首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Parasite communities are similar to free‐living communities; decay of similarity over geographic distance, theory of island biogeography, species–area relationships and nestedness have been documented in both communities. Ecological succession has been studied in free‐living communities but has rarely been examined in parasite communities. We use seriation with replication to test the hypothesis that succession of parasite community structure is deterministic, thus developing throughout consecutive changes along the fish ontogeny, via a seriated pattern. 12 306 marine fishes (95 species) were studied. In 40 species, a seriated pattern was detected; 25 had a tendency towards a seriated pattern, and for 31 species, succession was at random. Age‐classes for each host species explained deterministic successional patterns for whole parasite communities and ectoparasites. Richness and number of age‐classes explained this pattern for endoparasites. Seriated successional pattern was evident for parasite communities of long‐lived marine fish, indicating that parasite communities follow sequential changes over time, like many free‐living communities.  相似文献   

2.
Aim A fundamental question in community ecology is whether general assembly rules determine the structure of natural communities. Although many types of assembly rules have been described, including Diamond’s assembly rules, constant body‐size ratios, favoured states, and nestedness, few studies have tested multiple assembly rule models simultaneously. Therefore, little is known about the relative importance of potential underlying factors such as interspecific competition, inter‐guild competition, selective extinction and habitat nestedness in structuring community composition. Here, we test the above four assembly rule models and examine the causal basis for the observed patterns using bird data collected on islands of an inundated lake. Location Thousand Island Lake, China. Methods  We collected data on presence–absence matrices, body size and functional groups for bird assemblages on 42 islands from 2007 to 2009. To test the above four assembly rule models, we used null model analyses to compare observed species co‐occurrence patterns, body‐size distributions and functional group distributions with randomly generated assemblages. To ensure that the results were not biased by the inclusion of species with extremely different ecologies, we conducted separate analyses for the entire assemblage and for various subset matrices classified according to foraging guilds. Results The bird assemblages did not support predictions by several competitively structured assembly rule models, including Diamond’s assembly rules, constant body‐size ratios, and favoured states. In contrast, bird assemblages were highly significantly nested and were apparently shaped by extinction processes mediated through area effects and habitat nestedness. The nestedness of bird assemblages was not a result of passive sampling or selective colonization. These results were very consistent, regardless of whether the entire assemblage or the subset matrices were analysed. Main conclusions Our results suggest that bird assemblages were shaped by extinction processes mediated through area effects and habitat nestedness, rather than by interspecific or inter‐guild competition. From a conservation point of view, our results indicate that we should protect both the largest islands with the most species‐rich communities and habitat‐rich islands in order to maximize the number of species preserved.  相似文献   

3.
Tropical forests shelter an unparalleled biological diversity. The relative influence of environmental selection (i.e., abiotic conditions, biotic interactions) and stochastic–distance‐dependent neutral processes (i.e., demography, dispersal) in shaping communities has been extensively studied for various organisms, but has rarely been explored across a large range of body sizes, in particular in soil environments. We built a detailed census of the whole soil biota in a 12‐ha tropical forest plot using soil DNA metabarcoding. We show that the distribution of 19 taxonomic groups (ranging from microbes to mesofauna) is primarily stochastic, suggesting that neutral processes are prominent drivers of the assembly of these communities at this scale. We also identify aluminium, topography and plant species identity as weak, yet significant drivers of soil richness and community composition of bacteria, protists and to a lesser extent fungi. Finally, we show that body size, which determines the scale at which an organism perceives its environment, predicted the community assembly across taxonomic groups, with soil mesofauna assemblages being more stochastic than microbial ones. These results suggest that the relative contribution of neutral processes and environmental selection to community assembly directly depends on body size. Body size is hence an important determinant of community assembly rules at the scale of the ecological community in tropical soils and should be accounted for in spatial models of tropical soil food webs.  相似文献   

