首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this study, we investigated the functions of PH‐20 and acrosin during the interaction of macaque sperm with the zona pellucida. Both of these sperm enzymes have been reported to be present on the inner acrosomal membrane of acrosome reacted sperm, and have been suggested to play a role during secondary sperm‐zona binding in other species. Anti‐macaque PH‐20 IgG, anti‐pig acrosin IgG and soybean trypsin inhibitor (SBTI) were used as probes for immunolocalization of the two proteins at the ultrastructural level, and as reagents for blocking sperm penetration of the macaque zona pellucida in vitro. As a control, we performed similar studies with antibodies to CD‐46, which is also located on the inner acrosomal membrane, but has no known function in sperm‐zona pellucida interaction. After labeling with anti‐acrosin IgG, gold label was not present on the sperm surface before the acrosome reaction, but was detected over the entire head of sperm that were induced to acrosome react with calcium ionophore A23187. In contrast, when sperm were induced to acrosome react by binding to intact zona pellucida, acrosin was present in the acrosomal shroud but not on the inner acrosomal membrane. Similar results were obtained when SBTI was used as a probe for enzyme localization. PH‐20 and CD‐46 were demonstrated on the inner acrosomal membrane of sperm induced to acrosome react by ionophore treatment and by zona binding. Neither anti‐acrosin IgG nor anti‐CD‐46 IgG affected sperm penetration of the zona at concentrations up to 300 μg/ml, but zona penetration was blocked completely when anti‐PH‐20 IgG (100 μg/ml) was present during sperm‐oocyte interaction. Ultrastructural observations of oocytes incubated with anti‐PH‐20 IgG showed that acrosomal shrouds were present on the zona surface but no sperm had begun to penetrate into the zona substance. We conclude that anti‐PH‐20 IgG prevented sperm penetration of the macaque zona pellucida by interference with secondary sperm‐zona binding, rather than primary sperm‐zona binding or the zona‐induced acrosome reaction. Acrosin was not detected on the inner acrosomal membrane of sperm that are induced to acrosome react after zona binding, and acrosin does not appear to be critical for sperm penetration of the macaque zona pellucida. Mol. Reprod. Dev. 53:350–362, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
In this study we examined the behaviour and role of an intra-acrosomal antigenic molecule, acrin 3, during mouse fertilisation in vitro by assessing the effect of its pertinent monoclonal antibody mMC101. Experiments were designed to assess the effect of mMC101 on sperm-zona pellucida binding, the acrosome reaction, zona pellucida penetration, sperm-egg fusion, and fertilisation in vitro. mMC101 did not affect sperm motility or primary and secondary binding to the zona pellucida, but significantly inhibited fertilisation of zona-pellucida-intact oocytes in a dose-dependent manner. In the presence of mMC101 at 100 microg/ml concentration in TYH medium, none of the oocytes developed to pronuclear stage by 5 h after co-incubation of the gametes, but the pronucleus formation rate recovered to some extent (45.3%) after 8 h, indicating a delay of early embryonic development. mMC101 also delayed and significantly suppressed zona pellucida penetration by sperm. Acrin 3 dispersed and did not remain on completely acrosome-reacted sperm. Although mMC101 did not influence the zona-pellucida-induced acrosome reaction, it significantly inhibited fertilisation when acrosome-reacted sperm in the presence of mMC101 inseminated zona-pellucida-free oocytes. However, fertilisation remained unaffected when acrosome-reacted sperm in the absence of mMC101 inseminated zona-pellucida-free oocytes even in its presence. Thus, acrin 3 appears to facilitate zona pellucida penetration and is also likely to be involved in sperm-oocyte fusion by modifying the sperm plasma membrane during the acrosome reaction.  相似文献   

