首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent development of a goat SNP genotyping microarray enables genome‐wide association studies in this important livestock species. We investigated the genetic basis of the black and brown coat colour in Valais Blacknecked and Coppernecked goats. A genome‐wide association analysis using goat SNP50 BeadChip genotypes of 22 cases and 23 controls allowed us to map the locus for the brown coat colour to goat chromosome 8. The TYRP1 gene is located within the associated chromosomal region, and TYRP1 variants cause similar coat colour phenotypes in different species. We thus considered TYRP1 as a strong positional and functional candidate. We resequenced the caprine TYRP1 gene by Sanger and Illumina sequencing and identified two non‐synonymous variants, p.Ile478Thr and p.Gly496Asp, that might have a functional impact on the TYRP1 protein. However, based on the obtained pedigree and genotype data, the brown coat colour in these goats is not due to a single recessive loss‐of‐function allele. Surprisingly, the genotype distribution and the pedigree data suggest that the 496Asp allele might possibly act in a dominant manner. The 496Asp allele was present in 77 of 81 investigated Coppernecked goats and did not occur in black goats. This strongly suggests heterogeneity underlying the brown coat colour in Coppernecked goats. Functional experiments or targeted matings will be required to verify the unexpected preliminary findings.  相似文献   

2.
The Valais Red sheep breed is a local breed of the Swiss canton Valais. Although the breed is characterised by its brown colour, black animals occasionally occur and the objective of this study was to identify the causative genetic variants responsible for the obvious difference. A GWAS using high‐density SNP data to compare 51 brown and 38 black sheep showed a strong signal on chromosome 2 at the TYRP1 locus. Haplotype analyses revealed three different brown‐associated alleles. The WGS of three sheep revealed four protein‐changing variants within the TYRP1 gene. Three of these variants were associated with the recessively inherited brown coat colour. This includes the known missense variant TYRP1:c.869G>T designated as bSoay and two novel loss‐of‐function variants. We propose to designate the frame‐shift variant TYRP1:c.86_87delGA as bVS1 and the nonsense variant TYRP1:c.1066C>T as bVS2. Interestingly, the bVS1 allele occurs only in local breeds of Switzerland whereas the bVS2 allele seems to be more widespread across Europe.  相似文献   

3.
The European rabbit (Oryctolagus cuniculus) is the only representative of its genus living in present‐day Europe and North Africa, and all domestic rabbits are descendants of this one species, which is native to the Iberian Peninsula. There are over 300 breeds of rabbits that differ in size, coat color, length of ears and type of fur. Rabbits are bred for various reasons, such as for laboratory animals and a source of meat, wool and fur, as well as for pets and exhibition animals. The hair coat is a important economic trait of rabbits. Its development and quality are influenced by various factors, both environmental and genetic. The genetic mechanisms underlying its development have not been thoroughly researched. The aim of this review is to discuss the domestication of rabbits and the different aspects of rabbit genetics. A brief review of the properties of rabbit hair coat, hair coat development and hair cycle will be provided, followed by discussion of the factors regulating hair coat development, molecular control of hair coat development and the role of non‐coding RNAs in the regulation of gene expression in the hair follicles of rabbits. Information about genetic regulation of pathways could provide useful tools for improving hair coat quality and be of practical use in rabbit breeding.  相似文献   

4.
The genes encoding enzymes of the tyrosinase family are strong candidates for coat color variation in mammals. To investigate their influence in domestic cat coat color, we determined the complete nucleotide coding sequence of the domestic cat genes tyrosinase (TYR)--a plausible candidate gene for the albino (C) locus, and tyrosinase related protein 1 (TYRP1)--a candidate gene for the brown (B) locus. Sequence variants between individuals exhibiting variation in pigmentation were submitted to association studies. In TYR, two nonsynonymous substitutions encoding TYR-G301R and TYR-G227W were associated with the siamese and burmese phenotypes of the albino locus, respectively. TYRP1 was mapped on chromosome D4 within 5 cM of a highly polymorphic microsatellite, previously found to be fixed in a cat breed selected for the chocolate (b) allele of the B locus, which reinforced TYRP1 as a candidate gene for the B locus in the domestic cat. Two DNA polymorphisms, one leading to a TYRP1-A3G substitution in the signal peptide and another to an in-frame insertion TYRP1-421ins17/18 caused by a donor splice site mutation in intron 6, were associated with the chocolate (b) allele. A premature UAG stop codon at position 100 of TYRP1 was associated with a second allele of the B locus, cinnamon (b(l)). The results provide very strong evidence that the specific nucleotide variants of feline TYR (chromosome D1) are causative of the siamese (c(s)) and burmese (c(b)) alleles of the albino locus, as well as nucleotide variants of TYRP1 (chromosome D4) as specifying the chocolate (b) and cinnamon (b(l)) alleles of the B locus.  相似文献   

