首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The light and truncated heavy chains of human factor VIII, expressed separately in baculovirus-infected insect cells, exhibited different secretory behaviour when compared with each other and with a biologically active fusion molecule of the truncated heavy and light chains.The light chain was very efficiently secreted into culture medium, as judged by high extracellular protein levels and the absence of evidence for light chain retention within cells.Alternatively, proteins containing the heavy chain sequence were poorly secreted and appeared to be sequestered within cells, suggesting that regions within the heavy chain are responsible for the low levels of secreted protein which have generally been observed for recombinant factor VIII.  相似文献   

2.
Reconstitution of human factor VIII from isolated subunits   总被引:3,自引:0,他引:3  
Human factor VII heterodimers were fractionated into component heavy and light chains using an anti-light chain specific monoclonal antibody immunosorbant. Neither the light chain nor the heavy chain alone possessed activity. Factor VII activity was reconstituted by recombining the subunits in the presence of Mn2+ or Ca2+. Reconstitution of activity also showed ionic strength dependence suggesting the importance of hydrophobic and electrostatic interactions. All factor VIII heavy chains (93 to 210 kDa) recombined with the 83 kDa light chain as judged by retention of all reconstituted heterodimeric forms by the monoclonal immunosorbant. Maximum specific activity (3 units/micrograms) was obtained at a 1:1 molar ratio of light chain:heavy chain. The presence of von Willebrand factor enhanced the rate of factor VIII reconstitution as much as 5-fold. This effect was both ionic strength-dependent and dose-dependent up to a 25-fold weight excess of von Willebrand factor over factor VIII.  相似文献   

3.
The essential role of Factor VIII:C (FVIII:C, anti-hemophilia factor A) as a cofactor for Factor IXa-dependent activation of Factor X has been established. In this paper, we describe that capillary endothelial cells from bovine adrenal medulla express active FVIII:C gene. Accumulation of FVIII:C in conditioned media from an 8-day-old culture is approximately twice as high as that stored in the cell when immunoprecipitated FVIII:C was analyzed for its ability to convert Factor X to Factor Xa. Analysis of [35S]methionine-labeled and immunoprecipitated FVIII:C from cells or conditioned media on SDS-PAGE under fully denatured conditions indicated that the newly synthesized FVIII:C consists of heavy chain of M(r) 200,000 and light chain of M(r) 46,000. The secreted FVIII:C in the non-reduced condition however, has a molecular weight of 270,000 which suggests that in native protein, the heavy and light chains are held together by S-S bonds. Furthermore, susceptibility of the immunoprecipitated FVIII:C to N-glycanase digestion establishes that the endothelial cells derived FVIII:C contains asparagine-linked carbohydrate side chains.  相似文献   

4.
The biosynthesis of von Willebrand protein by human endothelial cells was impaired by the presence of the carboxylic ionophore monensin. Several processing steps that have been localized to the Golgi apparatus were affected in a dose-dependent manner, including carbohydrate processing, dimer multimerization, and precursor cleavage. Since multimerization was more susceptible to the ionophore than was precursor cleavage, it appears that these processing steps are separate events. As expected, dimer formation, which occurs in the rough endoplasmic reticulum, was unaffected by monensin. Thus, at high concentrations of monensin, only dimer molecules were produced and secreted. The observed inhibition of multimer formation and precursor cleavage were not likely the result of incomplete carbohydrate processing, since inhibition of complex carbohydrate formation by swainsonine did not interfere with the other processing steps. Monensin also affected the capacity of endothelial cells to store von Willebrand protein, as the ratio of secreted to cell-associated protein increased dramatically in the presence of monensin, and the processed forms could not be found in the treated cells. The low molecular weight multimers produced in the presence of monensin did not incorporate in the endothelial cells' extracellular matrix nor did they bind to the matrix of human foreskin fibroblasts. In summary, the presence of monensin in human endothelial cell culture produced experimental conditions that mimic Type IIA von Willebrand disease, in that the cells synthesized and secreted only low molecular weight von Willebrand protein multimers, which were functionally defective.  相似文献   

