首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Macroinvertebrate community composition was assessed in small streams of the Melbourne region to test the effects of (a) urban density (catchment imperviousness 0–51%) and (b) stormwater drainage intensity (comparing the intensively drained metropolitan area with urban areas of the hinterland, which had open drains and some localized stormwater drainage).
2. Hinterland communities separated into two groups of sites correlating strongly with patterns of electrical conductivity (EC), basalt geology and annual rainfall. Community composition varied little in the high-EC, western group (imperviousness 0.2–1.2%), but in the eastern group it was strongly correlated with catchment imperviousness (0–12%), with lower taxon richness in more impervious catchments.
3. Metropolitan communities (imperviousness 1–51%) were all severely degraded, with high abundances of a few tolerant taxa. Community composition was poorly correlated with patterns of geology, rainfall or imperviousness. Differences between metropolitan and hinterland communities were well explained by patterns of biochemical oxygen demand and electrical conductivity, which were postulated to indicate the more efficient transport of pollutants to receiving streams by the metropolitan stormwater drainage system.
4. Degradation of macroinvertebrate community composition was well explained by urban density but intensive urban drainage increased degradation severely at even low urban densities. Quantification of relationships between imperviousness, drainage intensity and stream degradation can better inform the assessment, conservation and restoration of urban streams.  相似文献   

2.
1. Urbanisation is an important cause of eutrophication in waters draining urban areas. We determined whether benthic algal biomass in small streams draining urban areas was explained primarily by small‐scale factors (benthic light, substratum type and nutrient concentrations) within a stream, or by catchment‐scale variables that incorporate the interacting multiple impacts of urbanisation (i.e. variables that describe urban density and the intensity of drainage or septic tank systems). 2. Benthic algal biomass was assessed as chlorophyll a density (chl a) in 16 streams spanning a rural–urban gradient, with both a wide range of urban density and of piped stormwater infrastructure intensity on the eastern fringe of metropolitan Melbourne, Australia. The gradient of urban density among streams was broadly correlated with catchment imperviousness, drainage connection (proportion of impervious areas connected to streams by stormwater pipes), altitude, longitude and median phosphorus concentration. Catchment area, septic tank density, median nitrogen concentration, benthic light (photosynthetically active radiation) and substratum type were not strongly correlated with the urban gradient. 3. Variation in benthic light and substratum type within streams explained a relatively small amount of variation in log chl a (3–11 and 1–13%, respectively) compared with between‐site variation (39–54%). 4. Median chl a was positively correlated with catchment urbanisation, with a large proportion of variance explained jointly (as determined by hierarchical partitioning) by those variables correlated with urban density. Independent of this correlation, the contributions of drainage connection and altitude to the explained variance in chl a were significant. 5. The direct connection of impervious surfaces to streams by stormwater pipes is hypothesised as the main determinant of algal biomass in these streams through its effect on the supply of phosphorus, possibly in interaction with stormwater‐related impacts on grazing fauna. Management of benthic algal biomass in streams of urbanised catchments is likely to be most effective through the application of stormwater management approaches that reduce drainage connection.  相似文献   

3.
The general hypothesis that catchment urbanization explained the distribution of the threatened, stream-dwelling amphipod Austrogammarus australis (listed under the Victorian Flora and Fauna Guarantee Act 1988) was tested using several surveys of 58 sites in streams draining the Dandenong Ranges on the eastern fringe of Melbourne, Victoria, Australia. More specifically, four catchment-scale elements of urban land, hypothesized as sources of stress to receiving streams, were separated: catchment imperviousness, drainage connection (proportion of impervious areas connected to streams by stormwater pipes), density of unsealed roads and density of septic tanks. The degree to which each attribute independently and jointly explained the occurrence of A. australis was assessed using hierarchical partitioning of logistic regression analyses. Drainage connection independently best explained the occurrence of A. australis, pointing to stormwater drainage design as the priority area of catchment management for the conservation of the species. The separation of urban land use into attributes that characterize likely stressor sources provides a useful framework for assessing and prioritizing the most appropriate management actions to minimize urban-related stresses to aquatic biota.  相似文献   

