首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obligate seeder trees requiring high‐severity fires to regenerate may be vulnerable to population collapse if fire frequency increases abruptly. We tested this proposition using a long‐lived obligate seeding forest tree, alpine ash (Eucalyptus delegatensis), in the Australian Alps. Since 2002, 85% of the Alps bioregion has been burnt by several very large fires, tracking the regional trend of more frequent extreme fire weather. High‐severity fires removed 25% of aboveground tree biomass, and switched fuel arrays from low loads of herbaceous and litter fuels to high loads of flammable shrubs and juvenile trees, priming regenerating stands for subsequent fires. Single high‐severity fires caused adult mortality and triggered mass regeneration, but a second fire in quick succession killed 97% of the regenerating alpine ash. Our results indicate that without interventions to reduce fire severity, interactions between flammability of regenerating stands and increased extreme fire weather will eliminate much of the remaining mature alpine ash forest.  相似文献   

2.
It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.  相似文献   

3.
The incidence and severity of forest fires are linked to the interaction between climate, fuel and topography. Increased warming and drying in the future is expected to have a significant impact on the risk of forest fire occurrence. An increase in fire risk is linked to the synchronous relationship between climate and fuel moisture conditions. A warmer, drier climate will lead to drier forest fuels that will in turn increase the chance of successful fire ignition and propagation. This interaction will increase the severity of fire weather, which, in turn, will increase the risk of extreme fire behaviour. A warmer climate will also extend fire season length, which will increase the likelihood of fires occurring over a greater proportion of the year. In this study of the North Okanagan area of British Columbia, Canada, the impacts of climate change of fire potential were evaluated using the Canadian Forest Fire Danger Rating System and multiple climate scenario analysis. Utilizing this approach, a 30% increase in fire season length was modelled to occur by 2070. In addition, statistically significant increases in fire severity and fire behaviour were also modelled. Fire weather severity was predicted to increase by 95% during the summer months by 2070 while fire behaviour was predicted to shift from surface fire‐intermittent crown fire regimes to a predominantly intermittent‐full crown fire regime by 2070 onwards. An increase in fire season length, fire weather severity and fire behaviour will increase the costs of fire suppression and the risk of property and resource loss while limiting human‐use within vulnerable forest landscapes. An increase in fire weather severity and fire behaviour over a greater proportion of the season will increase the risks faced by ecosystems and biodiversity to climatic change and increase the costs and difficulty of achieving sustainable forest management.  相似文献   

4.
Abstract ‘Alpine grazing reduces blazing’ is a widely and strongly held view concerning the effects of livestock grazing on fuels, and therefore fire behaviour and impact, in Australia's high country landscapes. As a test of this hypothesis, we examined the patterns of burning across the alpine (treeless) landscapes of the Bogong High Plains in Victoria, following the extensive fires of January 2003. Data were collected from multiple transects, each 3–5 km long, with survey points located randomly at either 50, 200 or 500 m intervals. The transects traversed the major regions of the Bogong High Plains, both grazed and ungrazed. At each point, we recorded whether the point was burnt or unburnt, the vegetation type (closed‐heath, open‐heath, grassland or herbfield), the estimated prefire shrub cover, slope, aspect, and a GPS location. At burnt heathland sites, we recorded the minimum twig diameter (an a posteriori measure of fire severity) in a sample of common shrubs. In total, there were 108 km of transect lines, 419 survey points and 4050 twig measurements, with sample points equally distributed across grazed and ungrazed country. The occurrence of fire (i.e. burnt or unburnt) in grazed and ungrazed areas was analysed by logistic regression; the variation in twig diameters by anova . Approximately half of all points were burnt. There was no statistically significant difference between grazed and ungrazed areas in the proportion of points burnt. Fire occurrence was determined primarily by vegetation type, with the proportion burnt being 0.87 for closed‐heath, 0.59 for open‐heath, and 0.13 for grassland and all snow‐patch herbfield points unburnt. In both closed‐heath and open‐heath, grazing did not significantly lower the severity of fire, as measured by the diameter of burnt twigs. We interpret the lack of a grazing effect in terms of shrub dynamics (little or no grazing effect on long‐term cover of taller shrubs), diet and behaviour of cattle (herbs and dwarf shrubs eaten; tall shrubs not eaten and closed‐heath vegetation generally avoided), and fuel flammability (shrubs more flammable than grass). Whatever effects livestock grazing may have on vegetation cover, and therefore fuels in alpine landscapes, they are likely to be highly localized, with such effects unlikely to translate into landscape‐scale reduction of fire occurrence or severity. The use of livestock grazing in Australian alpine environments as a fire abatement practice is not justified on scientific grounds.  相似文献   