5.
Factor VIII, a cofactor of the intrinsic clotting pathway, is proteolytically inactivated by the vitamin K-dependent serine protease, activated protein C in a reaction requiring Ca2+ and a phospholipid surface. Factor VIII was inactivated 15 times faster than factor VIII in complex with either von Willebrand factor (vWf) or the large homodimeric fragment, SPIII (vWf residues 1-1365). Free factor VIII or factor VIII in complex with a smaller fragment, SPIII-T4 (vWf residues 1-272), were inactivated at the same rate, suggesting that this effect was dependent upon the size of factor VIII-vWf complex rather than changes in factor VIII brought about by occupancy of the vWf-binding site. Thrombin cleavage of the factor VIII light chain to remove the vWf-binding site eliminated the protective effects of vWf. In the absence of phospholipid, high levels of the protease inactivated both free and vWf-bound factor VIII at equivalent rates. Using the same conditions, isolated heavy chains and the heavy chains of factor VIII were proteolyzed at similar rates. Taken together, these results suggested that, in the absence of phospholipid, inactivation of factor VIII is independent of factor VIII light chain and further suggest that vWf did not mask susceptible cleavage sites in the cofactor. Solution studies employing fluorescence energy transfer using coumarin-labeled factor VIII (fluorescence donor) and synthetic phospholipid vesicles labeled with octadecyl rhodamine (fluorescence acceptor) indicated saturable binding and equivalent extents of donor fluorescence quenching for factor VIII alone or when complexed with SPIII-T4. However, complexing of factor VIII with either vWf or SPIII eliminated its binding to the phospholipid. Since a phospholipid surface is required for efficient catalysis by the protease, these results suggest that vWf protects factor VIII by inhibiting cofactor-phospholipid interactions.  相似文献   

6.
Factor VIII circulates in noncovalent complex with von Willebrand factor (vWf). The topography of this complex was evaluated by fluorescence energy transfer using factor VIII subunits modified with N-(1-pyrenyl)maleimide (NPM; fluorescence donor) and vWf-derived fragments modified with 7-diethylamino-3-[4'-maleimidylphenyl]-4-methyl coumarin (CPM; fluorescence acceptor). Results from a previous study indicated an interfactor VIII subunit distance of 20 A separating Cys528 and Cys1858 in the factor VIII heavy and light chains, respectively (Fay, P.J., and Smudzin, T. M. (1989) J. Biol. Chem. 264, 14005-14010). Fluorophore modification of the vWf SPIII homodimer (residues 1-1365) indicated multiple attachment sites at Cys126/135/1360 as determined from sequence analysis of fluorescent tryptic peptides derived from the modified protein. Based upon donor quenching data, an interfluorophore distance of approximately 28 A was calculated separating NPM-factor VIII light chain or factor VIII reconstituted from NPM-light chain plus unmodified heavy chain, from CPM-SPIII. A similar value (29 A) was obtained for NPM-light chain paired with CPM-SPIII-T4 (vWf residues 1-272), suggesting that donor quenching resulted primarily from modified residue(s) Cys126/135 in the acceptor. No energy transfer was observed for the NPM-heavy chain/CPM-SPIII pairing. However, when NPM-heavy chain was reassociated with unmodified light chain prior to reaction with CPM-SPIII or CPM-SPIII-T4, energy transfer was observed with calculated interfluorophore distances of approximately 31 and 34 A, respectively. Levels of acceptor resulting in maximal donor quenching suggested an equimolar stoichiometry of factor VIII (light chain)/vWf fragment in the reconstituted complexes. These results indicate a close spatial arrangement among the A3 domain of factor VIII light chain, the A2 domain of factor VIII heavy chain, and the NH2 terminus region of vWf in the factor VIII-vWf complex.  相似文献   

7.
A rat monoclonal antibody specific for immunoglobulin (Ig) heavy chain binding protein (BiP) has allowed the examination of the association of BiP with assembling Ig precursors in mouse B lymphocyte-derived cell lines. The anti-BiP monoclonal antibody immunoprecipitates BiP along with noncovalently associated Ig heavy chains. BiP is a component of the endoplasmic reticulum and binds free intracellular heavy chains in nonsecreting pre-B (mu+, L-) cell lines or incompletely assembled Ig precursors in (H+, L+) secreting hybridomas and myelomas. In the absence of light chain synthesis, heavy chains remain associated with BiP and are not secreted. The association of BiP with assembling Ig molecules in secreting hybridomas is transient and is restricted to the incompletely assembled molecules which are found in the endoplasmic reticulum. BiP loses affinity and disassociates with Ig molecules when polymerization with light chain is complete. We propose that the association of BiP with Ig heavy chain precursors is a novel posttranslational processing event occurring in the endoplasmic reticulum. The Ig heavy chains associated with BiP are not efficiently transported from the endoplasmic reticulum to the Golgi apparatus. Therefore, BiP may prevent the premature escape and eventual secretion of incompletely assembled Ig molecules.  相似文献   

8.
摘要用双载体转运凝血VⅢ因子基因在甲型血友病基因治疗研究中可克服AAV毒载体容量限制,但存在重链分泌低效和链不均衡性问题。为探索重、轻链间二硫键形成对重链分泌的促进作用,该丈用双载体转B结构域大部缺失型FVⅢ(BDD-FVⅢ)的重链和轻链基因,将重链的Tyr664和轻链Thr1826突变为Cys,研究了HEK293细胞共转基因后的基因表达、分泌至培养上清的重链量和凝血生物活性。用Western blot检测细胞裂解液结果显示,非还原条件下有明显的二硫键交联的重、轻链蛋白;链特异性ELISA定量检测细胞分泌的重链为(125+29)ng/mL,明显高于共转野生型重链和轻链基因细胞的(75+23)ng/mL;Coatest法显示细胞分泌的凝血活性为(0.784±0.29)U/mL.也明显高于共转野生型重链和轻链基因细胞(0.34+0.12)U/mL。结果表明,重、轻链间的二硫键形成可提高双载体转FVⅢ基因的功效,为进一步在动物体内转基因提供了实验依据。  相似文献   