4.
Identifying the spatial scale at which particular mechanisms influence plant community assembly is crucial to understanding the mechanisms structuring communities. It has long been recognized that many elements of community structure are sensitive to area; however the majority of studies examining patterns of community structure use a single relatively small sampling area. As different assembly mechanisms likely cause patterns at different scales we investigate how plant species co‐occurrence patterns change with sampling unit scale. We use the checkerboard score as an index of species segregation, and examine species C‐score1–sampling area patterns in two ways. First, we show via numerical simulation that the C‐score–area relationship is necessarily hump shaped with respect to sample plot area. Second we examine empirical C‐score–area relationships in arctic tundra, grassland, boreal forest and tropical forest communities. The minimum sampling scale where species co‐occurrence patterns were significantly different from the null model expectation was at 0.1 m2 in the tundra, 0.2 m2 in grassland, and 0.2 ha in both the boreal and tropical forests. Species were most segregated in their co‐occurrence (maximum C‐score) at 0.3 m2 in the tundra (0.54 3 0.54 m quadrats), 1.5 m2 in the grassland (1.2 3 1.2 m quadrats), 0.26 ha in the tropical forest (71 3 71 m quadrats), and a maximum was not reached at the largest sampling scale of 1.4 ha in the boreal forest. The most important finding is that the dominant scales of community structure in these systems are large relative to plant body size, and hence we infer that the dominant mechanisms structuring these communities must be at similarly large scales. This provides a method for identifying the spatial scales at which communities are maximally structured; ecologists can use this information to develop hypotheses and experiments to test scale‐specific mechanisms that structure communities.  相似文献   

5.
For several decades, primatologists have been interested in understanding how sympatric primate species are able to coexist. Most of our understanding of primate community ecology derives from the assumption that these animals interact predominantly with other primates. In this study, we investigate to what extent multiple community assembly hypotheses consistent with this assumption are supported when tested with communities of primates in isolation versus with communities of primates, birds, bats, and squirrels together. We focus on vertebrate communities on the island of Borneo, where we examine the determinants of presence or absence of species, and how these communities are structured. We test for checkerboard distributions, guild proportionality, and Fox's assembly rule for favored states, and predict that statistical signals reflecting interactions between ecologically similar species will be stronger when nonprimate taxa are included in analyses. We found strong support for checkerboard distributions in several communities, particularly when taxonomic groups were combined, and after controlling for habitat effects. We found evidence of guild proportionality in some communities, but did not find significant support for Fox's assembly rule in any of the communities examined. These results demonstrate the presence of vertebrate community structure that is ecologically determined rather than randomly generated, which is a finding consistent with the interpretation that interactions within and between these taxonomic groups may have shaped species composition in these communities. This research highlights the importance of considering the broader vertebrate communities with which primates co‐occur, and so we urge primatologists to explicitly consider nonprimate taxa in the study of primate ecology. Am. J. Primatol. 75:170‐185, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
7.
Aim We examined whether the community compositions of birds, lizards and small mammals were nested in a fragmented landscape in the Thousand Island Lake, China. We also assessed whether the mechanisms influencing nestedness differed among these taxonomic groups. Location Thousand Island Lake, China. Methods Presence/absence matrices were compiled for birds (42 islands) and lizards (42 islands) using line‐transect methods, and for small mammals (14 islands) using live‐trapping methods from 2006 to 2009. Nestedness was analysed using BINMATNEST, and statistical significance was assessed using the conservative null model 3. We used Spearman rank correlations and partial Spearman rank correlations to examine associations of nestedness and habitat variables (area, isolation, habitat diversity and plant richness) as well as life‐history traits (body size, habitat specificity, geographical range size and area requirement) related to species extinction and immigration tendencies. Results The community compositions of birds, lizards and small mammals were all significantly nested, but the causal factors underlying nestedness differed among taxonomic groups. For birds, island area, habitat specificity and area requirement were significantly correlated with nestedness after controlling for other independent variables. For lizards, habitat heterogeneity was the single best correlate of nestedness. For small mammals, island area, habitat heterogeneity and habitat specificity were significantly correlated with nestedness. The nested patterns of birds, lizards and small mammals were not attributable to passive sampling or selective colonization. Main conclusions The processes influencing nested patterns differed among taxonomic groups. Nestedness of bird assemblages was driven by selective extinction, and lizard assemblage was caused by habitat nestedness, while nestedness of small mammals resulted from both selective extinction and habitat nestedness. Therefore, we should take taxonomic differences into account when analysing nestedness to develop conservation guidelines and refrain from using single taxa as surrogates for others.  相似文献   