5.
Hierro JL  Clark KL  Branch LC  Villarreal D 《Oecologia》2011,166(4):1121-1129
Although native herbivores can alter fire regimes by consuming herbaceous vegetation that serves as fine fuel and, less commonly, accumulating fuel as nest material and other structures, simultaneous considerations of contrasting effects of herbivores on fire have scarcely been addressed. We proposed that a colonial rodent, vizcacha (Lagostomus maximus), reduces and increases fire intensity at different stages in its population cycle in the semiarid scrub of Argentina. Specifically, we hypothesized that, when colonies are active, vizcachas create natural fire-breaks through intense grazing, generating over time patches of large unburned shrubs in grazed zones. In contrast, when colonies are abandoned, recovery of fine fuels and previous accumulation of coarse wood on colonies during territorial displays increases fire intensity, creating patches of high shrub mortality. To test these hypotheses, we estimated stem age of the dominant shrub (Larrea divaricata) and measured aboveground biomass in zones actively grazed by vizcachas and in ungrazed zones, and compared densities of live and dead shrubs on abandoned colonies and adjacent zones following fire. In active colonies, age and biomass of shrubs were much greater in grazed than ungrazed zones. In abandoned colonies that had been burnt, density of dead, burned shrubs was higher and density of live shrubs was lower than in adjacent zones. These results support our hypotheses and reveal a new interaction between native herbivores and fire, in which herbivores augment fire intensity by gathering fuel. Our findings indicate that, through opposing effects on fire, native herbivores enhance the heterogeneity of vegetation in woody-dominated ecosystems.  相似文献   

6.
Flammability dynamics in the Australian Alps   总被引:1,自引:0,他引:1       下载免费PDF全文
Forests of the Australian Alps (SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered likely for some due to frequent fire. It is not yet known, however, whether increasing fire frequency may stabilize due to reductions in flammability related to reduced time for fuel accumulation, show no trend, or increase due to positive feedbacks related to vegetation changes. To determine what these trends have been historically, dynamics were measured for 58 years of mapped fire history. The 1.4 million ha forested area was divided into broad formations based on structure and dominant canopy trees, and dynamics were measured for each using flammability ratio, a modification of probability of ignition at a point. Crown fire likelihood was measured for each formation, based on satellite‐derived measurements of the 2003 fire effects across a large part of the area. Contrary to popular perception but consistent with mechanistic expectations, all forests exhibited pronounced positive feedbacks. The strongest response was observed in tall, wet forests dominated by Ash‐type eucalypts, where, despite a short period of low flammability following fire, post‐disturbance stands have been more than eight times as likely to burn than have mature stands. The weakest feedbacks occurred in open forest, although post‐disturbance forests were still 1.5 times as likely to burn as mature forests. Apart from low, dry open woodland where there was insufficient data to detect a trend, all forests were most likely to experience crown fire during their period of regeneration. The implications of this are significant for the Alps, as increasing fire frequency has the potential to accelerate by producing an increasingly flammable landscape. These effects may be semi‐permanent in tall, wet forest, where frequent fire promotes ecosystem collapse into either the more flammable open forest formation, or to heathland.  相似文献   