3.
The sperm head of many Australian hydromyine rodents has three curved hooks projecting from its anterior margin; the structure of the hooks has been characterized, but their function is unknown. In this study, we have investigated whether the hooks might have evolved to assist sperm penetration through more formidable egg vestments, particularly the zona pellucida. Cumulus-oocyte complexes were obtained from two species that possess a three-hooked sperm head (Pseudomys australis and P. nanus) and one species that does not (Notomys alexis) and examined by light and electron microscopy. After fixation in the presence of ruthenium red, the zona pellucida was found to consist of a fibrillar meshwork, but there were no interspecific structural differences. A corona radiata was absent, and the cumulus extracellular matrix was composed of filaments and electron-dense granules in each species. Measurements of the zona thickness in freshly ovulated, unfixed oocytes revealed that it was thinnest (7.8 μm) in P. australis. Which has a three-hooked sperm head, and thickest (11.4 μm) in N. alexis, the species in which the ventral hooks are absent. Hence, no correlation was found between the thickness of the zona pellucida or the structure of the cumulus-oocyte complex, and the presence of three hooks on the sperm head. We conclude, therefore, that it is unlikely that the evolution of the three-hooked sperm head is an adaptation for penetration of increased barriers around the oocyte.  相似文献   

4.
The aim of the present study was to determine the morphological changes that take place in the male and female gametes during in vivo fertilization in the Australian marsupial, the fat-tailed dunnart, Sminthopsis crassicaudata. Plastic sections were cut of sperm and eggs recovered from the oviducts of recently mated individuals, and light microscopy of thick, and transmission EM of thin, sections was carried out. It was found that, before penetration of the zona, the spermatozoon came to lie along the outer surface with its rostral tip forming a depression in the zona substance. During penetration, zona material was packed tightly around the spermatozoon, and no large hole was formed. A spermatozoon within the perivitelline space had made contact with the oolemma by way of its apical tip. In a spermatozoon partly incorporated into the ooplasm, fusion appeared to have taken place between its plasma membrane and that of the oolemma. Mucoid coat material became deposited outside the zona at this time; its existence and/or the release of cortical granule content probably prevented polyspermy. Once inside the egg cytoplasm, the sperm head sometimes travelled a considerable distance before chromatin decondensation occurred. In addition, it appeared to rotate somewhat on its axis at this time. Finally, some membranous structures were found around two condensed sperm heads in the ooplasm, which may have been part of the pronuclear envelope. Thus this study on in vivo fertilization in the dunnart documents, for the first time, some aspects of fertilization in an Australian marsupial as seen with the transmission electron microscope; it indicates a few differences from those previously found for the American opossum.  相似文献   

5.
Breed, W.G. and Leigh, C.M. 2010. The spermatozoon of the Old Endemic Australo‐Papuan and Philippine rodents – its morphological diversity and evolution.—Acta Zoologica (Stockholm) 91 : 279–294 The spermatozoon of most murine rodents contains a head in which there is a characteristic apical hook, whereas most old endemic Australian murines, which are part of a broader group of species that also occur in New Guinea and the Philippines, have a far more complex sperm form with two additional ventral processes. Here we ask the question: what is the sperm morphology of the New Guinea and Philippines species and what are the trends in evolutionary changes of sperm form within this group? The results show that, within New Guinea, most species have a highly complex sperm morphology like the Australian rodents, but within the Pogonomys Division some species have a simpler sperm morphology with no ventral processes. Amongst the Philippines species, many have a sperm head with a single apical hook, but in three Apomys species the sperm head contains two additional small ventral processes, with two others having cockle‐shaped sperm heads. When these findings are plotted on a molecular phylogeny, the results suggest that independent and convergent evolution of highly complex sperm heads containing two ventral processes has evolved in several separate lineages. These accessory structures may support the sperm head apical hook during egg coat penetration.  相似文献   

6.
Mammalian eggs are surrounded by two egg coats: the cumulus oophorus and the zona pellucida, which is an extracellular matrix composed of sulfated glycoproteins. The first association of the spermatozoon with the zona pellucida occurs between the zona glycoprotein, ZP3 and sperm receptors, located at the sperm plasma membrane, such as the 95kDa tyrosine kinase-protein. This association induces the acrosome reaction and exposes the proacrosin/acrosin system. Proacrosin transforms itself, by autoactivation, into the proteolytical active form: acrosin. This is a serine protease that has been shown to be involved in secondary binding of spermatozoa to the zona pellucida and in the penetration of mammalian spermatozoa through it. The zona pellucida is a specific and natural substrate for acrosin and its hydrolysis and fertilization can be inhibited by antiacrosin monoclonal antibodies. Moreover, inin vitrofertilization experiments, trypsin inhibitors significantly inhibits fertilization. The use of the silver-enhanced immunogold technique has allowed immunolocalization of the proacrosin/acrosin system in spermatozoa after the occurrence of the acrosome reaction. This system remains associated to the surface of the inner acrosomal membrane for several hours in human, rabbit and guinea-pig spermatozoa while in the hamster it is rapidly lost. In the hamster, the loss of acrosin parallels the capability of the sperm to cross the zona pellucida. Rabbit perivitelline spermatozoa can fertilize freshly ovulated rabbit eggs and retain acrosin in the equatorial and postacrosomal region. These spermatozoa also show digestion halos on gelatin plates that can be inhibited by trypsin inhibitors. This evidence strongly suggests the involvement of acrosin in sperm penetration through the mammalian zona. Recently it was shown, however, that acrosin would not be essential for fertilization. It is likely, then, that such an important phenomenon in the mammalian reproductive cycle would be ensured though several alternative mechanisms.  相似文献   

