首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Tatyana A. Rand 《Oecologia》2002,132(4):549-558
Herbivore damage and impact on plants often varies spatially across environmental gradients. Although such variation has been hypothesized to influence plant distribution, few quantitative evaluations exist. In this study I evaluated patterns of insect herbivory on an annual forb, Atriplex patula var. hastata, across a salt marsh tidal gradient, and performed experiments to examine potential causes and consequences of variation in herbivory. Damage to plants was generally twice as great at mid-tidal elevations, which are more frequently inundated, than at higher, less stressful, elevations at five of six surveyed sites. Field herbivore assays and herbivore preference experiments eliminated the hypothesis that plant damage was mediated by herbivore response to differences in host plants across the gradient. Alternately, greater herbivore densities in the mid-marsh, where densities of an alternate host plant (Salicornia europaea) were high, were associated with greater levels of herbivory on Atriplex, suggesting spillover effects. The effect of insect herbivores on host plant performance varied between the two sites studied more intensively. Where overall herbivore damage to plants was low, herbivory had no detectable effect on plant survival or seed production, and plant performance did not significantly differ between zones. However, where herbivore damage was high, herbivores dramatically reduced both plant survival (>50%) and fruit production (40-70%), and their effects were stronger in the harsher mid-marsh than the high marsh. Thus herbivores likely play a role in maintaining lower Atriplex densities in mid-marsh. Overall, these results suggest that variation in herbivore pressure can be an important determinant of patterns of plant abundance across environmental gradients.  相似文献   

2.
There is a lack of scientific consensus about how top-down and bottom-up forces interact to structure terrestrial ecosystems. This is especially true for systems with large carnivore and herbivore species where the effects of predation versus food limitation on herbivores are controversial. Uncertainty exists whether top-down forces driven by large carnivores are common, and if so, how their influences vary with predator guild composition and primary productivity. Based on data and information in 42 published studies from over a 50-year time span, we analyzed the composition of large predator guilds and prey densities across a productivity gradient in boreal and temperate forests of North America and Eurasia. We found that predation by large mammalian carnivores, especially sympatric gray wolves (Canis lupus) and bears (Ursus spp.), apparently limits densities of large mammalian herbivores. We found that cervid densities, measured in deer equivalents, averaged nearly six times greater in areas without wolves compared to areas with wolves. In areas with wolves, herbivore density increased only slightly with increasing productivity. These predator effects are consistent with the exploitation ecosystems hypothesis and appear to occur across a broad range of net primary productivities. Results are also consistent with theory on trophic cascades, suggesting widespread and top-down forcing by large carnivores on large herbivores in forest biomes across the northern hemisphere. These findings have important conservation implications involving not only the management of large carnivores but also that of large herbivores and plant communities.  相似文献   

3.
Stiling P  Moon DC 《Oecologia》2005,142(3):413-420
Resource quality (plant nitrogen) and resource quantity (plant density) have often been argued to be among the most important factors influencing herbivore densities. A difficulty inherent in the studies that manipulate resource quality, by changing nutrient levels, is that resource quantity can be influenced simultaneously, i.e. fertilized plants grow more. In this study we disentangled the potentially confounding effects of plant quality and quantity on herbivore trophic dynamics by separately manipulating nutrients and plant density, while simultaneously reducing pressure from natural enemies (parasitoids) in a fully factorial design. Plant quality of the sea oxeye daisy, Borrichia frutescens, a common coastal species in Florida, was manipulated by adding nitrogen fertilizer to increase and sugar to decrease available nitrogen. Plant density was manipulated by pulling by hand 25 or 50% of Borrichia stems on each plot. Because our main focal herbivore was a gall making fly, Asphondylia borrichiae, which attacks only the apical meristems of plants, manipulating plant nitrogen levels was a convenient and reliable way to change plant quality without impacting quantity because fertilizer and sugar altered plant nitrogen content but not plant density. Our other focal herbivore was a sap-sucker, Pissonotus quadripustulatus, which taps the main veins of leaves. Parasitism of both herbivores was reduced via yellow sticky traps that caught hymenopteran parasitoids. Plant quality significantly affected the per stem density of both herbivores, with fertilization increasing, and sugar decreasing the densities of the two species but stem density manipulations had no significant effects. Parasitoid removal significantly increased the densities of both herbivores. Top-down manipulations resulted in a trophic cascade, as the density of Borrichia stems decreased significantly on parasitoid removal plots. This is because reduced parasitism increases gall density and galls can kill plant stems. In this system, plant quality and natural enemies impact per stem herbivore population densities but plant density does not.  相似文献   

