bouts, infrequently switching between floral hosts. Such transient floral constancy restricts pollen flow, and thereby gene flow, to conspecific flowers in mixed plant communities. Where incipient flowering species meet, however, weak cross-fertility and often similar floral traits can yield mixed reproductive outcomes among pollinator-dependent species. In these cases, floral constancy by polyleges sometimes serves as an ethological mating barrier. More often, their foraging infidelities instead facilitate host introgression and hybridization. Many other bee species are oligolectic (taxonomic specialists for pollen). Oligoleges could be more discriminating connoisseurs than polyleges when foraging among their limited set of related floral hosts. If true, greater foraging constancy might ensue, contributing to positive assortative mating and disruptive selection, thereby facilitating speciation among their interfertile floral hosts. To test this Connoisseur Hypothesis, nesting females of two species of oligolectic Osmia bees were presented with randomized mixed arrays of flowers of two sympatric species of their pollen host, Balsamorhiza, a genus known for hybridization. In a closely spaced grid, the females of both species preferred the larger flowered B. macrophylla, evidence for discrimination. However, both species’ females showed no floral constancy whatsoever during their individual foraging bouts, switching randomly between species proportional to their floral preference. In a wider spaced array in which the bouquets reflected natural plant spacing, foraging oligolectic bees often transferred pollen surrogates (fluorescent powders) both between conspecific flowers (geitonogamy and xenogamy) and between the two Balsamorhiza species. The Connoisseur Hypothesis was therefore rejected. Foraging infidelity by these oligolectic Osmia bees will contribute to introgression and hybridization where interfertile species of Balsamorhiza meet and flower together. A literature review reveals that other plant genera whose species hybridize also attract numerous oligolectic bees, providing independent opportunities to test the generality of this conclusion.  相似文献   

2.
Reward partitioning and replenishment and specific mechanisms for pollen presentation are all geared towards the maximization of the number of effective pollinator visits to individual flowers. An extreme case of an apparently highly specialized plant–pollinator interaction with thigmonastic pollen presentation has been described for the morphologically complex tilt‐revolver flowers of Caiophora arechavaletae (Loasaceae) pollinated by oligolectic Bicolletes pampeana (Colletidae, Hymenoptera). We studied the floral biology of Nasa macrothyrsa (Loasaceae) in the field and in the glasshouse, which has very similar floral morphology, but is pollinated by polylectic Neoxylocopa bees (Apidae, Hymenoptera). We investigated the presence of thigmonastic anther presentation, visitor behaviour (pollinators and nectar robbers), co‐ordination of pollinator visits with flower behaviour and the presence of nectar replenishment. The aim of this study was to understand whether complex flower morphology and behaviour can be explained by a specialized pollination syndrome, or whether alternative explanations can be offered. The results showed that Nasa macrothyrsa has thigmonastic pollen presentation, i.e. new pollen is rapidly (<< 10 min) presented after a pollinator visit. Nectar secretion is independent of removal and averages 7–14 µL h–1. The complex flowers, however, fail to exclude either native (hummingbirds) or introduced (honeybees) nectar robbers, nor does polylectic Neoxylocopa actively collect the pollen presented. The findings do not support a causal link between complex flower morphology and functionality in Loasaceae and a highly specialized pollination. Rapid pollen presentation is best explained by the pollen presentation theory: the large proportion of pollinators coming shortly after a previous visit find little nectar and are more likely to move on to a different plant. The rapid presentation of pollen ensures that all these valuable ‘hungry pollinators’ are dusted with small pollen loads, thus increasing the male fitness of the plant by increasing the likelihood of siring outcrossed offspring. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 124–131.  相似文献   

3.
To trace the evolution of host-plant choice in bees of the genus Chelostoma (Megachilidae), we assessed the host plants of 35 Palearctic, North American and Indomalayan species by microscopically analyzing the pollen loads of 634 females and reconstructed their phylogenetic history based on four genes and a morphological dataset, applying both parsimony and Bayesian methods. All species except two were found to be strict pollen specialists at the level of plant family or genus. These oligolectic species together exploit the flowers of eight different plant orders that are distributed among all major angiosperm lineages. Based on ancestral state reconstruction, we found that oligolecty is the ancestral state in Chelostoma and that the two pollen generalists evolved from oligolectic ancestors. The distinct pattern of host broadening in these two polylectic species, the highly conserved floral specializations within the different clades, the exploitation of unrelated hosts with a striking floral similarity as well as a recent report on larval performance on nonhost pollen in two Chelostoma species clearly suggest that floral host choice is physiologically or neurologically constrained in bees of the genus Chelostoma. Based on this finding, we propose a new hypothesis on the evolution of host range in bees.  相似文献   