5.
Domestic yaks (Bos grunniens) exhibit two major coat color variations: a brown vs. wild‐type black pigmentation and a white spotting vs. wild‐type solid color pattern. The genetic basis for these variations in color and distribution remains largely unknown and may be complicated by a breeding history involving hybridization between yaks and cattle. Here, we investigated 92 domestic yaks from China using a candidate gene approach. Sequence variations in MC1R, PMEL and TYRP1 were surveyed in brown yaks; TYRP1 was unassociated with the coloration and excluded. Recessive mutations from MC1R, or p.Gln34*, p.Met73Leu and possibly p.Arg142Pro, are reported in bovids for the first time and accounted for approximately 40% of the brown yaks in this study. The remaining 60% of brown individuals correlated with a cattle‐derived deletion mutation from PMEL (p.Leu18del) in a dominant manner. Degrees of white spotting found in yaks vary from color sidedness and white face, to completely white. After examining the candidate gene KIT, we suggest that color‐sided and all‐white yaks are caused by the serial translations of KIT (Cs6 or Cs29) as reported for cattle. The white‐faced phenotype in yaks is associated with the KIT haplotype Swf. All KIT mutations underlying the serial phenotypes of white spotting in yaks are identical to those in cattle, indicating that cattle are the likely source of white spotting in yaks. Our results reveal the complex genetic origins of domestic yak coat color as either native in yaks through evolution and domestication or as introduced from cattle through interspecific hybridization.  相似文献   

6.
Tyrosinase related protein‐1 (TRP‐1) is a melanocyte‐specific gene product involved in eumelanin synthesis. Mutation in the Tyrp1 gene is associated with brown pelage in mouse and oculocutaneous albinism Type 3 in humans (OCA3). It has been demonstrated that TRP‐1 expresses DHICA oxidase activity in the murine system. However, its actual function in the human system is still unclear. The study was designed to determine the effects of mutation at two Typr1 alleles, namely the Tyrp1b (brown) and Tyrp1b‐cj (cordovan) compared with wild type Tyrp1B (black) on melanocyte function and melanin biosynthesis. The most significant finding was that both of the Tyrp1 mutations (i.e. brown expressing a point mutation and cordovan expressing decreased amount of TRP‐1 protein) resulted in attenuation of cell proliferation rates. Neither necrosis nor apoptosis was responsible for the observed decrease in cell proliferation rates of the brown and cordovan melanocytes. Ultrastructural evaluation by electron microscopic analysis revealed that both mutations in Tyrp1 affected melanosome maturation without affecting its structure. These observations demonstrate that mutation in Tyrp1 compromised tyrosinase activity within the organelle. DOPA histochemistry revealed differences in melanosomal stages between black and brown melanocytes but not between black and cordovan melanocytes. There were no significant differences in tyrosine hydroxylase activities of tyrosinase and TRP‐1 in wild type black, brown and cordovan melanocyte cell lysates. We conclude that mutations in Tyrp1 compromise cell proliferation and melanosomal maturation in mouse melanocyte cultures.  相似文献   

7.
Chocolate coated cats: TYRP1 mutations for brown color in domestic cats   总被引:2,自引:0,他引:2  
Brown coat color phenotypes caused by mutations in tyrosinase-related protein-1 (TYRP1) are recognized in many mammals. Brown variations are also recognized in the domestic cat, but the causative mutations are unknown. In cats, Brown, B, has a suggested allelic series, B > b > bl. The B allele is normal wild-type black coloration. Cats with the brown variation genotypes, bb or bbl, are supposedly phenotypically chocolate (aka chestnut) and the light brown genotype, blbl, are supposedly phenotypically cinnamon (aka red). The complete coding sequence of feline TYRP1 and a portion of the 5′ UTR was analyzed by direct sequencing of genomic DNA of wild-type and brown color variant cats. Sixteen single nucleotide polymorphisms (SNPs) were identified. Eight SNPs were in the coding regions, six are silent mutations. Two exon 2 on mutations cause amino acid changes. The C to T nonsense mutation at position 298 causes an arginine at amino acid 100 to be replaced by the opal (UGA) stop codon. This mutation is consistent with the cinnamon phenotype and is the putative light brown, bl, mutation. An intron 6 mutation that potentially disrupts the exon 6 downstream splice-donor recognition site is associated with the chocolate phenotype and is the putative brown, b, mutation. The allelic series was confirmed by segregation and sequence analyses. Three microsatellite makers had significant linkage to the brown phenotype and two for the TYRP1 mutations in a 60-member pedigree. These mutations could be used to identify carriers of brown phenotypes in the domestic cat.  相似文献   