7.
The murine rodents are the most speciose subfamily of mammals. Here the morphology of the spermatozoon, as determined by scanning and transmission electron microscopy of representative species from four Eurasian clades, is described. Much interspecific variability in all components of the spermatozoon was found to occur, although most species have a bilaterally flattened sperm head with a single apical hook of variable length and orientation. Ultrastructural observations indicate that this apical hook invariably contains a nuclear projection as well as a large extension of the subacrosomal cytoskeleton, as a perforatorium rostrally, and a complex asymmetrical acrosomal extension. These spermatozoa also have relatively long tails that are attached to the lower concave surface of the sperm head. Uniquely, in species in the Apodemus clade, the apical hook is orientated caudally. In a few species a highly derived sperm head morphotype that does not contain an apical hook is present. These sperm heads vary in morphology from being globular in two species of Bandicota, to bilaterally flattened and paddle-shaped in Tokudaia and Micromys. In spermatozoa of the latter two genera the subacrosomal cytoskeleton, which is less extensive than in species with a hooked sperm head, forms an apical extension, but that is not the case in Bandicota. In all species where the sperm head lacks an apical hook the acrosome is more symmetrical. The sperm tail is much shorter in these species, with attachment to the head occurring on the ventral surface in Tokudaia and basal in Micromys and the two species of Bandicota. As the sperm head morphotype with a complex apical hook is present in all the major clades of murine rodents, it is likely to be a plesiomorphic character within each of these clades, with the nonhooked sperm heads, which vary greatly in structure between species of the different lineages, probably being independently derived. The ultrastructural organization of the sperm head of Bandicota, but not those of Micromys or Tokudaia, suggest divergence in some of the morphological events associated with sperm-egg interaction at the time of fertilization.  相似文献   

8.
Guinea pig ovarian oocytes matured in vitro were inseminated in vitro with capacitated, acrosome-reacted spermatozoa and sperm penetration through the zona pellucida and into the egg cytoplasm were examined. Sperm heads passing through the zona pellucida had already lost all their acrosomal elements except for the inner acrosomal membrane and the equatorial segment. It was often observed that the texture of the zona material around the sperm head was distorted, giving the impression that the zona pellucida was parted, at least partially, by a shearing force produced by the sperm head advancing through the zona. When eggs were freed from their zonae pellucidae and inseminated, the acrosome-reacted spermatozoa immediately bound to the egg surfaces and began to fuse with the eggs; whereas the spermatozoa with intact acrosomes failed to do so. Fusion began between the egg plasma membrane and the sperm plasma membrane at the central region of the sperm head. The anterior half of the sperm head was engulfed by the egg in a phagocytic fashion, while its posterior half was incorporated into the egg by a fussion between egg and sperm plasma membranes. Incorporation of the sperm tail into the egg was achieved by fusion between the sperm and egg plasma membranes.  相似文献   