4.
The African elephant, Loxodonta africana, is under threat from habitat loss, poaching and human–elephant conflict. To mitigate for impact of habitat loss and reduce conflict, connectivity between elephant habitats can be improved through the protection of corridor areas. This study looks at elephant distribution and movement patterns within the Kasigau Wildlife Corridor (KWC) within the Tsavo Conservation Area in South‐east Kenya. Elephant presence data were obtained from observations by rangers during routine patrols across KWC, and were analysed in MaxEnt. The environmental factors predicting elephant distribution and density were tested, as well as the relationship between elephant maximum entropy and the presence and abundance of other wildlife. Seasonal variations in temperature and precipitation, plus presence of waterholes were found to play significant roles in elephant distribution across KWC. Higher elephant densities were not found to correlate with lower densities of other wildlife species; indeed, during the dry seasons, elephant presence was associated with greater wild herbivore densities. Besides illustrating the importance of the KWC for elephant conservation in the Tsavo ecosystem, both as a key corridor and habitat, this study also hopes to highlight the untapped utility of routine ranger patrol data, and encourage the use of such presence‐only data for deducing important knowledge for conservation of biodiversity.  相似文献   

5.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   

6.
Variation in plant traits among plant species may promote the development of a characteristic functional assemblage of insect herbivores associated with each plant species. However, only a small number of studies have detailed the representation of several herbivore guilds among co‐occurring plant species to determine whether the functional structure of herbivorous insect assemblages varies widely and consistently among plant species. The present study provides one of the few published data sets reporting on the density of several guilds of insect herbivores among numerous plant species. Variation in guild associations with plant phenology and season are also described. Insect herbivores were divided into 10 guilds, and the representation of these guilds was examined for 18 co‐occurring plant species. Guild densities and assemblage composition varied significantly among plant species, even when variation over time was taken into account. Variation in guild densities and assemblage composition were not strongly related to the taxonomic relationships of the plants. The highest densities of several guilds occurred in spring and summer, although other guilds were not strongly seasonal. Certain guilds were strongly associated with the presence of new leaves, whereas other guilds appeared to prefer mature leaves. This resulted in assemblage differences between samples containing new and mature leaves and samples containing mature leaves only. Even though the timing and duration of leaf and flower production varied among plant species, this did not explain all variation in guild densities among plant species. It is suggested that additional factors, including plant traits, are contributing to the wide and consistent variation in herbivore assemblage composition among plant species.  相似文献   

7.
Dlott  Franklin  Turkington  Roy 《Plant Ecology》2000,151(2):239-251
To understand inter-trophic linkages between components of the boreal forest understory vegetation, three hypotheses were tested: survival, growth and abundance of grasses and legumes were controlled by (i) resource availability alone, (ii) by herbivores alone, and (iii) by both resource availability and herbivores. The hypotheses were tested using three experimental treatments – fertilization, herbivore exclusion, and fertilization plus herbivore exclusion – in three areas having different densities of resident herbivores, mostly snowshoe hares and ground squirrels. The highest density of snowshoe hares is comparable to natural levels during peaks in the snowshoe hare cycle. As the density of herbivores increased so too did the level of response by the measured variables – survival, growth of transplants and leaf area index of established vegetation. In general, fertilization resulted in a decrease in survival and growth of transplants, and fences increased survival and growth; both responses were more noticeable at higher herbivore densities. Fertilizer and herbivore exclosure fences had only negligible effects on established grass and legume abundance at all hare densities. We have shown that some hypotheses of vegetation regulation are over-simplified because different species groups (i.e., grasses and legumes) are regulated by different factors, at different life history stages, and sometimes these factors act in opposing directions. We argue that during the increase phase and peak of the snowshoe hare cycle (high herbivore density), growth and survival of establishing plants is regulated by herbivores. During the decline and low phases of the snowshoe hare cycle herbivores will have little impact on early life stages, whereas the established, mature, vegetation will be resource-regulated. Because of the variability in responses to the same manipulations we may begin to understand which plant life history stages are most vulnerable to consumer and resource regulation, the magnitudes of these sources of regulation at each of these stages, and how these vary among species groups and types of environments.  相似文献   

