首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Classical niche theory, particularly in terms of competitive exclusion, does not appear to apply as well to bryophytes as to other organisms. Bryophyte communities, as well as those of other plants and of animals, can be thought of in terms of individual species each utilizing particular portions of various resource or habitat continua. Quantitative studies carried out since 1981, particularly those involving niche breadth and overlap, are reviewed. Special attention is given to niche diversification in Sphagnum , Splachnaceae, bryophyte communities in streams, and to ephemeral bryophyte communities. Some bryophyte communities appear to have equilibrium characteristics and to contain species with relatively narrow niche breadths and with no or only partial niche overlap. In many habitats, however, bryophyte communites have non-equilibrium characteristics and diversification of species in microhabitats is opportunistic. Do any bryophyte communities persist long enough for complete saturation by species which have realized niches determined by competitive interactions? Recent studies indicate that this is the case for at least some Sphagnum communities, but that it is the exception not the rule for bryophytes.  相似文献   

2.
Foundation (dominant or matrix) species play a key role in structuring plant communities, influencing processes from population to ecosystem scales. However, the effects of genotypic diversity of foundation species on these processes have not been thoroughly assessed in the context of assembling plant communities. We modified the classical filter model of community assembly to include genotypic diversity as part of the biotic filter. We hypothesized that the proportion of fit genotypes (i.e. competitively superior and dominant) affects niche space availability for subordinate species to establish with consequence for species diversity. To test this hypothesis, we used an individual‐based simulation model where a foundation species of varying genotypic diversity (number of genotypes and variability among genotypes) competes for space with subordinate species on a spatially heterogeneous lattice. Our model addresses a real and practical problem in restoration ecology: choosing the level of genetic diversity of re‐introduced foundation and subordinate species. Genotypic diversity of foundation species significantly affected equilibrium community diversity, measured as species richness, either positively or negatively, depending upon environmental heterogeneity. Increases in genotypic diversity gave the foundation species a wider niche breadth. Under conditions of high environmental heterogeneity, this wider niche breadth decreased niche space for other species, lowering species richness with increased genotypic diversity until the genotypes of the foundation species saturated the landscape. With a low level of environmental heterogeneity, increasing genotypic diversity caused the foundation species niche breadth to be overdispersed, resulting in a weak positive relationship with species richness. Under these conditions, some genotypes are maladapted to the environment lowering fitness of the foundation species. These effects of genotypic diversity were secondary to the larger effects of overall foundation species fitness and environmental heterogeneity. The novel aspect of incorporating genotype diversity in combination with environmental heterogeneity in community assembly models include predictions of either positive or negative relationships between species diversity and genotypic diversity depending on environmental heterogeneity, and the conditions under which these factors are potentially relevant. Mechanistically, differential niche availability is imposed by the foundation species.  相似文献   

3.
Abstract

Forest hiking trails may influence local microclimate and biodiversity, but the effects on community structure and diversity of epiphytic bryophytes on trees are currently unknown. Epiphytic bryophytes on 82 Abies faxoniana Rehder & Wilson tree trunks (41 along the hiking trail edge and 41 controls in the forest interior) were investigated at four heights from the ground (10, 50, 120, and 180 cm). At each site, air temperature and humidity were monitored for 1 year. The light radiation levels and air temperature were higher, and the canopy leaf area index and air humidity lower at the trail edge, indicating deterioration in microclimate, resulting from the trail establishment. The epiphytic bryophyte species richness, community cover, and mean cover of dendroid and pendent growth forms on trunks were significantly lower at the trail edge than the control site, suggesting that trail construction caused these reductions. One marked effect of the presence of the trail was the increase in some sun-loving species and decrease in shade-tolerant species. Moreover, the trail also slightly influenced species richness and epiphytic bryophyte cover at both community and species population levels along the height gradient. Comprehensive analyses showed that microclimate deterioration was mainly driven by the trail establishment, and that the change in micro-climate along the trail, rather than any host traits, played an important role in the declining epiphytic bryophyte community structure and diversity at the trail edge, confirming the initial hypothesis that the presence of a raised boardwalk (hiking trail) indirectly influences epiphytic bryophyte community and diversity by altering the microclimate.  相似文献   