4.
1. Osmia cornuta is a generalist regarding its habitat requirements and is used for pollination in orchards. The species collects pollen from different plant taxa, but pollen richness and pollen quantity in a nest may be affected by land use and landscape structures. 2. The availability of pollen resources for O. cornuta was studied across different land use types (one urban, village-structured, agricultural, and viticultural region each) by pollen analysis in the context of landscape structures. 3. In total, 16 pollen types were identified in 1180 brood cells of O. cornuta. On average (± SD), the highest pollen richness per region (n = 4) was found in the viticultural region (4.75 ± 0.96) and the lowest in the agricultural region (1 ± 2). Osmia cornuta collected predominantly pollen from the Sorbus-pollen group, which includes Prunus species. Salix was primarily collected in the village-structured and agricultural regions, and Quercus was frequently found in samples from the viticulture region. The highest mean (± SD) number of brood cells per region (n = 4) was found in the viticulture region (136.35 ± 57.45) and the lowest in the agricultural region (20.25 ± 40.5). Increasing proportions of green areas in urban and village-structured regions affected the pollen richness positively, whereas agricultural areas had a negative impact on pollen richness and the number of brood cells. 4. It was concluded that the polylectic O. cornuta uses a wide range of flowering plants dependent on their availability. The maintenance of fruit trees as well as willow and oak trees enhances floral resources qualitatively and quantitatively for O.cornuta specifically in intensively farmed agricultural areas.  相似文献   

5.
Hydrocleys martii (Limnocharitaceae) is an annual aquatic herb common in ephemeral isolated ponds in semi‐arid northe‐astern Brazil. We studied pollination of H. martii, emphasizing reproductive success and association with oligolectic pollinators. The yellow flowers bear a central cone of staminodes that encloses the fertile stamens and four free carpels. The self‐incompatible species depends on pollinators to set fruits. In 25 temporary water bodies in five Brazilian states, Protodiscelis palpalis bees (Colletidae, Paracolletinae) were the unique effective pollinators of H. martii and, in 18 of these, the sole flower visitors. Females of this narrowly oligolectic species show adapted behaviour to access the pollen chamber in the flower centre. Females removed more than 80% of the 480 000 pollen grains in only 2 h from the flowers but maintained a high visitation frequency almost until flower senescence. In this highly specialized plant‐pollinator system, on average, 1.6% of the pollen grains reached the stigmatic surface and 9.6% remained uncollectible in the flowers. In the absence of P. palpalis, flowers set almost no seeds, indicating reproductive dependence on the oligolectic species. This pioneer pollination study of a species of Limnocharitaceae provides evidence of a close relationship of the family to species of Protodiscelis, their specific pollinators. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 355–368.  相似文献   

6.
María C Tellería 《Grana》2013,52(4):244-248
In order to determine the plants foraged by solitary Ptilothrix relata, the pollen content of food provisions was identified. The main pollen types confirm foraging by these bees on Malvaceae, Asteraceae and Onagraceae. Pollen sources belonging to Cucurbitaceae, Dipsacaceae and Portulacaceae families enrich the harvesting range of P. relata. According to the preliminary results, these bees can be considered more as narrowly polylectic than oligolectic because they collect pollen from a few unrelated species. Among the most abundant pollen collected, two major morphological types were recognized: (1) pollen with long spines (4–25?μm), many single apertures and large size (115–135?μm of diameter); and (2) tricolporate pollen with viscin threads.  相似文献   

7.
During the rainy season many species of Convolvulaceae bloom simultaneously in the Caatinga of northeast Brazil. In a Caatinga nature reserve we studied pollination and breeding systems of three sympatric species of Convolvulaceae, Ipomoea bahiensis, I.?nil, and Merremia aegyptia, focusing on pollen partitioning among flower visitors and pollen flow. The study showed that only oligolectic bees collected pollen and that these species had different preferences among the three species of Convolvulaceae: pollen of Ipomoea bahiensis, the only self-incompatible species, was collected mainly by Melitoma segmentaria, M.?osmioides, and Melitomella murihirta; pollen of I.?nil by Lithurgus huberi; and that of Merremia aegyptia by Ancyloscelis apiformis and an undescribed species of this genus. Introduced honey bees visited only flowers of Merremia aegyptia, where they were extraordinarily frequent flower visitors. However, they discarded the pollen grains, which led to almost 50% pollen loss. No polylectic bee species compete for pollen with the oligolectic species. Partitioning of pollen diminishes competition for floral resources in this specialized plant?Cpollinator association.  相似文献   