7.
Tree encroachment in fire‐maintained woodlands and grasslands is a major management concern, yet little information exists regarding the mechanisms of small tree mortality following prescribed burns. We sought to clarify the relative importance of tree size and fire‐induced injury in the post‐fire mortality of encroaching Douglas‐fir trees and to compare results with an existing mortality model for larger Douglas‐fir trees. Crown injury to small Douglas‐fir trees was a significant explanatory variable in post‐fire mortality models, with results suggesting a 20% threshold in crown scorch. Crown injury was strongly related to bole injury, and delayed mortality was important as we documented new mortality 20 months post‐burn. Mortality models for large Douglas‐fir tend to over‐predict small tree mortality, underscoring the need to better understand the mechanisms of fire‐caused mortality for small, encroaching trees.  相似文献   

8.
It is often suggested that fire acts as an environmental filter that selects species and functional traits, and reduces trait variability within communities, affecting ecosystem function and underlying services. This may be particularly important in fire‐sensitive ecosystems, such as the central European Alps, where fires are scarce. According to climate and land use change scenarios in Europe, fire risk will increase during the next decades, raising important questions about the maintenance of ecological and functional resilience in these regions. We used two families of saproxylic beetles (i.e. Cerambycidae and Buprestidae) as model group to test the combined effect of fire and altitude on species and trait composition in the central Alps of Switzerland. Trait response was based on weighted means and variation of 15 traits over the communities. Our results showed an overall positive effect of fire on taxonomic and functional diversity, while indicator species and community analyses revealed that the response to fire was also modulated by altitude. The positive effect of fire and the presence of large populations of pyrophilous species suggest co‐evolution with fire and adaptation to disturbance in the Alps. Biodiversity in the central Alps might thus be more resilient to fire than expected. In the light of climatic and land use changes, forest management and species conservation in the central Alps have to consider fire one of the major disruptive factors that have shaped and will shape species composition and ecosystem services.  相似文献   

9.

Earth’s tropical savannas typically support high biomass of diverse grazing herbivores that depend on a highly fluctuating resource: high-quality forage. An annual wet–dry cycle, fire and herbivory combine to influence forage quality and availability throughout the year. In the savannas of northern Australia, a depauperate suite of large native (marsupial) herbivores (wallaroos [Osphranter spp.] and the agile wallaby [Notamacropus agilis]) compete for resources with non-native large herbivores introduced in the late nineteenth century, particularly bovines (feral and managed cattle [Bos spp.] and feral water buffalo [Bubalus bubalis]) that now dominate the landscape. Anecdotal reports of recent population declines of large macropods and negative impacts of bovines highlight the need to better understand the complex relationship between forage, fire and abundance of native and introduced large herbivores. The pyric herbivory conceptual model, which posits complex feedbacks between fire and herbivory and was developed outside Australia, predicts that native and introduced large herbivores will both respond positively to post-fire forage production in Australian savannas where they co-occur. We used grazing exclosures, forage biomass and nutrient analyses and motion-sensor camera-trapping to evaluate the overall robustness of the pyric herbivory model in the Australian context, specifically whether forage quantity and quality are impacted by herbivory, season and fire activity, and which forage attributes most influence large grazing herbivore abundance. Forage quantity, as measured by live, dead and total herbaceous biomass and proportion of biomass alive, was higher inside herbivore exclosures, even at relatively low densities of herbivores. Forage quality, as measured by fibre content, was not affected by herbivory, however, crude protein content of live herbaceous biomass was greater outside herbivore exclosures. Recent fire was an important predictor of all measures of forage quantity and quality. Recent fire occurrence decreased overall quantity (biomass) but increased quality (decreased fibre content and increased crude protein content); late dry season fires resulted in forage with the highest crude protein content. The predictions of the pyric herbivory conceptual model are consistent with observations of the feeding behaviour of introduced bovines and some large macropods in northern Australian savannas, lending support to the global generality of pyric herbivory in fire-prone grassy biomes.

