首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
4.
5.
6.
Treatment with Pseudomonas putida WCS358r, a rifampicin‐resistant derivative of strain WCS358, significantly reduced fusarium wilt of carnation grown in rockwool if disease incidence was moderate, but not if disease incidence was high. Differences in disease incidence could intentionally be established by varying the inoculum density of the pathogen Fusarium oxysporum f. sp. dianthi (Fod). The effectiveness of disease suppression by WCS358r increased with decrease of inoculum density and consequently decrease of disease incidence. WCS358r and a Tn5 marked derivative of WCS358 (B243) reduced fusarium wilt of carnation most effectively if a low iron availability for the pathogen was established by adding unferrated or only partially ferrated ethylenediamine [di(o‐hydroxyphenylacetic) acid]. A Tn5 mutant of WCS358 defective in siderophore biosynthesis (JM218) did not reduce disease incidence. Siderophore production and inhibition of Fod by WCS358r in vitro decreased with increasing iron availability, supporting the more effective disease suppression by strains WCS358r and B243 at low iron availability. Siderophore‐mediated competition for iron was shown to be the mechanism of suppression of fusarium wilt of carnation by P. putida WCS358. Its effectivity was highest at a low iron availability and at a moderate disease incidence.  相似文献   

7.
8.
The initial step in the uptake of iron via ferric pseudobactin by the plant-growth-promoting Pseudomonas putida strain WCS358 is binding to a specific outer-membrane protein. The nucleotide sequence of the pupA structural gene, which codes for a ferric pseudobactin receptor, was determined. It contains a single open reading frame which potentially encodes a polypeptide of 819 amino acids, including a putative N-terminal signal sequence of 47 amino acids. Significant homology, concentrated in four boxes, was found with the TonB-dependent receptor proteins of Escherichia coli. The pupA mutant MH100 showed a residual efficiency of 30% in the uptake of 55Fe3+ complexed to pseudobactin 358, whereas the iron uptake of four other pseudobactins was not reduced at all. Cells of strain WCS374 supplemented with the pupA gene of strain WCS358 could transport ferric pseudobactin 358 but showed no affinity for three other pseudobactins. It is concluded that PupA is a specific receptor for ferric pseudobactin 358, and that strain WCS358 produces at least one other receptor for other pseudobactins.  相似文献   

9.
10.
Under iron-limited conditions, Pseudomonas putida WCS358 produces a siderophore, pseudobactin 358, which is essential for the plant growth-stimulating ability of this strain. Cells of strain WCS358, provided that they have been grown under Fe3+ limitation, take up 55Fe3+ from the 55Fe3+-labeled pseudobactin 358 complex with Km and Vmax values of 0.23 microM and 0.14 nmol/mg of cell dry weight per min, respectively. Uptake experiments with cells treated with various metabolic inhibitors showed that this Fe3+ uptake process was dependent on the proton motive force. Furthermore, strain WCS358 was shown to be able to take up Fe3+ complexed to the siderophore of another plant-beneficial P. fluorescens strain, WCS374. The tested pathogenic rhizobacteria and rhizofungi were neither able to grow on Fe3+-deficient medium in the presence of pseudobactin 358 nor able to take up 55Fe3+ from 55Fe3+-pseudobactin 358. The same applies for three cyanide-producing Pseudomonas strains which are supposed to be representatives of the minor pathogens. These results indicate that the extraordinary ability of strain WCS358 to compete efficiently for Fe3+ is based on the fact that the pathogenic and deleterious rhizosphere microorganisms, in contrast to strain WCS358 itself, are not able to take up Fe3+ from Fe3+-pseudobactin 358 complexes.  相似文献   

11.
12.
13.
Under iron limitationPseudomonas putida WCS358 produces a fluorescent siderophore, pseudobactin 358, which, after complexing iron, is transported back into the cell via the specific outer membrane receptor PupA. In addition, this strain has the capacity to take up iron via a large variety of siderophores produced by other fluorescent pseudomonads. Putative receptor genes for such siderophores were identified in the chromosome of strain WCS358 by PCR using primers matching two domains conserved in four ferric pseudobactin receptors, including PupA. Eleven amplification products within the expected size range were obtained. Sequence analysis confirmed that the products were derived from genes encoding outer membrane receptors. Two complete receptor genes were isolated from a genomic library ofP. putida WCS358. Both protein products are involved in the transport of a limited number of specific ferric pseudobactins. These results indicate that the ability ofP. putida WCS358 to exploit many different heterologous pseudobactins is related to the presence of multiple outer membrane receptor proteins.  相似文献   

14.
15.
Under iron limitationPseudomonas putida WCS358 produces a fluorescent siderophore, pseudobactin 358, which, after complexing iron, is transported back into the cell via the specific outer membrane receptor PupA. In addition, this strain has the capacity to take up iron via a large variety of siderophores produced by other fluorescent pseudomonads. Putative receptor genes for such siderophores were identified in the chromosome of strain WCS358 by PCR using primers matching two domains conserved in four ferric pseudobactin receptors, including PupA. Eleven amplification products within the expected size range were obtained. Sequence analysis confirmed that the products were derived from genes encoding outer membrane receptors. Two complete receptor genes were isolated from a genomic library ofP. putida WCS358. Both protein products are involved in the transport of a limited number of specific ferric pseudobactins. These results indicate that the ability ofP. putida WCS358 to exploit many different heterologous pseudobactins is related to the presence of multiple outer membrane receptor proteins.  相似文献   