4.
The export of nitrogen from urban catchments is a global problem, and denitrifying bacteria in stream ecosystems are critical for reducing in-stream N. However, the environmental factors that control the composition of denitrifying communities in streams are not well understood. We determined whether denitrifying community composition in sediments of nine streams on the eastern fringe of Melbourne, Australia was correlated with two measures of catchment urban impact: effective imperviousness (EI, the proportion of a catchment covered by impervious surfaces with direct connection to streams) or septic tank density (which affects stream water chemistry, particularly stream N concentrations). Denitrifying community structure was examined by comparing terminal restriction fragment length polymorphisms of nosZ genes in the sediments, as the nosZ gene codes for nitrous oxide reductase, the last step in the denitrification pathway. We also determined the chemical and physical characteristics of the streams that were best correlated with denitrifying community composition. EI was strongly correlated with community composition and sediment physical and chemical properties, while septic tank density was not. Sites with high EI were sandier, with less fine sediment and lower organic carbon content, higher sediment cations (calcium, sodium and magnesium) and water filterable reactive phosphorus concentrations. These were also the best small-scale environmental variables that explained denitrifying community composition. Among our study streams, which differed in the degree of urban stormwater impact, sediment grain size and carbon content are the most likely drivers of change in community composition. Denitrifying community composition is another in a long list of ecological indicators that suggest the profound degradation of streams is caused by urban stormwater runoff. While the relationships between denitrifying community composition and denitrification rates are yet to be unequivocally established, landscape-scale indices of environmental impact such as EI may prove to be useful indicators of change in microbial communities.  相似文献   

5.
1. Restoration of riparian forests has been promoted as a means of mitigating urban impacts on stream ecosystems. However, conventional urban stormwater drainage may diminish the beneficial effect of riparian forests.
2. The relative effects of riparian deforestation and catchment urbanisation on stream ecosystems have rarely been discriminated because urban land use and riparian degradation usually covary. However, land use at three scales (channel canopy cover along a 100-m site, riparian forest cover within 200 m of the channel for 1 km upstream, and catchment imperviousness) covaried only weakly along the lowland Yarra River, Victoria, Australia.
3. We tested the extent to which each land use measure explained macroinvertebrate assemblage composition on woody debris and in the sediments of pools or runs in the mainstem Yarra River in autumn and spring 1998.
4. Assemblage composition in both habitats and in both seasons was most strongly correlated with proportion of catchment covered by impervious surfaces. Sites with higher imperviousness had fewer sensitive taxa (those having a strong positive influence on indicators of biological integrity) and more taxa typical of degraded urban streams. Sensitive taxa rarely occurred in sites with >4% total imperviousness. However, within sites of similar imperviousness, those with more riparian forest cover had more dipteran taxa. Channel canopy cover did not explain assemblage composition strongly.
5. Riparian forest cover may influence richness of some macroinvertebrate taxa, but catchment urbanisation probably has a stronger effect on sensitive taxa. In catchments with even a small amount of conventionally drained urban land, riparian revegetation is unlikely to have an effect on indicators of stream biological integrity. Reducing the impacts of catchment urbanisation through dispersed, low-impact drainage schemes is likely to be more effective.  相似文献   

6.
Environmental flow assessment frameworks have begun to consider changes to flow regimes resulting from land-use change. Urban stormwater runoff, which degrades streams through altered volume, pattern and quality of flow, presents a problem that challenges dominant approaches to stormwater and water resource management, and to environmental flow assessment. We used evidence of ecological response to different stormwater drainage systems to develop methods for input to environmental flow assessment. We identified the nature of hydrologic change resulting from conventional urban stormwater runoff, and the mechanisms by which such hydrologic change is prevented in streams where ecological condition has been protected. We also quantified the increase in total volume resulting from urban stormwater runoff, by comparing annual streamflow volumes from undeveloped catchments with the volumes that would run off impervious surfaces under the same rainfall regimes. In catchments with as little as 5–10% total imperviousness, conventional stormwater drainage, associated with poor in-stream ecological condition, reduces contributions to baseflows and increases the frequency and magnitude of storm flows, but in similarly impervious catchments in which streams retain good ecological condition, informal drainage to forested hillslopes, without a direct piped discharge to the stream, results in little such hydrologic change. In urbanized catchments, dispersed urban stormwater retention measures can potentially protect urban stream ecosystems by mimicking the hydrologic effects of informal drainage, if sufficient water is harvested and kept out of the stream, and if discharged water is treated to a suitable quality. Urban stormwater is a new class of environmental flow problem: one that requires reduction of a large excess volume of water to maintain riverine ecological integrity. It is the best type of problem, because solving it provides an opportunity to solve other problems such as the provision of water for human use.  相似文献   