8.
Kyle J. Haynes  Thomas O. Crist 《Oikos》2009,118(10):1477-1486
Habitat area, fragmentation, and the surrounding matrix influence levels of herbivory in various ecosystems, but the relative importance of these effects has rarely been assessed. We compared levels of herbivory and densities of dominant arthropod herbivores (the hemipteran insects Agallia constricta, Empoasca fabae, Therioaphis trifolii, Lygus lineolaris and Halticus bractatus ) among experimental plots that varied in the area and fragmentation of clover habitat and the composition of the matrix (bare ground or grass) surrounding clover habitat. To assess levels of herbivory, we compared clover biomass within herbivore exclosures to the biomass accessible to herbivores. The area and fragmentation of clover habitat, as well as matrix composition, significantly influenced the collective densities of herbivores, although each species exhibited unique responses to habitat structure. Herbivory was strongest in plots with large (64  m2) as compared to small (16  m2) amounts of clover habitat. The difference in clover biomass between the inside and outside of exclosures increased significantly with increasing density of Empoasca fabae but was unrelated to the densities of the other herbivores, suggesting that Empoasca fabae was an exceptionally important herbivore in this system. This study supports the view that herbivore densities and herbivory generally increase with increasing area of plant monocultures, but emphasizes that levels of herbivory may be driven primarily by one or a few key herbivore species.  相似文献   

9.
This paper deals with food selectivity in large herbivores of Eastern Mongolia, its factors, and their impact on the herbivore community structure. It is shown that, due to the degradation of vegetation, all studied herbivores display a significant selectivity level conditioned by their morpho–physiological features and spatial distribution. The selectivity seems to provide competitive advantages but no food niche differentiation. We suppose that herbivore communities in Eastern Mongolia, both human-controlled and wild, bear an increase of the small browser portion under pasture degradation. This, in turn, increases the degradation rate. This cyclic interaction shows a possible mechanism for the formation of endogenous crises in herbivore communities and can explain features of extinction events of large herbivores of the “Mammoth fauna.”  相似文献   

10.
The exceptional diversity of large mammals in African savannas provides an ideal opportunity to explore the relative importance of top‐down and bottom‐up controls of large terrestrial herbivore communities. Recent work has emphasized the role of herbivore and carnivore body size in shaping these trophic relationships. However, the lack of across‐ecosystem comparisons using a common methodology prohibits general conclusions. Here we used published data on primary production, herbivore and carnivore densities and diets to estimate the consumption fluxes between three trophic levels in four African savanna ecosystems. Our food web approach suggests that the body size distribution within and across trophic levels has a strong influence on the strength of top‐down control of herbivores by carnivores and on consumption fluxes within ecosystems, as predicted by theoretical food web models. We generalize findings from the Serengeti ecosystem that suggest herbivore species below 150 kg are more likely to be limited by predation. We also emphasize the key functional role played by the largest species at each trophic level. The abundance of the largest herbivore species largely governs the consumption of primary production in resident communities. Similarly, predator guilds in which the largest carnivore species represent a larger share of carnivore biomass are likely to exert a stronger top‐down impact on herbivores. Our study shows how a food web approach allows integrating current knowledge and offers a powerful framework to better understand the functioning of ecosystems.  相似文献   