8.
Successful fruit set by deerberry, Vaccinium stamineum (Ericaceae: Vaccinioideae) requires floral visitation by insects, and in particular by bees that collect its pollen by sonication of anthers (“buzz-pollination”). A diversity of bees visit deerberry flowers, but most species are either 1) infrequent, 2) polylectic (broad host range for pollen), or 3) principally nectar-seeking, and so are unimportant as pollen vectors. Both sexes of the solitary, oligolectic bee Melitta americana5 (Melittidae) are abundant at flowering deerberry bushes in central New York State. Female M. americana sonicate the deerberry anthers while imbibing nectar, and carry virtually pure scopal loads of deerberry pollen, unlike the other common visitor, Xylocopa virginica (Anthophoridae). Comparative analyses of bee 1) abundances, 2) buzz-pollination behaviors, 3) pollen fidelities, and 4) pollination efficiencies, all indicate that Melitta americana is the primary pollinator of Vaccinium stamineum.  相似文献   

9.
Turnera subulata Smith (Turneraceae) is a subshrub with distylic flowers, common as a ruderal plant in NE-Brazil. We studied the pollination biology of a population in João Pessoa, Paraíba, paying attention to effective pollinators and characteristics of short- and long-style morphs. The flowers attracted insects of 28 species, predominantely bees. Several bee species were observed to be effective pollinators, including highly eusocial species, polylectic solitary species (Centris and Xylocopa) and 1 oligolectic species, Protomeliturga turnerae (Andrenidae, Panurginae). The latter species shows reproductive dependency on T. subulata. The plant species, on the other hand, does not depend on this specialized bee, as reproductive success was also guaranteed by the other polylectic flower visitors. Floral characteristics of both floral morphs are discussed with respect to pollination biology.  相似文献   

10.
Among associations of plants and their pollinating bees, mutually specialized pairings are rare. Typically, either pollen specialist (oligolectic) bees are joined by polylectic bees in a flowering species’ pollinator guild, or specialized flowers are pollinated by one or more polylectic bees. The bee Andrena astragali is a narrow oligolege, collecting pollen solely from two nearly identical species of death camas (Toxicoscordion, formerly Zigadenus). Neurotoxic alkaloids of these plants are implicated in sheep and honey bee poisoning. In this study, T. paniculatum, T. venenosum and co-flowering forbs were sampled for bees at 15 sites along a 900-km-long east–west transect across the northern Great Basin plus an altitudinal gradient in northern Utah’s Bear River Range. Only A. astragali bees were regularly seen visiting flowering panicles of these Toxicoscordion. In turn, this bee was never among the 170 bee species caught at 17 species of other prevalent co-occurring wildflowers in the same five state region (38,000 plants surveyed). Our field pollination experiments show that T. paniculatum is primarily an outcrosser dependent on pollinator visitation for most capsule and seed set. Thus, both A. astragali and two sister species of Toxicoscordion are narrowly specialized and co-dependent on each other for reproduction, illustrating a rare case of obligate mutual specialization in bee–plant interactions.  相似文献   

11.
Bee populations are exposed to multiple stressors, including land-use change, biological invasions, climate change, and pesticide exposure, that may interact synergistically. We analyze the combined effects of climate warming and sublethal insecticide exposure in the solitary bee Osmia cornuta. Previous Osmia studies show that warm wintering temperatures cause body weight loss, lipid consumption, and fat body depletion. Because the fat body plays a key role in xenobiotic detoxification, we expected that bees exposed to climate warming scenarios would be more sensitive to pesticides. We exposed O. cornuta females to three wintering treatments: current scenario (2007–2012 temperatures), near-future (2021–2050 projected temperatures), and distant-future (2051–2080). Upon emergence in spring, bees were orally exposed to three sublethal doses of an insecticide (Closer, a.i. sulfoxaflor; 0, 4.55 and 11.64 ng a.i./bee). We measured the combined effects of wintering and insecticide exposure on phototactic response, syrup consumption, and longevity. Wintering treatment by itself did not affect winter mortality, but body weight loss increased with increasing wintering temperatures. Similarly, wintering treatment by itself hardly influenced phototactic response or syrup consumption. However, bees wintered at the warmest temperatures had shorter longevity, a strong fecundity predictor in Osmia. Insecticide exposure, especially at the high dose, impaired the ability of bees to respond to light, and resulted in reduced syrup consumption and longevity. The combination of the warmest winter and the high insecticide dose resulted in a 70% longevity decrease. Smaller bees, resulting from smaller pollen–nectar provisions, had shorter longevity suggesting nutritional stress may further compromise fecundity in O. cornuta. Our results show a synergistic interaction between two major drivers of bee declines, and indicate that bees will become more sensitive to pesticides under the current global warming scenario. Our findings have important implications for pesticide regulation and underscore the need to consider multiple stressors to understand bee declines.  相似文献   