8.
A chief structuring force in food webs is the hierarchy of trophic interactions, where bigger animals feed on smaller ones. The anatomic and physiological explanations of why body size determines this hierarchy are embodied within the concept of gape limitation. The relaxation of gape limitation and an increase in energetic demands due to predators' larger body size determine the size and diversity of prey species. However, these patterns may be related to further trends in trophic interactions with body size, which have been less considered. Specifically, the passive incorporation of prey should involve a nested distribution of prey among predator size classes. However, predators avoid smaller resources because of their low energy return, with a clumped distribution of prey potentially generating modular organization with qualitative changes in prey identity (e.g. zooplankton, macroinvertebrates and fishes). Finally, size‐mediated interactions (such as direct and indirect competition) may cause predators of similar body size to differentiate among prey organisms, resulting in a checkerboard distribution of prey identity. Consequently, nestedness, modularity and checkerboard distributions of prey among predators of different size classes should form emergent network structures that are directly related to clear ecological mechanisms. We analyse these predictions in a killifish guild, where trends in trophic positions, prey richness, evenness and the number of energy sources systematically scale with body size. We found significant nestedness and segregation in diet among different size classes, supporting the progressive incorporation of prey items coupled with prey differentiation among similar classes. However, we also detected an ‘anti‐modular’ trend, which contradicts theoretical expectations and previous results. We hypothesize that this anti‐modularity is determined by the high biodiversity of the system and the continuous representation of prey size classes. These results reinforce the concept of size‐mediated interactions and its connection with community biodiversity as a main structuring force of food webs.  相似文献   

9.
Our objectives are to examine the influence of the difference in stress tolerance among species on patterns of nestedness and to test whether a set of several small ponds supports more species than a few large ponds of equal area. Although fish species assemblages for each group of all fish, tolerant and intolerant species were significantly nested, intolerant species showed stronger nested tendency than tolerant species, suggesting that the tolerance of species can influence the patterns of nestedness. These results suggest that the tolerance of species can influence the patterns of nestedness. As for the comparison of cumulative species richness in small ponds and large ponds, although small ponds supported more species for tolerant species, there was little difference for intolerant species.  相似文献   

10.
1. Many studies have addressed either community models (e.g. Clementsian versus Gleasonian gradients) or assembly rules (e.g. nestedness, checkerboards) for higher plant and animal communities, but very few studies have examined different non‐random distribution patterns simultaneously with the same data set. Even fewer studies have addressed generalities in the distribution patterns of unicellular organisms, such as diatoms. 2. We studied non‐randomness in the spatial distribution and community composition of stream diatoms. Our data consisted of diatom surveys from 47 boreal headwater streams and small rivers in northern Finland. Our analytical approaches included ordinations, cluster analysis, null model analyses, and associated randomisation tests. 3. Stream diatom communities did not follow discrete Clementsian community types, where multiple species occur exclusively in a single community type. Rather, diatom species showed rather individualistic responses, leading to continuous Gleasonian variability in community composition. 4. Although continuous variability was the dominating pattern in the data, diatoms also showed significant nestedness and less overlap in species distribution than expected by chance. However, these patterns were probably only secondary signals from species’ individualistic responses to the environment. 5. Although unicellular organisms, such as diatoms, differ from multicellular organisms in several biological characteristics, they nevertheless appear to show largely similar non‐random distribution patterns previously found for higher plants and metazoans.  相似文献   

11.
Species extinctions from local communities negatively affect ecosystem functioning. Ecological mechanisms underlying these impacts are well studied, but the role of evolutionary processes is rarely assessed. Using a long‐term field experiment, we tested whether natural selection in plant communities increased biodiversity effects on productivity. We re‐assembled communities with 8‐year co‐selection history adjacent to communities with identical species composition but no history of co‐selection (‘naïve communities’). Monocultures, and in particular mixtures of two to four co‐selected species, were more productive than their corresponding naïve communities over 4 years in soils with or without co‐selected microbial communities. At the highest diversity level of eight plant species, no such differences were observed. Our findings suggest that plant community evolution can lead to rapid increases in ecosystem functioning at low diversity but may take longer at high diversity. This effect was not modified by treatments simulating co‐evolutionary processes between plants and soil organisms.  相似文献   