4.
5.
Many plant species exhibit strong association with topographic habitats at local scales. However, the historical biogeographic and physiological drivers of habitat specialization are still poorly understood, and there is a need for relatively easy‐to‐measure predictors of species habitat niche breadth. Here, we explore whether species geographic range, climatic envelope, or intraspecific variability in leaf traits is related to the degree of habitat specialization in a hyperdiverse tropical tree community in Amazonian Ecuador. Contrary to our expectations, we find no effect of the size of species geographic ranges, the diversity of climate a species experiences across its range, or intraspecific variability in leaf traits in predicting topographic habitat association in the ~300 most common tropical tree species in a 25‐ha tropical forest plot. In addition, there was no phylogenetic signal to habitat specialization. We conclude that species geographic range size, climatic niche breadth, and intraspecific variability in leaf traits fail to capture the habitat specialization patterns observed in this highly diverse tropical forest.  相似文献   

6.

Aims

Bryophyte re‐colonization after disturbance is largely governed by environmental conditions within disturbed forests. In particular, distance to a forest edge is an important predictor of bryophyte community re‐colonization, through either direct constraints, such as dispersal limitation, or indirectly by altering environmental conditions. This study examines a range of factors – environmental, distance to an edge, substrate specific environment or local‐level environment – to determine which are important in the re‐colonization of bryophyte communities after forest harvesting. As bryophyte communities vary with the particular substrate inhabited, responses were examined across four substrates (rock, exposed roots, ground and CWD).

Location

Tasmanian southern forests, Australia.

Methods

Bryophyte composition was examined on four substrates (ground, coarse wood debris, exposed roots, rocks) within three ages (~7, ~27 and ~45 years post‐disturbance) of harvested wet eucalypt forest. Re‐colonization success of bryophyte communities was determined by comparing communities in regeneration forest to mature forest communities using axis scores from one‐dimensional constrained ordination. The importance of various environmental conditions for re‐colonization success was then modelled. Finally, path analysis was used to determine whether the impact of distance to a forest edge was meditated through its effects on key environmental variables.

Results

Multiple environmental factors impacted re‐colonization of mature bryophyte communities. Local‐level conditions such as microclimate (temperature, humidity and VPD) and LAI were the most important in determining re‐colonization across substrates. Path analysis showed that distance to a forest edge had a significant impact on re‐colonization success, but only a relatively small part of this was mediated through its impact on environmental factors.

Conclusions

Bryophyte re‐colonization is driven by a combination of microclimate conditions and factors related to distance from a forest edge (most likely dispersal distance). While some substrate‐specific factors impact bryophyte re‐colonization success, the consistent impact of local environmental factors across substrates suggests that harvesting management strategies that develop more ‘mature’ microclimate conditions and increase proximity to nearby mature forest patches will be beneficial for all bryophytes communities. As bryophyte re‐colonization was correlated with temporally dynamic environmental conditions, we suggest that forest age needs to be considered in future work.  相似文献   

7.
Aim We explored general habitat‐related explanations (niche breadth and niche position) to the contrasting status of two amphibian species that have largely overlapping ranges and habitats – the rare and declining crested newt (Triturus cristatus), and the more common smooth newt (Triturus vulgaris). These closely related and ecologically similar species provide an excellent opportunity to study those methodologically challenging hypotheses, and this is the first such study on amphibians. Location Denmark. Methods We derived multivariate habitat models from 27 characteristics of 210 ponds and their surroundings, and their occupation by newts. In addition to the model performance, niche breadths were compared using the mean beta diversity of amphibian communities in the presence of each newt species. Results For each newt species, the habitat models comprised three variables and correctly classified 74% of observations. Diverse invertebrate fauna (prey base) and shorter distances to other ponds inhabited by conspecifics were positive for both species, while the surrounding habitat (notably dry grasslands with forests) was important for the crested newt and the sediment type of the pond for the smooth newt only. Beta diversity of the amphibian communities of occupied ponds did not differ between the two newt species. Hence, in an area of frequent coexistence, habitat requirements of the species differed in key variables, not in the extent of specialization. Main conclusions Our study supported the niche position rather than the niche‐breadth hypothesis of rarity. We suggest that the rarity and/or continuing decline of the crested newt is related to the degradation of (semi)natural terrestrial habitats around suitable water bodies in Europe. Consequently, special restoration of such habitats has a high potential for the recovery of this rare species, while general pond management appeared more beneficial for the common smooth newt.  相似文献   