12.
Bees are extraordinarily diverse with respect to host plant choice and adaptation. Recent findings suggest that bee host range might be largely governed by evolutionary constraints related to pollen digestion or flower recognition and handling. In the present study, we applied phylogenetic inference to investigate whether such constraints underlie host plant choice in bees of the Annosmia‐Hoplitis group (Megachilidae) and to what extent these bees have evolved specialized adaptations for pollen collection. We demonstrate that most pollen specialist species exclusively exploit either Boraginaceae or Fabaceae, whereas all pollen generalists harvest pollen from both Boraginaceae and Fabaceae. The counterintuitive affinity towards these two plant families, which are neither closely related nor share similar flower morphologies, demonstrates that pollen host choice is considerably constrained in this group of bees. We hypothesize that this Boraginaceae‐Fabaceae paradox might be the result of (1) similar secondary metabolites in the pollen of both families; (2) metabolites that can be detoxified by the same physiological tools; or (3) similar pollen nutrient composition. Contrary to the widely held belief that specialized adaptations for pollen collection are rare among bees, such adaptations are common in the Annosmia‐Hoplitis bees, where they have evolved several times independently to exploit flowers of widely different morphologies. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   

13.
1. For solitary bees that specialise on select pollen types (oligoleges), larval development depends on the availability of forage pollen from appropriate host plants and the naturally occurring microbiota present therein. While access to host pollen may be critical for the development of oligolectic bees, the extent to which pollen microbiota contribute to their brood success is unknown. 2. To investigate, we used a diet manipulation experiment to rear larvae of the oligolege, Osmia ribifloris, under in-vitro conditions. Larvae were reared either on host pollen provisioned by their mother or on non-host pollen collected by honey bees, in the presence or absence of the respective pollen-associated microbiota. We assessed impacts on components of larval fitness: developmental time, biomass, and survivorship. 3. Our results revealed a significant interaction between pollen type and pollen-associated microbes. The relative effect of microbes on larval performance was substantially greater than that of pollen type. Host pollen substrate produced the fittest larvae but only when combined with its full complement of naturally occurring microbiota. In contrast, host pollen without microbes resulted in a marked decline in fitness components. Larvae consuming non-host pollen showed intermediate fitness, regardless of whether microbes were present or not. 4. These findings imply that the microbiota associated with maternally provisioned host pollen perform critical functions in larval nutrition and survival. For oligoleges in particular, the ability to develop on poorer quality host pollen likely derives from this sustained symbiosis with their microbial exosymbionts, rather than the biochemical characteristics of pollen type alone.  相似文献   

14.
  1. Species exhibit a range of specialisation in diet and other niche axes, with specialists typically thought to be more efficient in resource use but more vulnerable to extinction than generalists. Among herbivorous insects, dietary specialists seem more likely to lack acceptable host plants during the insect's feeding stage, owing to fluctuations in host-plant abundance or phenology. Like other herbivores, bee species vary in host breadth from pollen specialisation (oligolecty) to generalisation (polylecty).
  2. Several studies have shown greater interannual variation in flowering phenology for earlier-flowering plants than later-flowering plants, suggesting that early-season bees may experience substantial year-to-year variation in the floral taxa available to them.
  3. It was therefore reasoned that, among bees, early phenology could be a more viable strategy for generalists, which can use resources from multiple floral taxa, than for specialists. Consequently, it was expected that the median dates of collection of adult specimens to be earlier for generalist species than for specialists. To test this, phenology data and pollen diet information on 67 North American species of the bee genus Osmia was obtained.
  4. Controlling for latitude and phylogeny, it was found that dietary generalisation is associated with significantly earlier phenology, with generalists active, on average, 11–14 days earlier than specialists.
  5. This result is consistent with the generalist strategy being more viable than the specialist strategy for species active in early spring, suggesting that dietary specialisation may constrain the evolution of bee phenology—or vice versa.
  相似文献   