8.
9.
The POLL locus has been mapped to the centromeric region of bovine chromosome 1 (BTA1) in both taurine breeds and taurine–indicine crosses in an interval of approximately 1 Mb. It has not yet been mapped in pure‐bred zebu cattle. Despite several efforts, neither causative mutations in candidate genes nor a singular diagnostic DNA marker has been identified. In this study, we genotyped a total of 68 Brahman cattle and 20 Hereford cattle informative for the POLL locus for 33 DNA microsatellites, 16 of which we identified de novo from the bovine genome sequence, mapping the POLL locus to the region of the genes IFNAR2 and SYNJ1. The 303‐bp allele of the new microsatellite, CSAFG29, showed strong association with the POLL allele. We then genotyped 855 Brahman cattle for CSAFG29 and confirmed the association between the 303‐bp allele and POLL. To determine whether the same association was found in taurine breeds, we genotyped 334 animals of the Angus, Hereford and Limousin breeds and 376 animals of the Brangus, Droughtmaster and Santa Gertrudis composite taurine–zebu breeds. The association between the 303‐bp allele and POLL was confirmed in these breeds; however, an additional allele (305 bp) was also associated but not fully predictive of POLL. Across the data, CSAFG29 was in sufficient linkage disequilibrium to the POLL allele in Australian Brahman cattle that it could potentially be used as a diagnostic marker in that breed, but this may not be the case in other breeds. Further, we provide confirmatory evidence that the scur phenotype generally occurs in animals that are heterozygous for the POLL allele.  相似文献   

10.
Melanocortin 1 receptor variation in the domestic dog   总被引:23,自引:0,他引:23  
The melanocortin 1 receptor (Mc1r) is encoded by the Extension locus in many different mammals, where a loss-of-function causes exclusive production of red/yellow pheomelanin, and a constitutively activating mutation causes exclusive production of black/brown eumelanin. In the domestic dog, breeds with a wild-type E allele, e.g., the Doberman, can produce either pigment type, whereas breeds with the e allele, e.g., the Golden Retriever, produce exclusively yellow pigment. However, a black coat color in the Newfoundland and similar breeds is thought to be caused by an unusual allele of Agouti, which encodes the physiologic ligand for the Mc1r. Here we report that the predicted dog Mc1r is 317 residues in length and 96% identical to the fox Mc1r. Comparison of the Doberman, Newfoundland, Black Labrador, Yellow Labrador, Flat-coated Retriever, Irish Setter, and Golden Retriever revealed six sequence variants, of which two, S90G and R306ter, partially correlated with a black/brown coat and red/yellow coat, respectively. R306ter was found in the Yellow Labrador, Golden Retriever, and Irish Setter; the latter two had identical haplotypes but differed from the Yellow Labrador at three positions other than R306ter. In a larger survey of 194 dogs and 19 breeds, R306ter and a red/yellow coat were completely concordant except for the Red Chow. These results indicate that the e allele is caused by a common Mc1r loss-of-function mutation that either reoccurred or was subject to gene conversion during recent evolutionary history, and suggest that the allelic and locus relationships for dog coat color genes may be more analogous to those found in other mammals than previously thought.  相似文献   

11.
The chocolate plumage color in chickens is due to a sex‐linked recessive mutation, choc, which dilutes eumelanin pigmentation. Because TYRP1 is sex‐linked in chickens, and TYRP1 mutations determine brown coat color in mammals, TYRP1 appeared as the obvious candidate gene for the choc mutation. By combining gene mapping with gene capture, a complete association was identified between the chocolate phenotype and a missense mutation leading to a His214Asn change in the ZnA zinc‐binding domain of the protein. A diagnostic test confirmed complete association by screening 428 non‐chocolate chickens of various origins. This is the first TYRP1 mutation described in the chicken. Electron microscopy analysis showed that melanosomes were more numerous in feather follicles of chocolate chickens but exhibited an abnormal structure characterized by a granular content and an irregular shape. A similar altered morphology was observed on melanosomes of another TYRP1 mutant in birds, the roux mutation of the quail.  相似文献   