8.
Metacommunity structure can be shaped by a variety of processes operating at different spatial scales. With increasing scale, the compositional variation among local communities (beta diversity) may reflect stronger environmental heterogeneity, but may also reflect reduced exchange of organisms between habitat patches. We analyzed the spatial architecture of a metacommunity of cladoceran zooplankton in temporary pools of High Andes wetlands, with the objective of explaining the spatial dependency of its structure. The spatial distribution of the pools is hierarchical and highly discontinuous: pools are clustered within small wetlands, which lay scattered over valleys that are separated from each other by mountain ridges. We studied a total of 59 pools, belonging to six different wetlands in four different valleys. We assessed pool environmental heterogeneity and sampled active communities and dormant propagule banks of cladoceran zooplankton. Environmental heterogeneity proved very high within wetlands and showed almost no increase with increasing spatial scale. Conversely, diversity partitioning analyses indicated an increase in beta diversity with spatial scale, especially among valleys. Variation partitioning on environmental data and spatial RDA models suggested environmental heterogeneity as the most important generator of beta diversity within wetlands. At the largest spatial scale, beta diversity manifested itself mainly as a differentiation of species occurrence patterns among valleys, which could not be entirely explained by environmental variables. Our study thus presents a case where environmental control seems to be the dominant metacommunity structuring process at the smallest spatial scale, whereas neutral processes and dispersal limitation are the most likely generators of beta diversity at the largest spatial scale.  相似文献   

9.
This study was carried out to clarify the response of butterfly communities on forest degradation in the Gwangneung Forest, Korea. We monitored butterfly communities with varying degrees of human activities by conducting a line transect twice a month in 2011. A total of 70 species and 4676 individuals of butterflies were observed in four sites: natural forest (NR), two plantation forests, and the Korean National Arboretum (AR). The result on niche breadth, habitat breadth and habitat type of butterfly was not consistent with our predictions. Species richness of habitat type was only significantly different between NF and AR. Species diversity was significantly different among sites. Butterfly diversity associated with landscape patterns based on aerial photographs supported a mosaic concept. A forest management plan to conserve butterfly diversity in forests is necessary to maintain various habitats and to ensure that grasslands are protected.  相似文献   

10.
The hierarchical structure of biodiversity from a regional scale analysis has received much attention as an alternative approach to unravelling the principal drivers of biodiversification. To better understand the processes that control the diversification of Cambro‐Ordovician trilobite communities from the Argentine Cordillera Oriental, we explore patterns of occupancy and diversity trajectories at the local and regional scales through seven intervals (Furongian, loTr1, upTr1, loTr2, upTr2, Tr3 and Fl2–3), and across an onshore‐offshore profile. Our results indicate: (1) a decrease in regional diversity from the upper Tr2 onwards, mainly caused by a reduction in the number of rare taxa, coupled with stable beta diversity at regional scale and a constant rise in beta diversity in deep subtidal environments; (2) a higher proportion of regional diversity allocated to the within‐habitat beta component; and (3) that changes in gamma diversity are driven primarily by changes in alpha diversity during the Furongian–Tr3, whereas in the Floian, beta diversity seems to modulate regional diversity. These trends and associated patterns indicate increasing ecological differences among taxa, shifting from metacommunities where most taxa have similar ecological preferences or ‘Hubbell type’ to metacommunities with high niche differentiation or ‘Hutchinson type’. Interestingly, the timing of this shift coincides with the regional‐scale turnover between trilobite evolutionary faunas suggesting that the rise in niche differentiation among these genera may be related to the transition. Superimposed on this general trend, particular diversity structures can be understood in the light of metacommunity dynamics, such as dispersal limitation and mass effect.  相似文献   