15.
We studied the breeding system and flower visitors of the endangered plant, Penstemon haydenii, at several south-central Wyoming, USA occurrences. In agreement with earlier studies of the species 300 km to the east in Nebraska, we found Wyoming plants to be self-incompatible and pollinator-dependent for sexual reproduction. Flower visitors were several species of native bees in the families Apidae (particularly bumblebees), Halictidae (small sweat bees), and Megachilidae (especially in the genus Osmia); and the masarid wasp Pseudomasaris vespoides. Especially important was Osmia brevis, an abundant megachilid bee, and one of only two species (the sweat bee Lasioglossum (Dialictus) pruinosum was the other) present at all five sites. As in Nebraska, fruit set did not differ between our experimental cross-pollination treatment and an open-pollinated control. However, unlike Nebraska, open-pollinated treatments in Wyoming produced significantly fewer seeds per fruit than the experimental out-crossing treatment. We discuss several possible explanations for seed limitation: (1) a scarcity of pollinators early in the flowering season; (2) resource competition for developing ovules on open-pollinated inflorescences but not on experimental inflorescences; (3) the deposition of self pollen through intra-inflorescence and intra-genet pollinator movements; (4) few S-alleles and mating types in the Wyoming metapopulation compared to the Nebraska metapopulation, from which it likely derives.  相似文献   

16.
To assess the pollen hosts of 60 western palaearctic bee species of the genus Colletes (Colletidae), we microscopically analysed 1336 pollen loads of collected females. Twenty‐six species (43.3%) were found to be specialized at the level of plant family, subfamily or genus. Thirty‐four species (56.7%) proved to be pollen generalists to varying degrees, visiting the flowers of up to 15 different plant families. Flowers of the subfamily Asteroideae (Asteraceae) are by far the most important pollen source, contributing 23.6% to the pollen‐plant spectrum of the whole bee genus. The high significance of Asteroideae pollen is due to the large number of specialists: 14 Colletes species belonging to four different taxonomic groups harvest pollen exclusively or predominantly on flowers of the Asteroideae. By striking contrast, Asteroideae pollen plays only a marginal role in the diets of the pollen generalists: it was recorded in only 2.7% of the pollen loads and in seven out of the 34 pollen generalists. Among the few generalists exploiting Asteroideae for pollen, three closely related species have ancestors which were possibly specialized on Asteraceae. The pattern of use of Asteroideae pollen by the Colletes bees supports recent findings that this pollen possesses unfavourable or protective properties, which render its digestion difficult, and suggests that bees need physiological adaptations to successfully utilize it. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 719–733.  相似文献   

17.
Larvae and imagos of bees rely exclusively on floral rewards as a food source but host-plant range can vary greatly among bee species. While oligolectic species forage on pollen from a single family of host plants, polylectic bees, such as bumblebees, collect pollen from many families of plants. These polylectic species contend with interspecific variability in essential nutrients of their host-plants but we have only a limited understanding of the way in which chemicals and chemical combinations influence bee development and feeding behaviour. In this paper, we investigated five different pollen diets (Calluna vulgaris, Cistus sp., Cytisus scoparius, Salix caprea and Sorbus aucuparia) to determine how their chemical content affected bumblebee colony development and pollen/syrup collection. Three compounds were used to characterise pollen content: polypeptides, amino acids and sterols. Several parameters were used to determine the impact of diet on micro-colonies: (i) Number and weight of larvae (total and mean weight of larvae), (ii) weight of pollen collected, (iii) pollen efficacy (total weight of larvae divided by weight of the pollen collected) and (iv) syrup collection. Our results show that pollen collection is similar regardless of chemical variation in pollen diet while syrup collection is variable. Micro-colonies fed on S. aucuparia and C. scoparius pollen produced larger larvae (i.e. better mates and winter survivors) and fed less on nectar compared to the other diets. Pollen from both of these species contains 24-methylenecholesterol and high concentrations of polypeptides/total amino acids. This pollen nutritional “theme” seems therefore to promote worker reproduction in B. terrestris micro-colonies and could be linked to high fitness for queenright colonies. As workers are able to selectively forage on pollen of high chemical quality, plants may be evolutionarily selected for their pollen content, which might attract and increase the degree of fidelity of generalist pollinators, such as bumblebees.  相似文献   