11.
The functional composition of herbivorous insect assemblages was correlated with aspects of new and mature leaf surface features, anatomy and morphology across 18 co‐occurring plant species. Multivariate analyses of insects and leaf traits revealed that the functional composition of the herbivore assemblage was more strongly correlated with leaf structural traits than with leaf constituents. Leaf traits were more strongly correlated with the functional composition of the herbivore assemblage than with its taxonomic composition. Densities of sessile phloem feeders, ­rostrum chewers, and all herbivores were significantly negatively correlated with specific leaf weight, lamina and cuticle thickness, vascular tissue depth and stomate length, and were significantly positively correlated with stomate density. External chewer densities were significantly negatively correlated with percent lignified vein area, and significantly positively correlated with leaf surface area and the distance between lignified tissues. Spine‐like leaves were associated with significantly lower densities of sessile phloem feeders, external chewers and all herbivores compared to kite leaves (kite leaves are comprised of unfortified leaf tissue supported by a framework of vascular tissue). The presence of a thickened leaf hypodermis was associated with significantly lower densities of external chewers and rostrum chewers, while midrib protection was associated with significantly lower densities of external chewers. Leaf structural traits may not be the proximal factors influencing herbivorous insects, as leaf structural traits are correlated with many other plant traits such as photosynthetic rate, relative growth rate and leaf life‐span. Nonetheless, these results indicate that certain leaf structural traits may potentially be used to predict the functional structure of herbivorous insect assemblages. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 77 , 43–65.  相似文献   

12.
Population densities of large herbivores are determined by the diverse effects of density-dependent and independent environmental factors. In this study, we used the official 1998–2003 inventory data on ungulate numbers from 462 forest districts and 23 national parks across Poland to determine the roles of various environmental factors in shaping country-wide spatial patterns of ungulate abundances. Spatially explicit generalized additive mixed models showed that different sets of environmental variables explained 39 to 50 % of the variation in red deer Cervus elaphus, wild boar Sus scrofa, and roe deer Capreolus capreolus abundances. For all of the studied species, low forest cover and the mean January temperature were the most important factors limiting their numbers. Woodland cover above 40–50 % held the highest densities for these species. Wild boar and roe deer were more numerous in deciduous or mixed woodlands within a matrix of arable land. Furthermore, we found significant positive effects of marshes and water bodies on wild boar abundances. A juxtaposition of obtained results with ongoing environmental changes (global warming, increase in forest cover) may indicate future growth in ungulate distributions and numbers.  相似文献   

13.
Nora Underwood 《Oikos》2010,119(12):1993-1999
Net intraspecific density dependence experienced by insect herbivores at the scale of single plants can be a function both of induced resistance in the plant and other interactions among individual herbivores. Theory suggests that non‐linearity in the form of this density dependence can influence the effects of plants on herbivore population dynamics. This study examined both net density dependence at the scale of single plants, and changes in plant quality with herbivore density for Spodoptera exigua caterpillars on tomato plants. One experiment measured the growth of caterpillars moving freely about the plant at different densities, the distribution of damage by these caterpillars, and the quality of the plant as food for caterpillars (growth of caterpillars on undamaged leaf tissue excised from the plant). A second experiment measured plant quality for plants with different amounts of damage by caterpillars confined to particular leaves in mesh bags. Growth of S. exigua caterpillars was found to be negatively density dependent, and this was in part due to decreases in plant quality both as herbivore density increased and as the amount of damage increased. The response of plant quality to herbivores was found to have non‐linear features; there was both a threshold below which no significant decreases in quality (as measured by herbivore growth) occurred, and the decrease in herbivore performance saturated at the highest damage levels. In addition, it was found that caterpillar damage was significantly more aggregated than expected when multiple caterpillars occupy a single plant. This study confirms that host plants have the potential to be a source of density dependence that affects herbivore performance.  相似文献   