7.
Resolving land cover hierarchy relationships in urban settings is important for defining the scale and type of management required to enhance stream health. We investigated associations between macroinvertebrate assemblages in urban streams of Hamilton, New Zealand, and environmental variables measured at multiple spatial scales comprising (i) local-scale physicochemical conditions, (ii) impervious area in multiple stream corridor widths (30, 50 and 100 m) along segments (sections of stream between tributary nodes) and for entire upstream networks, and (iii) total impervious area in stream segment sub-catchments and upstream catchments. Imperviousness was higher for stream segment sub-catchments than for entire catchments because of the agricultural headwaters of some urban streams. Imperviousness declined as corridor width declined at both segment and catchment scales reflecting the vegetated cover along most urban stream gullies. Upstream catchment imperviousness was strongly and inversely correlated with dissolved organic carbon concentration, whereas segment and upstream corridor scales were correlated with water temperature and pH. Corridor imperviousness appeared to be a stronger predictor than catchment imperviousness of Ephemeroptera, Plecoptera and Trichoptera taxa richness and the Quantitative Urban Community Index specifically developed to assess impacts of urbanisation. In contrast, imperviousness at all measured scales added only marginal improvement in assemblage-based models over that provided by the local-scale physicochemical variables of reach width, habitat quality, macrophyte cover, pH and dissolved oxygen concentration. These findings infer variable scales of influence affecting macroinvertebrate communities in urban streams and suggest that it may be important to consider local and corridor factors when determining mechanisms of urbanisation impacts and potential management options.  相似文献   

8.
Urbanization can potentially alter watershed nitrogen (N) retention via combined changes in N loading, water runoff, and N processing potential. We examined N export and retention for two headwater catchments (∼4 km2) of contrasting land use (16% vs. 79% urban) in the Plum Island Ecosystem (PIE-LTER) watershed, MA. The study period included a dry year (2001–2002 water year) and a wet year (2002–2003 water year). We generalized results by comparing dissolved inorganic nitrogen (DIN) concentrations from 16 additional headwater catchments (0.6–4.2 km2) across a range of urbanization (6–90%). Water runoff was 25–40% higher in the urban compared to the forested catchment, corresponding with an increased proportion of impervious surfaces (25% vs. 8%). Estimated N loading was 45% higher and N flux 6.5 times higher in the urban than in the forested catchment. N retention (1 − measured stream export / estimated loading) was 65–85% in the urban site and 93–97% in the forested site, with lower retention rates during the wetter year. The mechanisms by which N retention stays relatively high in urban systems are poorly known. We show that N retention is related to the amount of impervious surface in a catchment because of associated changes in N loading (maximized at moderate levels of imperviousness), runoff (which continues to increase with imperviousness), and biological processes that retain N. Continued declines in N retention due to urbanization have important negative implications for downstream aquatic systems including the coastal zone.  相似文献   

9.
Dramatic changes in imperviousness exert significant influence on the rainfall-runoff process in urban catchments. In urban rainwater management, imperviousness is generally adopted as an effective indicator for assessing potential runoff risk. However, the effects of imperviousness on rainfall-runoff at the scale of small urbanized drainage areas have not been fully determined, particularly when various storm characteristics are considered. In this paper, a model-based analysis is conducted in a typical urban residential catchment in Beijing, China, in which 69 subareas are delineated within the catchment as the basic drainage units. Two metrics, total impervious area (TIA) and directly connected impervious area (DCIA), are employed to quantify the spatial characteristics of imperviousness of the subareas. Three runoff variables within the delineated subareas including total runoff depth (Qt), peak runoff depth (Qp), and lag time (Tlag) are simulated by using the Storm Water Management Model (SWMM) to represent the specific rainfall-runoff characteristics. Moreover, model input storms are designated to several typical flood-induced rainfall events with varying amounts, locations of rainfall peak, and durations for holistic assessment of imperviousness. Regression analyses are conducted to explore the contributions and relative significances of impervious metrics in predicting runoff variables under various storm cases. The results indicate that the performances of imperviousness with fine spatial scale (<1 ha) and heavy rainfall conditions (>34 mm) may vary markedly according to storm conditions. Specifically, TIA rather than DCIA acts as a dominate factor affecting total runoff, and its significance maintains relatively stable with various storm conditions. In addition, the combined use of both TIA and DCIA are more effective for predicting peak runoff than that using a single impervious metric; however, rainfall amount, peak location, and duration alter the contribution gaps between TIA and DCIA and the overall performance of the regression model. Moreover, DCIA is more likely to affect runoff lag time without the contribution of TIA; however, an increase in rainfall peak ratio or duration will significantly limit its performance. These results can provide insight into the hydrologic performance of imperviousness, which is essential for landscape design and runoff regulation in small urban catchments.  相似文献   