18.
We examined the levels of pollen-host specificity in North American Diadasia (Hymenoptera: Apoidea), a clade of specialist bees. We analysed the scopal pollen loads of 409 individuals representing 25 of the 30 species of Diadasia that occur in North America. Each Diadasia species showed a preference for one of five plant families. However, the 25 species varied in their level of host specificity: the average percentage by volume of the preferred host in pollen loads ranged from > 99% to < 75%. In 17 of the 25 species, all or most individuals examined contained pure loads of one host taxon, while in eight species individuals were less specialized and carried mixtures of several unrelated host taxa. Mapping these host preferences onto a phylogenetic tree indicated that Malvaceae is the most likely ancestral host for the genus, and use of other hosts can be explained by a single switch to each of the other four host-plant families. Thus, most speciation events were not associated with a host switch; this pattern does not support host switching as a niche partitioning strategy to avoid competition. Diadasia species are more likely to use host-plant families that are used by other Diadasia and Emphorine bees; however, there was no evidence of residual adaptation to ancestral hosts. Diet breadth appears to be a labile trait: transitions from narrower to broader host use, as well as vice versa, were observed. The observed patterns of host-use evolution may be driven, in part, by host morphology and/or chemistry.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 487–505.  相似文献   

19.
Floral foraging resources are valuable for pollinator conservation on farmland, and their provision is encouraged by agri‐environment schemes in many countries. Across Europe, wildflower seed mixtures are widely sown on farmland to encourage pollinators, but the extent to which key pollinator groups such as solitary bees exploit and benefit from these resources is unclear. We used high‐throughput sequencing of 164 pollen samples extracted from the brood cells of six common cavity‐nesting solitary bee species (Osmia bicornis, Osmia caerulescens, Megachile versicolor, Megachile ligniseca, Megachile centuncularis and Hylaeus confusus) which are widely distributed across the UK and Europe. We documented their pollen use across 19 farms in southern England, UK, revealing their forage plants and examining the structure of their pollen transport networks. Of the 32 plant species included currently in sown wildflower mixes, 15 were recorded as present within close foraging range of the bees on the study farms, but only Ranunculus acris L. was identified within the pollen samples. Rosa canina L. was the most commonly found of the 23 plant species identified in the pollen samples, suggesting that, in addition to providing a nesting resource for Megachile leafcutter bees, it may be an important forage plant for these species. Higher levels of connectance and nestedness were characteristic of pollen transport networks on farms with abundant floral resources, which may increase resilience to species loss. Our data suggest that plant species promoted currently by agri‐environment schemes are not optimal for solitary bee foraging. If a diverse community of pollinators is to be supported on UK and European farmland, additional species such as R. canina should be encouraged to meet the foraging requirements of solitary bees.  相似文献   

20.
The effects of floral species composition on offspring performance of solitary bees are rarely studied under conditions where foraging behaviour of mothers is allowed to play a role. In a semi-field experiment, we restricted foraging choices of the polylectic mason bee Osmia bicornis L. to flower species belonging to plant families presumably used to different extent: Borago officinalis L. (Boraginaceae), Centaurea cyanus L. (Asteraceae) and Brassica napus L. (Brassicaceae). We quantified the foraging behaviour and brood cell production by mother bees, and compared the quality of offspring in pure and mixed flower species stands. Offspring survival in pure stands was expected to reflect the mothers’ foraging preferences in the mixed stand. Pure stands of B. napus supported highest offspring survival, body mass and fraction of females produced. Offspring survival on C. cyanus and B. officinalis was very low. Larval mortality occurred earlier in brood cells provided with B. officinalis pollen than in brood cells provided with C. cyanus pollen suggesting different effects of pollen quality on early larval and later development. The time spent on different foraging activities correlated with lifetime reproductive output. However, in mixed stands, the proportion of time the bees were foraging on the different flower species did not differ significantly. Foraging behaviour may therefore not generally be a good proxy for the quality of floral resources for offspring production. Our results suggest that resources collected from one plant species may influence the usefulness of resources from another plant species. Bees may therefore overcome potentially deleterious effects of the suboptimal resources by mixing low- and high-quality resources. This may help generalist bees, such as O. bicornis, to cope with an unpredictable environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号