  相似文献   

10.
Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores.  相似文献   

11.
12.
Reconstructions of dry western US forests in the late 19th century in Arizona, Colorado and Oregon based on General Land Office records were used by Williams & Baker (2012; Global Ecology and Biogeography, 21 , 1042–1052; hereafter W&B) to infer past fire regimes with substantial moderate and high‐severity burning. The authors concluded that present‐day large, high‐severity fires are not distinguishable from historical patterns. We present evidence of important errors in their study. First, the use of tree size distributions to reconstruct past fire severity and extent is not supported by empirical age–size relationships nor by studies that directly quantified disturbance history in these forests. Second, the fire severity classification of W&B is qualitatively different from most modern classification schemes, and is based on different types of data, leading to an inappropriate comparison. Third, we note that while W&B asserted ‘surprising’ heterogeneity in their reconstructions of stand density and species composition, their data are not substantially different from many previous studies which reached very different conclusions about subsequent forest and fire behaviour changes. Contrary to the conclusions of W&B, the preponderance of scientific evidence indicates that conservation of dry forest ecosystems in the western United States and their ecological, social and economic value is not consistent with a present‐day disturbance regime of large, high‐severity fires, especially under changing climate.  相似文献   

13.
Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire‐caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre‐fire climatic water deficit was related to increased post‐fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire).  相似文献   

14.
This study shows how high‐resolution (~15 cm) simultaneous colour and infra‐red digital aerial photography can be used to map both fire severity and, particularly, fire extent, in forest in south‐eastern Australia. The results show that this methodology is capable of detecting and mapping burnt and unburnt edges under unaffected forest canopy (i.e. still green) – that is, revealing the mosaic of burnt and unburnt areas that often result from planned landscape burning under mild weather conditions (i.e. with little of the brownish canopy scorch that results from more intense bushfires). This has important implications for both fuel management and ecology. It can answer the basic questions of fire and biodiversity managers following planned burning –’how much of the planned area burnt, and, within the burnt area, what aspects were burnt, and how hot did they burn?’ The analysis of fire extent by aspect showed that about 80% of southern and eastern aspects remained unburnt during broadscale autumn prescribed burning, with many of these moister aspects potentially providing longer unburnt refuges over multiple burn rotations. The fire severity and extent mapping products, produced using the methodology outlined in this study, have the potential to substantially increase the understanding of the ecological and fuel outcomes of landscape‐scale autumn prescribed burning.  相似文献   

15.
Habitat selection is a density‐dependent process, but little is known regarding how this relationship may vary across different temporal scales. Over long time scales, grazing shapes the structure, diversity and functioning of terrestrial ecosystems, and grazing‐induced changes in forage production over time are likely to affect the level of density dependence in habitat selection. In this fully‐replicated, landscape‐scale experiment, we investigated how density‐dependent habitat selection by a large grazing herbivore, sheep Ovis aries, develops over the time scale of a decade. We also address an often‐neglected challenge in habitat selection studies; namely, whether there is variation in use within a particular habitat or vegetation type and why. We found clear evidence of density dependence in habitat selection, with a wider use of habitats at high density. Despite a change in the standing biomass of high‐productivity vegetation at high herbivore density over the years, with herb biomass declining and graminoid biomass increasing, there was no clear evidence that these grazing‐induced changes in habitat over the years were strong enough to affect the level of density‐dependent habitat selection. The difference in selection for high versus low‐productivity habitats remained similar, despite annual fluctuations in the strength of selection. We found strong variation in selection within each vegetation type, even when vegetation types were mapped at a fine‐resolution scale. Our study shows that despite the interactive effects of herbivores and habitats, they are not always sufficiently strong enough to affect the level of density‐dependent habitat selection.  相似文献   