14.
Abstract.  1. Competition, food quality, and pressure from natural enemies have all been established as important determinants of phytophagous insect densities. Examining how these forces interact, however, is important for furthering our understanding of insect population and community ecology.
2. In this paper the results of a factorial field experiment are reported in which the effects of within-trophic-level interactions on the top-down and bottom-up forces influencing the density of a salt marsh planthopper were examined.
3. Plant quality was increased by adding nitrogen fertiliser, and parasitism was decreased through the use of yellow sticky traps that removed hymenopteran parasitoids. These treatments were applied to plots with either low or high densities of a lepidopteran stem borer, which has been shown to negatively affect the planthopper.
4. Addition of nitrogen increased planthopper density significantly, but only on plots with low stem borer densities. Yellow sticky traps significantly reduced parasitism of planthopper eggs, but this resulted in increased planthopper density only on plots with low stem borer density. Thus, where stem borer densities were high, the effects of fertiliser and reduced parasitism on planthopper densities were suppressed.
5. The results of this study show that negative interactions between herbivores can affect vertical trophic linkages, and can greatly modify the strengths of top-down or bottom-up effects on herbivore density.  相似文献   

15.
Urban agroecosystems can provide habitat for biodiversity and can benefit human communities through urban food provisioning. Moreover, urban agroecosystems could be managed so as to optimize ecosystem services like natural pest control provided by trophic interactions between natural enemies and herbivores. As in other ecosystems, predation and parasitism regulate herbivores in urban settings, but less is known about the relative importance of direct and indirect effects at local and landscape scales in highly managed urban agroecosystems. We collected data on herbivore (cabbage aphid) density and parasitism ratios (proportion of parasitized aphid “mummies”) in 25 community gardens in three counties in the California central coast, USA. We used structural equation modeling to examine the effects of direct factors (host plant characteristics and parasitism) and indirect factors (soil, garden, and landscape characteristics) on herbivore density changes at two time points in the growing season (June and August). Aphid density, but not parasitism, varied across counties over the season, and there was a strong negative relationship between aphid density and parasitism. Direct effects were strong drivers of aphid density but not parasitism. In June, aphid density increased with host plant volume but decreased with greater floral density, while parasitism was only influenced by aphid density. In August, host plant volume similarly positively affected aphid density, and soil water holding capacity increased host plant volume. In addition, host plant density had a strong negative effect on parasitism. Urban gardeners may be able to reduce aphid pest densities by increasing floral resource density and strategically spatially distributing host plants throughout garden beds, though these processes depend on the season. The indirect effects of soil water holding capacity on aphid densities further suggest a critical role of human management on pest populations and pest control services through soil amendments and irrigation.  相似文献   

16.
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.  相似文献   

17.
1 Submergence of coastal wetlands in Louisiana is currently rapid and widespread. A number of factors contribute to this loss of habitat, including the activities of herbivores. The objective of this study was to examine the effects of large mammals, predominantly nutria and wild boar, on processes controlling soil elevation in coastal marshes.
2 Effects of herbivores on soil and vegetation were assessed by the use of paired fenced and unfenced plots over two successive growing seasons. Above-ground biomass, litter production, changes in soil elevation, vertical soil accretion, shallow subsidence, below-ground production of roots and rhizomes, the thickness of the root zone, soil bulk density, and soil organic matter were measured.
3 Above-ground biomass, below-ground production, soil elevation and the expansion of the root zone decreased due to herbivore activity. Litter production, the rate of soil surface accretion and shallow soil subsidence were all higher in grazed compared to ungrazed plots, while soil organic matter and bulk density did not differ significantly between treatments.
4 The results indicate that herbivores can have a negative effect on soil building processes, primarily by reducing below-ground production and expansion of the root zone. Where natural rates of mineral sediment deposition are high, coastal marshes are expected to persist, despite herbivore activities. However, where sediment inputs are substantially less, herbivores may lead to destruction of habitat.  相似文献   