9.
Cumulus-free mouse eggs were placed on microscope slides and inseminated with capacitated mouse spermatozoa. Fertilization could then be observed through the phase contrast microscope and recorded by time-lapse cinematography. Following the penetration of the fertilizing spermatozoon through the zona pellucida and the fusion of the sperm head with the vitelline membrane, the entire sperm tail gradually entered the vitellus. The time required for tail incorporation into the vitellus as measured in 49 eggs varied from 3 h 3 min to 5 h 49 min, with a mean time of 4 h 23 min. When tail incorporation began, the greater part of the flagellum was still outside the zona pellucida; occasionally it slipped into the perivitelline space, but generally it remained outside the zona and shortened by degrees as incorporation proceeded. The motility of the fertilizing spermatozoon declined abruptly very soon after fusion of the sperm head with the vitellus and remained at a very low level during the 3–6 h required for tail incorporation. Sperm motility, therefore, does not appear to be the main determinant in tail incorporation and the primary mechanism responsible for it remains unclear. As the sperm tail slowly entered the vitellus, the second meiotic division was completed with concomitant extrusion of the second polar body. Key stages in second polar body formation were correlated with events in tail incorporation. Differences between fertilization in vitro and in vivo are discussed.  相似文献   

10.
A block to polyspermy is required for successful fertilisation and embryo survival in mammals. A higher incidence of polyspermy is observed during in vitro fertilisation (IVF) compared with the in vivo situation in several species. Two groups of mechanisms have traditionally been proposed as contributing to the block to polyspermy in mammals: oviduct‐based mechanisms, avoiding a massive arrival of spermatozoa in the proximity of the oocyte, and egg‐based mechanisms, including changes in the membrane and zona pellucida (ZP) in reaction to the fertilising sperm. Additionally, a mechanism has been described recently which involves modifications of the ZP in the oviduct before the oocyte interacts with spermatozoa, termed “pre‐fertilisation zona pellucida hardening”. This mechanism is mediated by the oviductal‐specific glycoprotein (OVGP1) secreted by the oviductal epithelial cells around the time of ovulation, and is reinforced by heparin‐like glycosaminoglycans (S‐GAGs) present in oviductal fluid. Identification of the molecules contributing to the ZP modifications in the oviduct will improve our knowledge of the mechanisms of sperm‐egg interaction and could help to increase the success of IVF systems in domestic animals and humans.  相似文献   

11.
Over the past 40 years evidence from many sources has indicated that the mammalian acrosome reaction occurs within or near the cumulus oophorus. Recently, however, workers investigating in vitro fertilization in the mouse have concluded that in this system the acrosome reaction takes place on the surface of the zona pellucida. We have investigated the interaction of rat spermatozoa and the zona pellucida by using the scanning electron microscope (SEM) and two monoclonal antibodies which are directed to antigens of the rat sperm acrosome. When in vitro inseminated eggs from which the cumulus has been removed are viewed with the SEM some sperm heads on the surface of the zona pellucida appear unaltered whereas others appear to be undergoing changes. In vivo, all displayed altered head morphology. Using immunogold labeling we found that the two antibodies employed, 2C4 and 5B1, were directed to acrosomal content and vesiculating acrosomal membranes. Immunofluoresence staining of zonae pellucidae in in vitro fertilization studies revealed numerous small positive regions. These were presumably acrosomal content and membranes which had been left on the zona surface by spermatozoa which had been associated with the zona surface. Our results suggest that the rat acrosome interacts with the zona pellucida. During this interaction some acrosomal content and membranes detach from the spermatozoon and remain on the surface of the zona pellucida.  相似文献   

12.
Recent studies from within our laboratory have demonstrated a causal relationship between capacitation‐associated surface phosphotyrosine expression and the ability of mouse spermatozoa to recognize the oocyte and engage in sperm–zona pellucida interaction. In the studies described herein we have sought to investigate the signaling pathways that underpin the tyrosine phosphorylation of sperm surface protein targets and validate the physiological significance of these pathways in relation to sperm–zona pellucida adhesion. Through selective pharmacological inhibition we have demonstrated that surface phosphotyrosine expression is unlikely to be mediated by the canonical cAMP‐dependent protein kinase A (PKA) signaling cascade that has been most widely studied in relation to sperm capacitation. Rather, it appears to be primarily driven by the extracellular signal‐regulated kinase (ERK) module of the mitogen‐activated protein kinase (MAPK) pathway. Consistent with this notion, the main components of the ERK module (RAS, RAF1, MEK, and ERK1/2) were localized to the periacrosomal region of the head of mature mouse spermatozoa and their phosphorylation status within this region of the cell was positively modulated by capacitation. Furthermore, inhibition of several elements of this pathway suppressed sperm surface phosphotyrosine expression and induced a concomitant reduction sperm–zona pellucida interaction. Collectively, these data highlight a previously unappreciated role of the ERK module in the modification of the sperm surface during capacitation to render these cells functionally competent to engage in the process of fertilization. J. Cell. Physiol. 224:71–83, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Sperm penetration through the zona pellucida and fusion of the sperm head with the vitellus were observed continuously and filmed under phase optics in cumulus-free living mouse eggs inseminated in vitro with capacitated epididymal sperm. Most spermatozoa penetrated the zona pellucida, traversed the perivitelline space, and fused with the vitellus at an angle nearly perpendicular to the surface. The mean duration required for sperm to penetrate the zona pellucida was 20 minutes with a range of 15–26 minutes. Sperm traversed the perivitelline space in less than one second. The initial contact of sperm with the vitellus generally took place at the tip of the sperm head. When the tip of the sperm head contacted the vitellus there was an immediate reduction in the rate of flagellation, followed by the gradual sinking of the sperm head into the vitellus.  相似文献   