11.
Understanding the ecological mechanisms driving beta diversity is a major goal of community ecology. Metacommunity theory brings new ways of thinking about the structure of local communities, including processes occurring at different spatial scales. In addition to new theories, new methods have been developed which allow the partitioning of individual and shared contributions of environmental and spatial effects, as well as identification of species and sites that have importance in the generation of beta diversity along ecological gradients. We analyzed the spatial distribution of dung beetle communities in areas of Atlantic Forest in a mainland-island scenario in southern Brazil, with the objective of identifying the mechanisms driving composition, abundance and biomass at three spatial scales (mainland-island, areas and sites). We sampled 20 sites across four large areas, two on the mainland and two on the island. The distribution of our sampling sites was hierarchical and areas are isolated. We used standardized protocols to assess environmental heterogeneity and sample dung beetles. We used spatial eigenfunctions analysis to generate the spatial patterns of sampling points. Environmental heterogeneity showed strong variation among sites and a mild increase with increasing spatial scale. The analysis of diversity partitioning showed an increase in beta diversity with increasing spatial scale. Variation partitioning based on environmental and spatial variables suggests that environmental heterogeneity is the most important driver of beta diversity at the local scale. The spatial effects were significant only at larger spatial scales. Our study presents a case where environmental heterogeneity seems to be the main factor structuring communities at smaller scales, while spatial effects are more important at larger scales. The increase in beta diversity that occurs at larger scales seems to be the result of limitation in species dispersal ability due to habitat fragmentation and the presence of geographical barriers.  相似文献   

12.
This study utilized individual senesced sugar maple and beech leaves as natural sampling units within which to quantify saprotrophic fungal diversity. Quantifying communities in individual leaves allowed us to determine if fungi display a classic taxa–area relationship (species richness increasing with area). We found a significant taxa–area relationship for sugar maple leaves, but not beech leaves, consistent with Wright's species‐energy theory. This suggests that energy availability as affected plant biochemistry is a key factor regulating the scaling relationships of fungal diversity. We also compared taxa rank abundance distributions to models associated with niche or neutral theories of community assembly, and tested the influence of leaf type as an environmental niche factor controlling fungal community composition. Among rank abundance distribution models, the zero‐sum model derived from neutral theory showed the best fit to our data. Leaf type explained only 5% of the variability in community composition. Habitat (vernal pool, upland or riparian forest floor) and site of collection explained > 40%, but could be attributed to either niche or neutral processes. Hence, although niche dynamics may regulate fungal communities at the habitat scale, our evidence points towards neutral assembly of saprotrophic fungi on individual leaves, with energy availability constraining the taxa–area relationship.  相似文献   

13.
Abstract. We analysed the structure and diversity of the vegetation along an Arctic river to determine the relationship between species richness and plant community structure. We examined whether variation in species richness along the corridor is structured as (1) an increase in the number of communities due to increasing landscape heterogeneity, (2) an increase in the floristic distinctiveness (β-diversity) of communities, or (3) an increase in within-community richness (α-diversity) as species-poor communities are replaced by species-rich communities. We described 24 community types and analysed the relationship between site vascular species richness (γ-diversity) and β-diversity, α-diversity, site environmental heterogeneity, and the number of distinct plant communities. We also measured diversity patterns of vascular, bryophyte, and lichen species within communities and examined their relationship to community-level estimates of environmental factors. We found that an increase in site species richness correlated with an increase in the number of communities (r2= 0.323, P= 0.0173) and β-diversity (r2= 0.388, P= 0.0075), rather than an increase in the α-diversity of individual communities. Moisture and pH controlled most of the differences in composition between communities. Measures of species richness and correlations with moisture and pH within communities differed among vascular, bryophyte, and lichen species. Bryophyte richness was positively correlated with moisture (r2= 0.862, P= 0.0010) and lichen richness was negatively correlated with moisture (r2= 0.809, P= 0.0031). Vascular plants had a peak in richness at pH 6.5 (r2= 0.214, P < 0.0001). We conclude that site variation in vascular richness in this region is controlled by landscape heterogeneity, and structured as variation in the number and distinctiveness of recognizable plant communities.  相似文献   