10.
In a longitudinal study of two streams whose lower reaches received unattenuated urban stormwater runoff, physical disturbance by stormflow was less important than the persistant unidentified chemical impacts of urban stormwater in limiting the distribution of Chironomidae, and Ephemeroptera, Trichoptera and Plecoptera (EPT). A hierarchical spatial analysis showed that chironomid density did not decrease from rural to urban stream reaches. Instead, the taxonomic composition of chironomid assemblages was significantly altered in urban versus rural reaches; chironomid assemblages in urban reaches exhibited higher average pollution tolerance scores. In contrast, the density of EPT was significantly lower in urban reaches. Despite higher values of stormflow tractive force in urban reaches, streambed stability tended to be greater in urban reaches. Modeling of temporal variation in chironomid density showed similar patterns in both rural and urban reaches: chironomid density had a unimodal relationship to rainfall index (RI), with highest densities at intermediate values of RI. Models of EPT density over time in rural reaches showed no significant relation to RI, and temporal variation in EPT density in urban reaches was not predictable. The abundance of fine particulate organic matter, including periphyton (FPOM), on cobbles was greater in urban reaches and showed a much greater degree of temporal variation than in rural reaches. In urban reaches, a negative relation between FPOM and RI indicated the importance of stormflow abrasion. Handling editor: K. Martens  相似文献   

11.
昆明市明通河流域降雨径流水量水质SWMM模型模拟   总被引:13,自引:0,他引:13  
选取昆明市明通河流域为研究区域,在暴雨管理模型(SWMM模型)参数敏感性分析、模型率定的基础上,对明通河流域进行了降雨径流水量水质模拟。结果表明:SWMM模型水文水力模块中最灵敏参数为不透水率,水质模块中污染物最大累积量、污染物累积速率均为灵敏参数,而冲刷系数和冲刷指数的灵敏度受降雨强度影响波动较大。水量水质模拟结果与实测结果较为吻合,模型率定取得了满意的结果。模拟结果显示,研究区降雨径流总氮、总磷、化学需氧量单位面积负荷率分别为75.6、8.5、697.8 kg hm-2a-1,城市降雨径流污染在滇池流域面源污染中占有较大份额。  相似文献   

12.
1. Epilithic and epiphytic diatom community composition were assessed in small streams of the Melbourne region to test the effects of (a) urban density (sub-catchment imperviousness 0–51%) and (b) stormwater drainage intensity (comparing the intensively drained metropolitan area with urban areas of the hinterland, which had open drains and some localized stormwater drainage).
2. Communities separated into three groups: eastern hinterland, western hinterland and a metropolitan group. Separation of eastern and western hinterland groups, and of eastern and western sites within the metropolitan group were best explained by patterns of electrical conductivity, basalt geology and annual rainfall. Separation of metropolitan and hinterland groups, and patterns within the hinterland groups were best explained by nutrient gradients (phosphorus, ammonia and total nitrogen).
3. Nutrient concentrations were not only apparently influenced by urban density but also by effluents from small sewage treatment plants and agricultural activities at a few sites.
4. Species richness did not vary consistently between the metropolitan and hinterland groups but within the western hinterland, sites with low nutrient concentrations tended to be more species-rich than mildly enriched sites.
5. Composition of both diatom and macroinvertebrate communities (assessed in a concurrent study) were sensitive indicators of urban-derived impacts. However, diatoms were better indicators of nutrient enrichment, while macroinvertebrates were better integrative indicators of catchment disturbance.  相似文献   