14.
Spermatozoa mature during epididymal transit, acquiring the abilities to swim progressively, fertilize oocytes, and produce viable offspring. In this study, we investigate the capacity of spermatozoa retrieved from the midcorpus and distal cauda regions of the epididymis of the cynomolgus monkey to penetrate homologous zone pellucida. Successful in vitro fertilization by ejaculated macaque sperm is dependent upon the addition of caffeine and dbcAMP. Therefore, the effect of these cyclic nucleotide mediators was also examined in this study. Results of sperm motion analysis indicate no difference in baseline values (without stimulators) for any motion parameter. With the addition of caffeine and dbcAMP, curvilinear velocity significantly increased only for the distal cauda sperm (P = 0.05). Amplitude of the lateral head displacement was significantly increased for distal cauda sperm (P < 0.01); although elevated above baseline, the increase observed after activation by corpus sperm was significantly lower than that achieved by cauda sperm (P < 0.05). The addition of caffeine and dbcAMP was an absolute requirement for zona penetration by both midcorpus and distal cauda sperm. With activation, zona penetration was significantly decreased for corpus sperm compared to cauda sperm (P < 0.001). These results suggest that cynomolgus monkey sperm reaching the midcorpus region of the epididymis have not completed all of the maturational changes requisite for successful fertilization; this immaturity is evidenced by decreased sperm motion and by impedance at the level of zona penetration. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Rabbit spermatozoa were labeled predominantely in their acrosomal glycoproteins by 1-3H-glucosamine during spermiogenesis. Ova fertilized in vivo by spermatozoa labeled 22 days earlier were analyzed by fine-structure autoradiography for the localization of the label. The latter was found associated with 1) the fused membranes of the acrosomal cap remaining on the zona pellucida surface, 2) the material released on the zona surface after the acrosome reaction and possibly detectable after tannic acid fixation, 3) the equatorial segment of the sperm head and the preequatorial swellings, and 4) other sperm components, eg, the sperm tail. No labeling, on the other hand, was detected on the denuded leading edge of spermatozoa found either in the penetration slit or in the perivitelline space. Our observations suggest the involvement of acrosomal glycoproteins in different mechanisms of sperm/zona pellucida interaction but are not in favor of a major role of (enzymatic) glycoproteins bound to the inner acrosomal membrane during the penetration of the zona pellucida.  相似文献   

16.
Thitipramote, N., Suwanjarat, J., Leigh, C. and Breed, W.G. 2011. Variation in sperm morphology of a murine rodent from South‐East Asia: the Greater Bandicoot Rat, Bandicota indica.Acta Zoologica (Stockholm) 92 : 201–205. In most mammals the male gamete, the spermatozoon, has a fairly consistent, species‐specific shape although in a few species some variability is evident. The present study set out to determine the extent of sperm variability in a population of a South‐East Asian murine rodent, Bandicota indica, that was sampled during both the breeding and non‐breeding periods. We found that, regardless of the time of year when the animals were obtained, males had sperm present in the cauda epididymides but a high degree of variability was always evident including the presence of some grossly abnormal forms. The abundance of abnormal sperm tended to be greater during the non‐breeding period. These animals also have relatively small testes, thus the occurrence of the variable sperm populations is consistent with the hypothesis that depressed levels of intermale sperm competition result in a relaxation of the genetic control of male germ cell maturation during spermiogenesis and thus the production of polymorphic sperm populations.  相似文献   