12.
Understanding how species assemble into communities is a key goal in ecology. However, assembly rules are rarely tested experimentally, and their ability to shape real communities is poorly known. We surveyed a diverse community of epiphyte‐dwelling ants and found that similar‐sized species co‐occurred less often than expected. Laboratory experiments demonstrated that invasion was discouraged by the presence of similarly sized resident species. The size difference for which invasion was less likely was the same as that for which wild species exhibited reduced co‐occurrence. Finally we explored whether our experimentally derived assembly rules could simulate realistic communities. Communities simulated using size‐based species assembly exhibited diversities closer to wild communities than those simulated using size‐independent assembly, with results being sensitive to the combination of rules employed. Hence, species segregation in the wild can be driven by competitive species assembly, and this process is sufficient to generate observed species abundance distributions for tropical epiphyte‐dwelling ants.  相似文献   

13.
The relaxation of predation and interspecific competition are hypothesized to allow evolution toward “optimal” body size in island environments, resulting in the gigantism of small organisms. We tested this hypothesis by studying a small teleost (nine‐spined stickleback, Pungitius pungitius) from four marine and five lake (diverse fish community) and nine pond (impoverished fish community) populations. In line with theory, pond fish tended to be larger than their marine or lake conspecifics, sometimes reaching giant sizes. In two geographically independent cases when predatory fish had been introduced into ponds, fish were smaller than those in nearby ponds lacking predators. Pond fish were also smaller when found in sympatry with three‐spined stickleback (Gasterosteus aculeatus) than those in ponds lacking competitors. Size‐at‐age analyses demonstrated that larger size in ponds was achieved by both increased growth rates and extended longevity of pond fish. Results from a common garden experiment indicate that the growth differences had a genetic basis: pond fish developed two to three times higher body mass than marine fish during 36 weeks of growth under similar conditions. Hence, reduced risk of predation and interspecific competition appear to be chief forces driving insular body size evolution toward gigantism.  相似文献   

14.
A nested pattern occurs whenever the species observed in depauperate habitat patches are a subset of those found in more species‐rich patches. Ecologists have documented many instances of nestedness caused by population‐level processes such as colonization and extinction at biogeographic scales. However, few researchers have examined whether nestedness may exist at fine scales due to the ways in which individual organisms discriminate among potential habitat patches. In 1999, we experimentally fragmented an old‐field habitat into patches of varying size to test whether nestedness could exist on a fine spatial scale. Five treatments of differing patch size were replicated five times in a Latin square design by selectively mowing 15×15 m2 plots within an old‐field (patch areas: 225, 180, 135, 90, and 45 m2). Specifically, we tested whether butterflies foraging within a network of patches differing in area conformed to a nested subset structure. We also classified species according to (1) their flight height while foraging (high or low), and (2) their adult habitat breadth (ubiquitous, general, or restricted) to determine whether nestedness could be explained by difference in species’ tendency to discriminate among patches differing in area.
We found significant evidence that a community of foraging Lepidoptera conformed to a nested subset structure based on the difference between the observed nestedness within the butterfly community and the nestedness obtained from randomly generated species presence/absence matrices. Poisson regression analyses demonstrated that high‐flying, habitat‐restricted species avoided the smallest patches (90 and 45 m2) in favor of larger remnants, whereas low‐flying, habitat generalists used all patch sizes. Thus, our study is one of the first to demonstrate that nestedness among species subsets can be observed at fine spatial scales (within a single 1.5 hectare field) and may be maintained by species behavioral differences: discriminating species (i.e. high‐flying, habitat restricted) avoided the smallest patches, and less discriminating species (i.e. low‐flying, ubiquitous) were distributed throughout the field without regard to patch size. Our results also suggest that nestedness should be viewed as yet another scalar pattern in ecology, generated by variation in patch use by individuals at fine‐scales as well as the more traditionally invoked processes of extinction and colonization of species at broad‐scales.  相似文献   