14.
Two hypotheses have been proposed to explain the abundance–occupancy relationship (AOR) in parasites. The niche breadth hypothesis suggests that host generalists are more abundant and efficient at colonizing different host communities than specialists. The trade‐off hypothesis argues that host specialists achieve high density across their hosts' ranges, whereas generalists incur the high cost of adaptation to diverse immuno‐defence systems. We tested these hypotheses using 386 haemosporidian cytochrome‐b lineages (1894 sequences) recovered from 2318 birds of 103 species sampled in NW Africa, NW Iberia, W Greater Caucasus and Transcaucasia. The number of regions occupied by lineages was associated with their frequency suggesting the presence of AOR in avian Haemosporidia. However, neither hypothesis provided a better explanation for the AOR. Although the host generalist Plasmodium SGS1 was over three times more abundant than other widespread lineages, both host specialists and generalists were successful in colonizing all study regions and achieved high overall prevalence.  相似文献   

15.
2002 ~2010 年,采用夹日法对内蒙古阿拉善荒漠区禁牧、轮牧、过牧和开垦4 种不同人为干扰生境中啮齿动物群落β 多样性进行了研究,同时分析不同生境的灌木植物群落特征来探讨人为干扰下的景观破碎化。依据人为干扰下景观破碎的情况将研究区域内生境梯度的变化按照:禁牧到轮牧、轮牧到过牧、过牧到开垦、禁牧到过牧、禁牧到开垦、轮牧到开垦进行划分,分别利用Jaccard 指数、Sorenson 指数和Cody 指数分析景观破碎化条件下啮齿动物群落β 多样性变化特征。结果表明,不同生境梯度间3 种β 多样性指数差异均显著(P <0. 05),禁牧到过牧梯度β 多样性差异最大。不同干扰生境间的灌木植物群落特征差异极显著(P < 0. 01),Shannon-Wiener 指数、Simpson 指数和物种数均表现为轮牧区> 过牧区> 禁牧区> 开垦区。环境变化程度与β 多样性变化的程度一致。人为干扰是该区域景观破碎化的主要原因,特别是放牧活动,导致环境异质性显著增加。在荒漠区,这种随环境梯度造成异质性加大而增加的β 多样性,并不是由物种增加较大导致,而是由啮齿动物群落物种组成差异和变化增大所致.  相似文献   

16.
Limiting similarity and functional diversity along environmental gradients   总被引:3,自引:0,他引:3  
Recent developments in community models emphasize the importance of incorporating stochastic processes (e.g. ecological drift) in models of niche‐structured community assembly. We constructed a finite, spatially explicit, lottery model to simulate the distribution of species in a one‐dimensional landscape with an underlying gradient in environmental conditions. Our framework combines the potential for ecological drift with environmentally‐mediated competition for space in a heterogeneous environment. We examined the influence of niche breadth, dispersal distances, community size (total number of individuals) and the breadth of the environmental gradient on levels of species and functional trait diversity (i.e. differences in niche optima). Three novel results emerge from this model: (1) niche differences between adjacent species (e.g. limiting similarity) increase in smaller communities, because of the interaction of competitive effects and finite population sizes; (2) immigration from a regional species pool, stochasticity and niche‐assembly generate a bimodal distribution of species residence times (‘transient’ and ‘resident’) under a heterogeneous environment; and (3) the magnitude of environmental heterogeneity has a U‐shaped effect on diversity, because of shifts in species richness of resident vs. transient species. These predictions illustrate the potential importance of stochastic (although not necessarily neutral) processes in community assembly.  相似文献   

17.
Anthropogenic disturbances can constrain the realized niche space of wildlife by inducing avoidance behaviors and altering community dynamics. Human activity might contribute to reduced partitioning of niche space by carnivores that consume similar resources, both by promoting tolerant species while also altering behavior of species (e.g. activity patterns). We investigated the influence of anthropogenic disturbance on habitat and dietary niche breadth and overlap among competing carnivores, and explored if altered resource partitioning could be explained by human‐induced activity shifts. To describe the diets of coyotes, bobcat, and gray foxes, we designed a citizen science program to collect carnivore scat samples in low‐ (‘wildland’) and high‐ (‘interface’) human‐use open space preserves, and obtained diet estimates using a DNA metabarcoding approach. Habitat use was determined at scat locations. We found that coyotes expanded habitat and dietary niche breadth in interface preserves, whereas bobcats and foxes narrowed both niche breadth measures. High human use was related to increased dietary niche overlap among all mesocarnivore pairs, increased coyote habitat overlap with bobcats and foxes, and a small reduction in habitat overlap between bobcats and foxes. The strongest increase in diet overlap was among coyotes and foxes, which was smaller in magnitude than their habitat overlap increase. Finally, coyote scats were more likely to contain nocturnal prey in interface preserves, whereas foxes appeared to reduce consumption of nocturnal prey. Our results suggest that dominant and generalist mesocarnivores may encroach on the niche space of subordinate mesocarnivores in areas with high human activity, and that patterns in resource use may be related to human‐induced activity shifts.  相似文献   