17.
Newly ovulated eggs from mature queens treated with PMSG and hCG were inseminated in modified KRB solution with spermatozoa recovered from the cauda epididymidis of male cats. When 5 eggs were examined 15 min after insemination, no signs of sperm penetration into the vitellus were observed. However, in an egg examined before fixation 20 min after insemination, a spermatozoon whose head had passed through the zona pellucida was observed. Very high proportions (90-100%) of the eggs were penetrated when they were examined 0.5-5 h after insemination. Male and female pronuclei were first observed in eggs examined 4 h after insemination.  相似文献   

18.
Ovulated opossum oocytes are surrounded by a zona pellucida, but not by cumulus cells. Opossum sperm carry at least four acrosomal hydrolases (hyaluronidase, acrosin, N-acetylhexosaminidase, and arylsulfatase); the functions of these enzymes in opossum fertilization are uncertain. To identify possible substrates for these hydrolases, the ultrastructure of opossum oocytes was examined after fixation in the presence of ruthenium red which stabilizes extracellular matrices. This oocyte is unusual in having a wide perivitelline space containing a highly structured extracellular matrix (ECM). The ECM is comprised of granules and filaments, and it resembles matrices known to contain hyaluronic acid in other systems. Hydrolases, known to be present in opossum acrosomes, were tested for their effect on the ultrastructure of the zona pellucida and matrix of the perivitelline space. Trypsin dissolved the zona pellucida and decreased the size of the granules in the perivitelline space. Streptomyces hyaluronidase, which specifically attacks hyaluronic acid, removed only matrix filaments. Arylsulfatase, N-acetylhexosaminidase, and beta-glucuronidase did not affect the zona pellucida or ECM in our assay. These observations are consistent with the ideas that (1) opossum sperm must penetrate two oocyte investments, the zona pellucida and ECM of the perivitelline space; (2) the ECM contains hyaluronic acid (filaments) and protein (granules); (3) opossum sperm acrosin may function in penetration of the zona pellucida and ECM; and (4) opossum sperm hyaluronidase may function in penetration of the ECM by degrading hyaluronic acid (filaments). Dissolution of the granules and filaments from oocyte microvilli is probably necessary to permit close apposition and fusion of the sperm and oocyte membranes. The evolutionary significance of these results is discussed.  相似文献   

19.
Exposure of rabbit ova to wheat germ agglutinin (WGA) at a concentration of 50 microgram/ml for 30-45 min rendered the zona pellucida at least 10 times more resistant to digestion by 1 mg trypsin/ml, and also more resistant to acrosin. Nevertheless, the zonas of WGA-treated eggs were penetrated by spermatozoa as readily as those of untreated eggs in the same oviduct. These results suggest that penetration of spermatozoa through the zona pellucida may not require the agency of a trypsin-like enzyme acting as a primary zona lysin. The validity of the general belief that a lysin in necessary for zona penetration is considered briefly in relation to the mode of penetration and structural organization of the mammalian sperm head.  相似文献   

20.
We have developed an assay for detecting the acrosome reaction in mouse sperm using chlortetracycline (CTC) as a fluorescent probe. Sperm known to be intact with nonreacted acrosomes show CTC fluorescence in the presence of Ca2+ over the anterior portion of the sperm head on the plasma membrane covering the acrosome. Sperm which have undergone the acrosome reaction do not show fluorescence on the sperm head. Mouse sperm bind to zonae pellucidae of cumulus-free eggs in vitro in a Ca2+-dependent reaction; these sperm are intact by the CTC assay. Intact sperm bind to mechanically isolated zonae under the same conditions: the egg is apparently unnecessary for this inital reaction. Sperm suspensions, in which greater than 50% of the motile population had completed the acrosome reaction, were prepared by incubation in hyperosmolal medium followed by treatment with the divalent cation ionophore, A23187. Cumulus-free eggs challenged with such sperm suspensions preferentially bind intact sperm; acrosome-reacted sperm do not bind. We conclude that the plasma membrane of the mouse sperm is responsible for recognition of the egg's zona pellucida and that the obligatory sequence of reactions leading to fusion of mouse gametes is binding of the intact sperm to the zona pellucida, followed by the acrosome reaction at the zona surface, followed in turn by sperm penetration of the zona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号