15.
The assembly of local communities from regional species pools is shaped by historical aspects of distribution, environmental conditions, and biotic interactions. We studied local community assembly patterns in African annual killifishes of the genus Nothobranchius (Cyprinodontiformes), investigating data from 168 communities across the entire range of regionally co‐existing species. Nothobranchius are small fishes associated with annually desiccating pools. We detected a nested pattern of local communities in one region (Southern Mozambique, with Nothobranchius furzeri as the core and dominant species), but no nestedness was found in the second region (Central Mozambique, with Nothobranchius orthonotus being the dominant species). A checkerboard pattern of local Nothobranchius community assembly was demonstrated in both regions. Multivariate environmental niche modeling revealed moderate differences in environmental niche occupancy between three monophyletic clades that largely co‐occurred geographically and greater differences between strictly allopatric species within the clades. Most variation among species was observed along an altitudinal gradient; N. furzeri and Nothobranchius kadleci were absent from coastal plains, Nothobranchius pienaari, Nothobranchius rachovii, and Nothobranchius krysanovi were associated with lower altitude and N. orthonotus was intermediate and geographically most widespread species. We discuss implications for ecological and evolutionary research in this taxon.  相似文献   

16.
One of the most conspicuous and widely analyzed patterns in ecology is the latitudinal gradient in species richness. Over the 200 years since its recognition, several hypotheses have accumulated in order to account for spatial variations in diversity. Geographic variations in seasonality have been repeatedly proposed as a determinant of community richness. However, the geographic structure of community seasonality has not yet been analyzed. In the present work we evaluated three hypotheses that account for variations in the temporal structuring of communities: first, environmental seasonality determines community seasonality; second, community richness determines its degree of structuring; and third, the presence of an increase in species segregation with latitude, reflected in a pattern of species negative co‐occurrence. The hypotheses were evaluated using path analysis on 29 amphibian communities from South America, connecting latitude, environmental conditions, diversity, seasonality, and coexistence structure – nestedness and negative co‐occurrence – within communities. Latitude positively affects community seasonality through an increase in temperature seasonality, but a weak negative direct effect suggests that other variables not considered in the model – such as the strength of biotic interactions – could also be involved. Both latitude and diversity (directly and indirectly) determine an increase in negative co‐occurrence and nestedness. This suggests that groups of species that are mutually nested in time are internally segregated. Further, the strength of this structure is determined by community diversity and latitude. Temporal structuring of a community is associated with latitude and diversity, pointing to the existence of a systematic change in community organization far beyond, but probably interrelated, with the recognized latitudinal trend in richness. The available information and analysis supported the three hypotheses evaluated.  相似文献   

17.
Disentangling community patterns of nestedness and species co-occurrence   总被引:3,自引:1,他引:2  
Werner Ulrich  Nicholas J. Gotelli 《Oikos》2007,116(12):2053-2061
Two opposing patterns of meta‐community organization are nestedness and negative species co‐occurrence. Both patterns can be quantified with metrics that are applied to presence‐absence matrices and tested with null model analysis. Previous meta‐analyses have given conflicting results, with the same set of matrices apparently showing high nestedness (Wright et al. 1998) and negative species co‐occurrence (Gotelli and McCabe 2002). We clarified the relationship between nestedness and co‐occurrence by creating random matrices, altering them systematically to increase or decrease the degree of nestedness or co‐occurrence, and then testing the resulting patterns with null models. Species co‐occurrence is related to the degree of nestedness, but the sign of the relationship depends on how the test matrices were created. Low‐fill matrices created by simple, uniform sampling generate negative correlations between nestedness and co‐occurrence: negative species co‐occurrence is associated with disordered matrices. However, high‐fill matrices created by passive sampling generate the opposite pattern: negative species co‐occurrence is associated with highly nested matrices. The patterns depend on which index of species co‐occurrence is used, and they are not symmetric: systematic changes in the co‐occurrence structure of a matrix are only weakly associated with changes in the pattern of nestedness. In all analyses, the fixed‐fixed null model that preserves matrix row and column totals has lower type I and type II error probabilities than an equiprobable null model that relaxes row and column totals. The latter model is part of the popular nestedness temperature calculator, which detects nestedness too frequently in random matrices (type I statistical error). When compared to a valid null model, a matrix with negative species co‐occurrence may be either highly nested or disordered, depending on the biological processes that determine row totals (number of species occurrences) and column totals (number of species per site).  相似文献   