12.
In rabbit, the dilute locus is determined by a recessive mutated allele (d) that causes the dilution of both eumelanic and pheomelanic pigmentations. In mice, similar phenotypes are determined by mutations in the myosin VA, Rab27a and melanophilin (MLPH) genes. In this study, we investigated the rabbit MLPH gene and showed that a mutation in this gene appears responsible for the dilute coat colour in this species. Checkered Giant F1 families segregating for black and grey (diluted or blue) coat colour were first genotyped for a complex indel in intron 1 of the MLPH gene that was completely associated with the coat colour phenotype (θ = 0.00; LOD = 4.82). Then, we sequenced 6357 bp of the MLPH gene in 18 rabbits of different coat colours, including blue animals. A total of 165 polymorphisms were identified: 137 were in non‐coding regions and 28 were in coding exons. One of them was a frameshift deletion in exon 5. Genotyping the half‐sib families confirmed the complete cosegregation of this mutation with the blue coat colour. The mutation was analysed in 198 rabbits of 23 breeds. All Blue Vienna and all other blue/grey/ash rabbits in other breeds (Californian, Castor Rex, Checkered Giant, English Spot, Fairy Marburg and Fairy Pearly) were homozygous for this deletion. The identification of MLPH as the responsible gene for the dilute locus in rabbit provides a natural animal model for human Griscelli syndrome type 3 and a new mutant to study the role of this gene on pigmentation.  相似文献   

13.
By studying genes associated with coat colour, we can understand the role of these genes in pigmentation but also gain insight into selection history. North European short‐tailed sheep, including Swedish breeds, have variation in their coat colour, making them good models to expand current knowledge of mutations associated with coat colour in sheep. We studied ASIP and MC1R, two genes with known roles in pigmentation, and their association with black coat colour. We did this by sequencing the coding regions of ASIP in 149 animals and MC1R in 129 animals from seven native Swedish sheep breeds in individuals with black, white or grey fleece. Previously known mutations in ASIP [recessive black allele: g.100_105del (D5) and/or g.5172T>A] were associated with black coat colour in Klövsjö and Roslag sheep breeds and mutations in both ASIP and MC1R (dominant black allele: c.218T>A and/or c.361G>A) were associated with black coat colour in Swedish Finewool. In Gotland, Gute, Värmland and Helsinge sheep breeds, coat colour inheritance was more complex: only 11 of 16 individuals with black fleece had genotypes that could explain their black colour. These breeds have grey individuals in their populations, and grey is believed to be a result of mutations and allelic copy number variation within the ASIP duplication, which could be a possible explanation for the lack of a clear inheritance pattern in these breeds. Finally, we found a novel missense mutation in MC1R (c.452G>A) in Gotland, Gute and Värmland sheep and evidence of a duplication of MC1R in Gotland sheep.  相似文献   

14.
In the course of a reverse genetic screen in the Belgian Blue cattle breed, we uncovered a 10‐bp deletion (c.87_96del) in the first coding exon of the melanophilin gene (MLPH), which introduces a premature stop codon (p.Glu32Aspfs*1) in the same exon, truncating 94% of the protein. Recessive damaging mutations in the MLPH gene are well known to cause skin, hair, coat or plumage color dilution phenotypes in numerous species, including human, mice, dog, cat, mink, rabbit, chicken and quail. Large‐scale array genotyping undertaken to identify p.Glu32Aspfs*1 homozygous mutant animals revealed a mutation frequency of 5% in the breed and allowed for the identification of 10 homozygous mutants. As expression of a colored coat requires at least one wild‐type allele at the co‐dominant Roan locus encoded by the KIT ligand gene (KITLG), homozygous mutants for p.Ala227Asp corresponding with the missense mutation were excluded. The six remaining colored calves displayed a distinctive dilution phenotype as anticipated. This new coat color was named ‘cool gray’. It is the first damaging mutation in the MLPH gene described in cattle and extends the already long list of species with diluted color due to recessive mutations in MLPH and broadens the color palette of gray in this breed.  相似文献   