16.
The plant-growth-stimulating Pseudomonas putida WCS358 was mutagenized with transposon Tn5. The resulting mutant colony bank was screened for mutants defective in the biosynthesis of the fluorescent siderophore. A total of 28 mutants, divided into six different classes, were isolated that were nonfluorescent or defective in iron acquisition or both. These different types of mutants together with the probable overall structure of the siderophore, i.e., a small peptide chain attached to a fluorescing group, suggest a biosynthetic pathway in which the synthesis of the fluorescing group is preceded by the synthesis of the peptide part. A gene colony bank of P. putida WCS358 was constructed with the broad-host-range cosmid vector pLAFR1. This genomic library, established in Escherichia coli, was mobilized into the 28 individual mutants, screening for transconjugants restored in fluorescence or growth under iron-limiting conditions or both. A total of 13 cosmids were found to complement 13 distinct mutants. The complementation analysis revealed that at least five gene clusters, with a minimum of seven genes, are needed for siderophore biosynthesis. Some of these genes seem to be arranged in an operon-like structure.  相似文献   

17.
18.
Pseudobactin production by Pseudomonas putida WCS358 significantly improves biological control of fusarium wilt caused by nonpathogenic Fusarium oxysporum Fo47b10 (P. Lemanceau, P. A. H. M. Bakker, W. J. de Kogel, C. Alabouvette, and B. Schippers, Appl. Environ. Microbiol. 58:2978-2982, 1992). The antagonistic effect of Fo47b10 and purified pseudobactin 358 was studied by using an in vitro bioassay. This bioassay allows studies on interactions among nonpathogenic F. oxysporum Fo47b10, pathogenic F. oxysporum f. sp. dianthi WCS816, and purified pseudobactin 358, the fluorescent siderophore produced by P. putida WCS358. Both nonpathogenic and pathogenic F. oxysporum reduced each other's growth when grown together. However, in these coinoculation experiments, pathogenic F. oxysporum WCS816 was relatively more inhibited in its growth than nonpathogenic F. oxysporum Fo47b10. The antagonism of nonpathogenic F. oxysporum against pathogenic F. oxysporum strongly depends on the ratio of nonpathogenic to pathogenic F. oxysporum densities: the higher this ratio, the stronger the antagonism. This fungal antagonism appears to be mainly associated with the competition for glucose. Pseudobactin 358 reduced the growth of both F. oxysporum strains, whereas ferric pseudobactin 358 did not; antagonism by pseudobactin 358 was then related to competition for iron. However, the pathogenic F. oxysporum strain was more sensitive to this antagonism than the nonpathogenic strain. Pseudobactin 358 reduced the efficiency of glucose metabolism by the fungi. These results suggest that pseudobactin 358 increases the intensity of the antagonism of nonpathogenic F. oxysporum Fo47b10 against pathogenic F. oxysporum WCS816 by making WCS816 more sensitive to the glucose competition by Fo47b10.  相似文献   

19.
Transport of ferric-siderophores across the outer membrane of gram-negative bacteria is mediated by specific outer membrane receptors. To localize the substrate-binding domain of the ferric-pseudobactin 358 receptor, PupA, of Pseudomonas putida WCS358, we constructed chimeric receptors in which different domains of PupA were replaced by the corresponding domains of the related ferric-pseudobactin receptors PupB and PupX, or the coprogen receptor FhuE of Escherichia coli. None of the chimeric proteins composed of pseudobactin receptor domains facilitated growth on any of the original substrates, or they showed only an extremely low efficiency. However, these receptors enabled cells of Pseudomonas BN8 to grow on media supplemented with uncharacterized siderophore preparations. These siderophore preparations were isolated from the culture supernatant of WCS358 cells carrying plasmids that contain genes of Pseudomonas B10 required for the biosynthesis of pseudobactin B10. Hybrid proteins that contained at least the amino-terminal 516 amino acids of mature FhuE were active as a receptor for coprogen and interacted with the E. coli TonB protein. A chimeric PupA-FhuE protein, containing the amino-terminal 94 amino acids of mature PupA, was also active as a coprogen receptor, but only in the presence of Pseudomonas TonB. It is concluded that the carboxy-terminal domain of ferric-pseudobactin receptors is important, but not sufficient, for ligand interaction, whereas binding of coprogen by the FhuE receptor is not dependent on this domain. Apparently, the ligand-binding sites of different receptors are located in different regions of the proteins. Furthermore, species-specific TonB binding by the PupA receptor is dependent on the amino-terminal domain of the receptor.  相似文献   

20.
The rpoS gene which encodes a stationary phase sigma factor has been identified and characterised from the rhizosphere-colonising plant growth-promoting Pseudomonas putida strain WCS358. The predicted protein sequence has extensive homologies with the RpoS proteins form other bacteria, in particular with the RpoS sigma factors of the fluorescent pseudomonads. A genomic transposon insertion in the rpoS gene was constructed, these mutants were analysed for their ability to produce siderophore (iron-transport agent) and the autoinducer quorum-sensing molecules called homoserine lactones (AHL). It was determined that RpoS was not involved in the regulation of siderophore and AHL production, synthesis of these molecules is important for gene expression at stationary phase. P. putida WCS358 produces at least three different AHL molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号