13.
1. Species richness and assemblage patterns of organisms are dictated by numerous factors, probably operating at multiple scales. Freshwater mussels (Unionidae) are an endangered, speciose faunal group, making them an interesting model system to study the influence of landscape features on organisms. In addition, landscape features that influence species distributions and the scale at which the factors have the greatest impact are important issues that need to be answered to conserve freshwater mussels. 2. In this study, we quantified freshwater mussel communities at 16 sites along three mid‐sized rivers in the south‐central United States. We addressed the following questions: (i) Are there predictable longitudinal changes in mussel community composition? (ii) What landscape variables best explain shifts in community composition? and (iii) At what scale do landscape variables best predict mussel community composition? 3. After controlling for the influence of longitudinal position along the stream, we compared mussel distributions to a suite of hypothesised explanatory landscape variables across multiple scales – catchment scale (entire drainage area), buffer scale (100‐m riparian buffer of the entire catchment) and reach scale (100‐m riparian buffer extending 1 km upstream from the sampling site). 4. We found a significant and consistent longitudinal shift in dominant mussel species across all three rivers, with community composition strongly related to distance from the headwaters, which is highly correlated with stream size. After accounting for stream size, variables at the buffer scale were the best predictors of mussel community composition. After accounting for catchment position, mean channel slope was the best explanatory variable of community composition and appeared in all top candidate models at the catchment and buffer scales. Coverage of wetland and urban area were also correlated with community composition at the catchment and buffer scales. 5. Our results suggest that landscape‐scale habitat factors influence mussel community composition. Landscape features at the buffer scale performed best at determining community composition after accounting for position in the catchment; thus, further protection of riparian buffers will help to conserve mussel communities.  相似文献   

14.
The number of males per group is the most variable aspect of primate social organization and is often related to the monopolizability of females, which is mainly determined by the number of females per group and their reproductive synchrony. Colobines show both inter‐specific and intra‐specific variations in the number of males per group. Compared with other colobine species, little is known about the social organization of white‐headed langur (Trachypithecus leucocephalus), despite its endangered status and unusual limestone habitat. As a part of a long‐term study of the white‐headed langurs in the Nongguan Karst Hills, Guangxi, China, we quantitatively investigated their social organization by analyzing census data from 1998 to 2003. The population censuses revealed that the predominant social organization of bisexual groups was the one‐male group, similar to a previous report on this species and many other Asian colobines. In such groups, one adult male associated with 5.1 adult females, 0.1 sub‐adult males, 2.6 juveniles and 2.9 infants on average, with a mean group size of 11.7 individuals. In addition, three multi‐male groups were recorded, consisting of 2–3 adult males, 1–5 adult females, 0–2 sub‐adult males, 0–7 juveniles and 0–2 infants. They did not contain more adult females than the one‐male groups and were unstable in group membership. The langurs outside bisexual groups were organized into small nonreproductive groups or lived as solitaries. The nonreproductive groups averaged 1.3 adult males, 1.3 sub‐adult males and 2.6 juveniles. Juvenile females were present in such groups on 52.4% of all occasions. As predicted by the monopolization model, the prevalence of the one‐male pattern in this species may mainly be attributed to the small number of females in the group. The possible reasons for the occurrence of multi‐male groups and the presence of juvenile females in nonreproductive groups are also discussed. Am. J. Primatol. 71:206–213, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
Although it has been demonstrated that urban stormwater can alter the quality of receiving waters, the corresponding impact on aquatic biota remains essentially undocumented. A year-long intensive study, therefore, was implemented to monitor and describe the ecological effects exerted by urban runoff on benthic macroinvertebrates.Rock-filled, basket-type artificial substrates deployed periodically in nonurban and urban river reaches yielded collections of macroinvertebrates that furnished data for: (1) species diversity (the Brillouin index, H), (2) hierarchical diversity, (3) major taxa composition, and (4) collection dissimilarity at the species level.The overall results from these four analytical procedures strongly indicate that the macrobenthic community became progressively disrupted downstream in the urban reach. The high degree of correspondence between the known sources of urban runoff and the observed effects on the benthic community are forceful arguments that urban runoff is the causal agent of disruption. The impact is not confined to periods following heavy rains. Instead the pollutants appear to remain in the system. The stress imposed by them was most acute during the summer low flow and was probably localized in or near the stream bed.To assess the impact of urban runoff on an aquatic ecosystem, physical, chemical, and biological monitoring should routinely consider the stream bed microzone. Urban runoff pollutant loading standards must take into account the apparent long-term residence of pollutants in the substrate and the associated stress of summer low flows.  相似文献   