15.
16.
Coat colour dilution may be the result of altered melanosome transport in melanocytes. Loss‐of‐function variants in the melanophilin gene (MLPH) cause a recessively inherited form of coat colour dilution in many mammalian and avian species including the dog. MLPH corresponds to the D locus in many domestic animals, and recessive alleles at this locus are frequently denoted with d. In this study, we investigated dilute coloured Chow Chows whose coat colour could not be explained by their genotype at the previously known MLPH:c.–22G>A variant. Whole genome sequencing of such a dilute Chow Chow revealed another variant in the MLPH gene: MLPH:c.705G>C. We propose to designate the corresponding mutant alleles at these two variants d1 and d2. We performed an association study in a cohort of 15 dilute and 28 non‐dilute Chow Chows. The dilute dogs were all either compound heterozygous d1/d2 or homozygous d2/d2, whereas the non‐dilute dogs carried at least one wildtype allele D. The d2 allele did not occur in 417 dogs from diverse other breeds. However, when we genotyped a Sloughi family, in which a dilute coloured puppy had been born out of non‐dilute parents, we again observed perfect co‐segregation of the newly discovered d2 allele with coat colour dilution. Finally, we identified a blue Thai Ridgeback with the d1/d2 genotype. Thus, our data identify the MLPH:c.705G>C as a variant explaining a second canine dilution allele. Although relatively rare overall, this d2 allele is segregating in at least three dog breeds, Chow Chows, Sloughis and Thai Ridgebacks.  相似文献   

17.
The TYRP (brown) locus determines pigmentation and coat color in the mouse. The human homolog of the TYRP locus has been recently identified and shown to encode a 75-kDa transmembrane melanosomal glycoprotein called gp75. The gp75 glycoprotein is homologous to tyrosinase, an enzyme involved in the synthesis of melanin, forming a family of tyrosinase-related proteins. A genomic clone of human gp75 was used to map the human TYRP locus to chromosome 9, region 9p23, by nonradioactive fluorescent in situ hybridization. Specificity of hybridization was tested with a genomic fragment of human tyrosinase that mapped to a distinct site on 11q21. The 9p region has been reported to be nonrandomly altered in human melanoma, suggesting a role for the region near the TYRP locus in melanocyte transformation.  相似文献   

18.
The type of pigment synthesized in mammalian hair, yellow–red pheomelanin or black–brown eumelanin, depends on the interaction between Agouti protein and the Melanocortin 1 receptor. Although the genetics of pigmentation is broadly conserved across most mammalian species, pigment type-switching in domestic dogs is unusual because a yellow–tan coat with variable amounts of dark hair is thought to be caused by an allele of the Agouti locus referred to as fawn or sable (ay). In a large survey covering thirty seven breeds, we identified an Agouti allele with two missense alterations, A82S and R83H, which was present (heterozygous or homozygous) in 41 dogs (22 breeds) with a fawn or sable coat, but was absent from 16 dogs (8 breeds) with a black-and-tan or tricolor phenotype. In an additional 33 dogs (14 breeds) with a eumelanic coat, 8 (German Shepherd Dogs, Groenendaels, Schipperkes, or Shetland Sheepdogs) were homozygous for a previously reported mutation, non-agouti R96C; the remainder are likely to have carried dominant black, which is independent of and epistatic to Agouti. This work resolves some of the complexity in dog coat color genetics and provides diagnostic opportunities and practical guidelines for breeders.  相似文献   

19.
Progressive retinal atrophy (PRA) in dogs is characterised by the degeneration of the photoreceptor cells of the retina, resulting in vision loss and eventually complete blindness. The condition affects more than 100 dog breeds and is known to be genetically heterogeneous between breeds. Around 14 mutations have now been identified that are associated with PRA in around 49 breeds, but for the majority of breeds the mutation(s) responsible have yet to be identified. Using genome‐wide association with 16 Gordon Setter PRA cases and 22 controls, we identified a novel PRA locus, termed rod–cone degeneration 4 (rcd4), on CFA17 (Praw = 2.22 × 10?8, Pgenome = 2.00 × 10?5), where a 3.2‐Mb region was homozygous within cases. A frameshift mutation was identified in C2orf71, a gene located within this region. This variant was homozygous in 19 of 21 PRA cases and was at a frequency of approximately 0.37 in the Gordon Setter population. Approximately 10% of cases in our study (2 of 21) are not associated with this C2orf71 mutation, indicating that PRA in this breed is genetically heterogeneous and caused by at least two mutations. This variant is also present in a number of Irish Setter dogs with PRA and has an estimated allele frequency of 0.26 in the breed. The function of C2orf71 remains unknown, but it is important for retinal development and function and has previously been associated with autosomal recessive retinitis pigmentosa in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号