16.
Wildfire and grazing by invasive herbivores can influence habitat suitability for ground-dwelling fauna, such as reptiles. Australia has a large and diverse reptile fauna, with the Australian Alps bioregion in the southeast of the continent supporting a disproportionately high number of threatened species. In this bioregion, many species are threatened by fire, habitat loss or modification, and invasive species. The range of one such threatened endemic lizard, Cyclodomorphus praealtus (family Scincidae), was impacted by the 2019–20 megafires and is also subject to widespread grazing by invasive species. We investigated the relationship between C. praealtus site occupancy and fire and grazing. We completed 2045 surveys across 120 sites over 4 years, detecting the species at 43% of sites and increasing the species' known geographic range. Using single season detection occupancy models, we found C. praealtus occupancy was not associated with elevation, vegetation height or whether the site was burnt, but was positively associated with grazing activity. Our results indicate that C. praealtus has the capacity to persist following a single fire in some cases, and that habitats with high occupancy probabilities are subject to high grazing pressure. However, our results do not rule out more nuanced impacts associated with these disturbances, which affect a large proportion of C. praealtus' habitat. Our cumulative detection probability calculations revealed that considerable survey effort is often required to determine C. praealtus site occupancy. We therefore recommend that impact assessments assume species presence within areas of suitable habitat within the species' range. Our study improves our understanding of disturbance impacts on C. praealtus' occupancy, while demonstrating the need for sufficiently resourced impact assessments for cryptic and threatened species.  相似文献   

17.
Aim Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low‐severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low‐severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and early historical reports, suggest the low‐severity model may only apply in limited geographical areas. The aim of this article is to elaborate a new variable‐severity fire model and evaluate the applicability of this model, along with the low‐severity model, for the ponderosa pine–Douglas fir forests of the Rocky Mountains. Location Rocky Mountains, USA. Methods The geographical applicability of the two fire models is evaluated using historical records, fire histories and forest age‐structure analyses. Results Historical sources and tree‐ring reconstructions document that, near or before ad 1900, the low‐severity model may apply in dry, low‐elevation settings, but that fires naturally varied in severity in most of these forests. Low‐severity fires were common, but high‐severity fires also burned thousands of hectares. Tree regeneration increased after these high‐severity fires, and often attained densities much greater than those reconstructed for Southwestern ponderosa pine forests. Main conclusions Exclusion of fire has not clearly and uniformly increased fuels or shifted the fire type from low‐ to high‐severity fires. However, logging and livestock grazing have increased tree densities and risk of high‐severity fires in some areas. Restoration is likely to be most effective which seeks to (1) restore variability of fire, (2) reverse changes brought about by livestock grazing and logging, and (3) modify these land uses so that degradation is not repeated.  相似文献   

18.
Abstract Georeferenced digital aerial photographs were used to assess changes in overstorey vegetation cover since 1948 in the Victoria River District, Northern Territory, Australia, across a range of lowland tropical savanna habitats and with explicit consideration of known and variable site‐specific grazing and fire management histories. Vegetation surveys at corresponding locations on the ground identified five distinct woody vegetation communities defined primarily by water drainage and secondarily by soil characteristics. Air‐photo analyses revealed that, contrary to popular perceptions and in contrast to results from other habitats, there has been no generalized net increase in overstorey woody vegetation cover across the full range of lowland savanna habitats. Rather, different habitats exhibited distinctly different vegetation change mechanisms: low‐lying seasonally inundated ‘wet’ habitats have experienced woody vegetation increase since 1948, whereas well‐drained ‘dry’ habitats have experienced overstorey vegetation stability or loss. In almost every instance woody vegetation increase could be attributed to the invasion or proliferation of a single species, Melaleuca minutifolia F.Muell. The extent of M. minutifolia increase was unrelated to historical grazing/fire regime. Demographic analyses for this species revealed that recruitment was often episodic and that synchronized recruitment events occurred uniformly across the full range of historical management treatments, most likely as a consequence of favourable climatic conditions in years with an extended wet season. Heavy grazing facilitated juvenile survival and/or recruitment, most likely by reducing grassy fuel loads and eliminating landscape fire. We conclude that while there has been no generalized net increase in overstorey woody vegetation cover in lowland environments, savanna dynamics are complex, and multiple change mechanisms have occurred simultaneously in different habitats, some of which have been significantly transformed since 1948. Where net woody vegetation increase has occurred it is primarily a natural consequence of episodic M. minutifolia establishment in climatically favourable years, but the extent and magnitude of this effect is likely mediated by fire/grazing regime.  相似文献   