18.
Recently, there has been a vigorous interest in community ecology about the structure of mutualistic networks and its importance for species persistence and coevolution. However, the mechanisms shaping mutualistic networks have been rarely explored. Here we extend for the first time the neutral theory of biodiversity to a multi trophic system. We focus on nestedness, a distinctive pattern of mutualistic community assembly showing two characteristics, namely, asymmetrical specialization (specialists interacting with generalists) and a generalist core (generalists interacting with generalists). We investigate the importance of relative species abundance (RSA) for the nested assembly of plant–animal mutualistic networks. Our results show that neutral mutualistic communities give rise to networks considerably more nested than real communities. RSA explains 60–70% of nested patterns in two real communities studied here, while 30–40% of nestedness is still unexplained. The nested pattern in real communities is better explained when we introduce interaction‐specific species traits such as forbidden links and intensity of dependence (relative importance of fruits for the diet of a frugivore) in our analysis. The fact that neutral mutualistic communities exhibit a perfectly nested structure and do not show a random or compartmentalized structure, underlines the importance of RSA in the assembly of mutualistic networks.  相似文献   

19.
The competition–relatedness hypothesis of Darwin states that competition is greater among species that are phylogenetically closely‐related, and such species will tend to appear in separate communities (i.e. the species within communities will be phylogenetically overdispersed). Many studies have tested (and mainly refuted) this hypothesis for plant and bacterial communities. Results for the few studies with avian species are not conclusive. We tested Darwin's hypothesis for waterbirds using a set of open, artificial fish ponds in Doñana, south‐western Spain, that provide relatively homogeneous habitat where competition is likely to be intense. Monthly counts of 38 ponds (for 11 months, i.e. 418 censuses) recorded 76 bird species. Darwin's hypothesis predicted that species appearing in the same pond would be less related phylogenetically than expected if species occurred randomly across ponds and months according to the structure of the overall community across the entire pond complex. However, the waterbird community did not show a predominantly overdispersed pattern, suggesting that interspecific competition among phylogenetically related species was not the main force structuring communities. In contrast, the proportion of clustered communities was higher than expected throughout the annual cycle, indicating that related waterbirds tend to co‐occur on the same site, probably because they have similar microhabitat preferences. Clustering patterns were mainly driven by abundant and closely related duck species, and also by shorebirds. However, few individual pond communities remained significantly different from random after correction for multiple testing. Furthermore, the probability of co‐occurrence of a given species pair was negatively related to the phylogenetic distance between them. In conclusion, our study shows waterbird communities are mainly phylogenetically clustered or random, and do not support the competition‐relatedness hypothesis.  相似文献   

20.
Aim To examine the relationship between ecoregions, as a proxy for regional climate and habitat type, and mammalian community structure, defined by species composition and richness (e.g. taxonomic structure) and ecological diversity (e.g. ecological structure) of non‐volant species. Location Madagascar. Methods Faunal lists of non‐volant mammal species occurring in 35 communities from five World Wildlife Fund ecoregions were collected from published and unpublished sources. Species were assigned to ecological groups defined by trophic status, locomotor habits, activity cycle and body mass. We used Mantel tests, cluster analysis and principal coordinates analysis to evaluate geographic patterning in taxonomic composition and species richness. We used stepwise multiple discriminant analysis to characterize patterns in the ecological diversity of the mammalian communities from each ecoregion. Communities from transitional habitats (e.g. representing more than one ecoregion) were used to test the predictive power of the analyses. Results Non‐volant mammal communities divided into clusters that correspond to ecoregions. There was a strong distance effect in the taxonomic structure of communities across the island and within both humid and dry forest communities, but this effect was weak within humid forest communities. Mammalian species richness was significantly lower in dry forest than in humid forest communities. The ecological structure of communities was also correlated with ecoregions. Changes in the relative percentages of omnivory, arboreal quadrupedalism, terrestrial/arboreal quadrupedalism and two body mass classes accounted for 98.1% of the variation in ecological structure. Transitional communities were projected in intermediate positions by the discriminant model. Main conclusions Our analysis demonstrates that the broad‐scale habitat and climate variables captured by the ecoregion model have shaped the assembly of non‐volant mammal communities in Madagascar over evolutionary time. The spatial pattern is consistent with ecological sorting of species ranges along environmental gradients. Historical processes, such as recent extinction and migration, may have also affected the structure of mammal communities, although these factors have played a secondary role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号