16.
1. We used observational and experimental field studies together with an individual‐based simulation model to demonstrate that behaviours of mottled sculpin (Cottus bairdi) were broadly consistent with the expectations of Giving‐Up Density theory and an Ideal Pre‐emptive Distribution habitat selection model. 2. Specifically we found that: (i) adult mottled sculpin established territories within patches characterised by significantly higher prey densities and prey renewal rates than patches occupied by juveniles or randomly selected patches; (ii) patches abandoned by adult sculpin possessed significantly lower prey densities than newly occupied patches, although this was not true for juveniles; (iii) the observed giving‐up density (GUD) for adult sculpin (i.e. average prey density in patches recently abandoned) increased linearly with increasing fish size up to the average prey density measured in randomly selected patches (i.e. 350 prey items per 0.1 m2) and decreased with increasing sculpin density and (iv) juveniles rapidly shifted their distribution towards the highest quality patches following removal of competitively dominant adult sculpin. 3. These results provide the first evidence of the applicability of GUD theory to a stream‐dwelling organism, and they elucidate the underlying factors influencing juvenile and adult sculpin habitat selection and movement behaviours. Furthermore, optimal patch use, ideal pre‐emptive habitat selection and juvenile ‘floating’ provide behavioural mechanisms linking environmental heterogeneity in the stream benthos to density‐dependent regulation of mottled sculpin populations in this system.  相似文献   

17.
Geomorphology and fish assemblages in a Piedmont river basin, U.S.A.   总被引:7,自引:0,他引:7  
1. We investigated linkages between fishes and fluvial geomorphology in 31 wadeable streams in the Etowah River basin in northern Georgia, U.S.A. Streams were stratified into three catchment sizes of approximately 15, 50 and 100 km2, and fishes and geomorphology were sampled at the reach scale (i.e. 20–40 times stream width). 2. Non‐metric multidimensional scaling (NMDS) identified 85% of the among‐site variation in fish assemblage structure and identified strong patterns in species composition across sites. Assemblages shifted from domination by centrarchids, and other pool species that spawn in fine sediments and have generalised food preferences, to darter‐cyprinid‐redhorse sucker complexes that inhabit riffles and runs, feed primarily on invertebrates, and spawn on coarser stream beds. 3. Richness and density were correlated with basin area, a measure of stream size, but species composition was best predicted (i.e. |r| between 0.60–0.82) by reach‐level geomorphic variables (stream slope, bed texture, bed mobility and tractive force) that were unrelated to stream size. Stream slope was the dominant factor controlling stream habitat. Low slope streams had smaller bed particles, more fines in riffles, lower tractive force and greater bed mobility compared with high slope streams. 4. Our results contrast with the ‘River Continuum Concept’ which argues that stream assemblages vary predictably along stream size gradients. Our findings support the ‘Process Domains Concept’, which argues that local‐scale geomorphic processes determine the stream habitat and disturbance regimes that influence stream communities.  相似文献   

18.
19.
20.
为了在温带和亚热带的过渡带中验证森林树木死亡是否受密度制约的影响, 我们在宝天曼国家级自然保护区选择1个100 m×100 m的暖温带落叶阔叶林样地, 用双变量函数g(r)(the pair-correlation function)研究了锐齿栎(Quercus aliena var. acuteserrata)死亡前(活树和枯木统称为死亡前树木)和死亡后(活树为死亡后树木)的分布格局。把样地中的锐齿栎分为幼树(1 cm ≤ DBH<10 cm)、小树(10 cm ≤ DBH<20 cm)和成年树(DBH≥20 cm)3个不同的生长阶段来研究密度制约对空间分布格局的影响机制。结果表明: (1)死亡前锐齿栎在r>5 m尺度呈聚集分布, 死亡后幼树(1 cm≤DBH<10 cm)和成年树(DBH≥20 cm)在1-25 m尺度呈现随机分布, 死亡后小树(10 cm≤DBH< 20 cm)在r<1.5 m和2.5-4.5 m的尺度为随机分布, 在r>5 m的尺度呈聚集分布; (2)采用随机标签零模型和案例-对照设计的方法, 排除生境异质性影响后, 将幼树和小树的分布格局作为案例, 将成年树的分布格局作为对照, 并代表生境异质性的作用, 通过小径级树木与成年树分布格局的对比发现, 密度制约效应对死亡前后的锐齿栎分布格局均具有影响; (3)幼树和小树在成年树周围的分布死亡前为显著聚集分布格局, 死亡后剩余树木的聚集强度下降; 随着与成年树之间距离的增加, 死亡后的幼树(仅包括现存的活树)逐渐向随机分布格局演替。本研究初步表明锐齿栎空间格局受生境异质性的影响并呈现出显著的聚集效应, 排除生境异质性影响后, 锐齿栎死亡前后的空间格局受到密度制约的影响, 这一结果为Janzen-Connell假说提供了支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号