18.
Although Carabidae is among the best-studied families of beetles in Europe from the faunistic point of view, there is still a lack of available information on the ecological requirements of the particular carabid species. The habitat preferences that determine the distribution of species are largely influenced by habitat structure and microclimate. In addition to other factors, these habitat parameters are influenced by the nature of the vegetation. Therefore, our study investigated the influence of tree species on carabid beetle communities. We conducted the research at 9 stands in the Borová Hora Arboretum (Zvolen, Central Slovakia). Each studied site represents a monoculture of one of nine tree species. At each site, some soil and leaf litter attributes (pH, conductivity, and content of H, C, N and P) were evaluated. Ground beetles were collected by pitfall trapping during the vegetation periods in 2008–2011. In total, 3012 individuals of 29 species were obtained. Significant differences in the total dynamic activity and species richness of the carabid beetle communities among the compared forest stands were revealed. The results of the research confirmed statistically significant relationships among 1) the soil conductivity and both the richness and Shannon diversity of the ground beetle communities, 2) the litter and soil N content and richness, the Shannon diversity and the species composition of the ground beetle communities. The Shannon diversity and richness were negatively related to the soil conductivity and positively related with the N content. Our research showed that dominant tree species indirectly influence diversity and composition of carabid communities via the soil properties.  相似文献   

19.
Bryophyte and fungal communities were investigated on fallen trees representing seven deciduous tree species in a mixed near natural nemoral forest. Bryophytes were represented by 41 taxa, including several very frequent species. Of the 296 fungal species, most were recorded with very low frequency and the share of high frequent species was much lower than among the bryophytes. Species turnover was bigger in the fungal communities, compared to the bryophyte communities, and related to a higher extent to measured differences in environmental conditions. Tree species diversity was found to be an important factor for fungal species composition, while only small differences in bryophyte species composition were found between the different tree species. On the other hand bryophyte species richness showed distinct relations to tree species and microclimatic variables, a tendency which was not evident for fungal diversity. It is concluded that the two organism groups to some extent differ in their conservation demands. Thus, conservation of wood-inhabiting bryophytes requires prioritising of large, coherent forest stands in which a stable humid microclimate and a reasonable supply of dead wood is secured. Successful conservation of fungi requires that substantial amounts of dead wood are left for natural decay in a variety of natural forest environments representing different tree species, so that heterogeneity in dead wood types is secured.  相似文献   

20.
The positive relationship between spatial environmental heterogeneity and species diversity is a widely accepted concept, generally associated with niche limitation. However, niche limitation cannot account for negative heterogeneity–diversity relationships (HDR) revealed in several case studies. Here we explore how HDR varies at different spatial scales and provide novel theories for small‐scale species co‐existence that explain both positive and negative HDR. At large spatial scales of heterogeneity (e.g. landscape level), different communities co‐exist, promoting large regional species pool size and resulting in positive HDR. At smaller scales within communities, species co‐existence can be enhanced by increasing the number of different patches, as predicted by the niche limitation theory, or alternatively, restrained by heterogeneity. We conducted meta‐regressions for experimental and observational HDR studies, and found that negative HDRs are significantly more common at smaller spatial scales. We propose three theories to account for niche limitation at small spatial scales. (1) Microfragmentation theory: with increasing spatial heterogeneity, large homogeneous patches lose area and become isolated, which in turn restrains the establishment of new plant individuals and populations, thus reducing species richness. (2) Heterogeneity confounded by mean: when heterogeneity occurs at spatial scales smaller than the size of individual plants, which forage through the patches, species diversity can be either positively or negatively affected by a change in the mean of an environmental factor. (3) Heterogeneity as a separate niche axis: the ability of species to tolerate heterogeneity at spatial scales smaller than plant size varies, affecting HDR. We conclude that processes other than niche limitation can affect the relationship between heterogeneity and diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号