19.
Patterns and controls of annual aboveground net primary productivity (ANPP) are fundamental metrics of ecosystem functioning. It is generally assumed, but rarely tested, that determinants of ANPP in one region within a biome will operate similarly throughout that biome, as long as physiognomy and climate are broadly consistent. We tested this assumption by quantifying ANPP responses to fire, grazing history, and nitrogen (N) addition in North American (NA) and South African (SA) savanna grasslands. We found that total ANPP responded in generally consistent ways to fire, grazing history, and N addition on both continents. Annual fire in both NA and SA consistently stimulated total ANPP (28–100%) relative to unburned treatments at sites with deep soils, and had no effect on ANPP in sites with shallow soils. Fire did not affect total ANPP in sites with a recent history of grazing, regardless of whether a single or a diverse suite of large herbivores was present. N addition interacted strongly and consistently with fire regime in both NA and SA. In annually burned sites that were not grazed, total ANPP was stimulated by N addition (29–39%), but there was no effect of N fertilization in the absence of fire. In contrast, responses in forb ANPP to fire and grazing were somewhat divergent across this biome. Annual fire in NA reduced forb ANPP, whereas grazing increased forb ANPP, but neither response was evident in SA. Thus, despite a consistent response in total ANPP, divergent responses in forb ANPP suggest that other aspects of community structure and ecosystem functioning differ in important ways between these mesic savanna grasslands.  相似文献   

20.
Aims Mesic grasslands have a long evolutionary history of grazing by large herbivores and as a consequence, grassland species have numerous adaptations allowing them to respond favourably to grazing. Although empirical evidence has been equivocal, theory predicts that such adaptations combined with alterations in resources can lead to grazing-induced overcompensation in aboveground net primary production (ANPP; grazed ANPP> ungrazed ANPP) under certain conditions. We tested two specific predictions from theory. First, overcompensation is more likely to occur in annually burned grasslands because limiting nutrients that would be lost with frequent fires are recycled through grazers and stimulate ANPP. Second, overcompensation of biomass lost to grazers is more likely to occur in unburned sites where grazing has the greatest effect on increasing light availability through alterations in canopy structure.Methods We tested these nutrient versus light-based predictions in grazed grasslands that had been annually burned or protected from fire for>20 years. We assessed responses in ANPP to grazing by large ungulates using both permanent and moveable grazing exclosures (252 exclosures from which biomass was harvested from 3192 quadrats) in a 2-year study. Study sites were located at the Konza Prairie Biological Station (KPBS) in North America and at Kruger National Park (KNP) in South Africa. At KPBS, sites were grazed by North American bison whereas in KNP sites were grazed either by a diverse suite of herbivores (e.g. blue wildebeest, Burchell's zebra, African buffalo) or by a single large ungulate (African buffalo).Important findings We found no evidence for overcompensation in either burned or unburned sites, regardless of grazer type. Thus, there was no support for either mechanism leading to overcompensation. Instead, complete compensation of total biomass lost to grazers was the most common response characterizing grazing–ANPP relationships with, in some cases, undercompensation of grass ANPP being offset by increased ANPP of forbs likely due to competitive release. The capability of these very different grass-dominated systems to maintain ANPP while being grazed has important implications for energy flow, ecosystem function and the trophic dynamics of grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号