18.
The ongoing loss of large trees and densification of shrubs are two prevalent processes that take place in African savannas, with profound consequences for their structure and function. We evaluated herbivore impacts on savanna woody communities using a long-term exclosure experiment in the Kruger National Park, South Africa, with three treatments: the exclusion of large mammals only (i.e. elephant and giraffe), exclusion of all herbivores larger than a hare, and areas open to all herbivores. We asked three questions: (1) How did variable exclusion of herbivores affect woody density and structure across the catena (i.e. riparian, sodic and crest vegetation)? (2) Did the exclusion of herbivores result in unique woody species composition? (3) Did herbivore exclusion result in a higher proportion of palatable species? After 17 years, we found that herbivores mainly affected the heights and densities of existing species, rather than leading to turnover of woody species assemblages. Although densities of individuals increased in the full exclosure (350 ha−1), the change was more moderate than expected. By contrast, mixed mega-and meso-herbivores decreased the number of trees and shrubs (decreases of 780 ha−1) via a variety of physical impacts. Meso-herbivores alone, on the other hand, had less impact on individual density (i.e. no change), but limited average height growth and canopy dimensions in certain habitat types. Where elephants are present, they are effective at reducing the density of woody stems to the point of counteracting woody encroachment, but at the same time are actively preventing the persistence of large trees (>5 m) as well as preventing trees from recruiting to larger size classes. However, the lack of massive recruitment and woody cover increases with elephant exclusion, especially for more preferred species, suggests that factors beyond elephants, such as dispersal limitation, seed predation, and drought, are also acting upon species.  相似文献   

19.
Riginos C  Young TP 《Oecologia》2007,153(4):985-995
Plant–plant interactions can be a complex mixture of positive and negative interactions, with the net outcome depending on abiotic and community contexts. In savanna systems, the effects of large herbivores on tree–grass interactions have rarely been studied experimentally, though these herbivores are major players in these systems. In African savannas, trees often become more abundant under heavy cattle grazing but less abundant in wildlife preserves. Woody encroachment where cattle have replaced wild herbivores may be caused by a shift in the competitive balance between trees and grasses. Here we report the results of an experiment designed to quantify the positive, negative, and net effects of grasses, wild herbivores, and cattle on Acacia saplings in a Kenyan savanna. Acacia drepanolobium saplings under four long-term herbivore regimes (wild herbivores, cattle, cattle + wild herbivores, and no large herbivores) were cleared of surrounding grass or left with the surrounding grass intact. After two years, grass-removal saplings exhibited 86% more browse damage than control saplings, suggesting that grass benefited saplings by protecting them from herbivory. However, the negative effect of grass on saplings was far greater; grass-removal trees accrued more than twice the total stem length of control trees. Where wild herbivores were present, saplings were browsed more and produced more new stem growth. Thus, the net effect of wild herbivores was positive, possibly due to the indirect effects of lower competitor tree density in areas accessible to elephants. Additionally, colonization of saplings by symbiotic ants tracked growth patterns, and colonized saplings experienced lower rates of browse damage. These results suggest that savanna tree growth and woody encroachment cannot be predicted by grass cover or herbivore type alone. Rather, tree growth appears to depend on a variety of factors that may be acting together or antagonistically at different stages of the tree’s life cycle.  相似文献   

20.
Termites have a large influence on ecosystem functioning. Understanding what drives termite activity patterns improves understanding of nutrient cycling, productivity, and heterogeneity in savannas. We present a mechanistic framework that relates the interactive effects of rainfall, grassland structure, large herbivore presence, and soil factors to termite activity. To test this framework, we used grass litterbags to monitor termite activity at ten sites across Hluhluwe‐iMfolozi Park, South Africa. We assessed the effects of abiotic and biotic factors on termite activity at two scales: the large (landscape) scale, variation in bait removal among 300 m2 plots that were distributed across the park and at the small (within‐plot) scale (1–300 m2). Half of our sites were located inside large herbivore exclosures to test for the effect of mammalian herbivore presence. At the landscape scale, termite grass removal declined towards higher rainfall and in the presence of mammalian herbivores. Removal did not depend on soil factors. At the small scale, removal declined with increasing grass height, particularly in the 1 m surrounding the bait bag. Resource quality did not affect bait removal. We suggest that competition for forage drives the negative effect of mammalian herbivores on termites, whereas lower bait removal in taller swards may be due to direct negative effects from rainfall, fire and/or competition with free‐living microbes. Ultimately, we suggest that the impact of termites on nutrient cycling is most pronounced when abiotic (rainfall) and biotic conditions (mammalian herbivory) limit grass removal by fire and decomposition by free‐living microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号