9.
Heavy chain-binding protein (BiP) associates posttranslationally with nascent Ig heavy chains in the endoplasmic reticulum (ER) and remains associated with these heavy chains until they assemble with light chains. The heavy chain-BiP complex can be precipitated by antibody reagents against either component. To identify sites on heavy chain molecules that are important for association with BiP, we have examined 30 mouse myelomas and hybridomas that synthesize Ig heavy chains with well characterized deletions. Mutant Ig heavy chains that lack the CH1 domain could not be demonstrated to associate with BiP, whereas mutant Ig heavy chains with deletions of the CH2 or CH3 domain were still able to associate with BiP. In two light chain negative cell lines that produced heavy chains with deletions of the CH1 domain, free heavy chains were secreted. When Ig assembly and secretion were examined in mutants that did not associate with BiP, and were compared with normal parental lines, it was found that the rate of Ig secretion was increased in the mutant lines and that the Ig molecules were secreted in various stages of assembly. In one mutant line (CH1-) approximately one-third of the secreted Ig molecules were incompletely assembled, whereas the Ig molecules secreted by the parental line were completely assembled. Our data show the CH1 domain to be important for association with BiP and that when this association does not occur, incompletely assembled heavy chains can be secreted. This implies a role for BiP in preventing the transport of unassembled Ig molecules from the ER.  相似文献   

10.
Biosynthesis of von Willebrand protein by human umbilical vein endothelial cells involved distinct processing steps marked by the presence of several intermediate molecular species. Examination of endoglycosidase H sensitivity of these intracellular intermediates indicated that the processing steps occurred in at least two separate cellular compartments. In the pre-Golgi apparatus (most probably the endoplasmic reticulum), the high mannose carbohydrates were added onto the precursor monomer chains and the 260,000-mol-wt monomers dimerized by interchain disulfide bond formation. The other processing steps have been localized to the Golgi apparatus and later compartments (e.g., Weibel-Palade bodies). High mannose carbohydrate was converted to the complex type, leading to the appearance of a larger precursor subunit of 275,000 mol wt. The 275,000-mol-wt species was not formed if carbohydrate processing was inhibited by the ionophore monensin. From the large pool of dimers of precursor subunits, the high molecular weight multimers were built. These dimer molecules appeared to have free sulfhydryls which might have been involved in the interdimer disulfide bond formation. Simultaneously with multimerization, the precursor subunits were cleaved to the 220,000-mol-wt form. The cleavage of the pro-sequence was not likely to be an absolute requirement for von Willebrand protein multimerization or secretion, as the 275,000-mol-wt precursor subunit was present in secreted high molecular weight multimers of the protein.  相似文献   

11.
Deficiency in coagulation factor VIII leads to the bleeding disorder hemophilia A. Previous studies demonstrated that factor VIII secretion is limited due to an ATP-requiring step early in the secretory pathway. In this report, we identified that this ATP-dependent rate-limiting step involves the dissociation of non-disulfide-linked aggregates within the endoplasmic reticulum (ER). In contrast to the numerous examples of interchain disulfide-linked aggregates, factor VIII is the first protein characterized to form non-disulfide-linked high molecular weight aggregates within the ER. Approximately a third of newly synthesized factor VIII was detected in high molecular weight aggregates. These aggregates disappeared over time as functional factor VIII appeared in the medium. The aggregated complexes did not require proteasomal degradation for clearance. Aggregate formation was enhanced by ATP depletion, and upon restoration of metabolic energy, these aggregates were dissociated and secreted. With the coexpression of von Willebrand factor (vWF), a small portion of vWF coaggregated with factor VIII. However, vWF dissociated from the aggregates more rapidly than factor VIII, supporting that these aggregates are dynamic. An increase in the factor VIII expression level elicited a corresponding increase in the fraction of factor VIII that was aggregated. In addition, a 110 amino acid sequence containing a hydrophobic beta-sheet within factor VIII was identified that may predispose factor VIII to aggregation. These data show that formation and ATP-dependent dissolution of nondisulfide-linked factor VIII aggregates is a dynamic, rate-limiting step during the folding process in the early secretory pathway. In summary, we have identified an unprecedented requirement for protein transport out of the ER that involves an ATP-dependent dissociation of non-disulfide-linked aggregates within the ER.  相似文献   

12.
The proteolytic activation of highly purified, heterodimeric porcine factor VIII and factor VIII-von Willebrand factor complex by thrombin was compared at I 0.17, pH 7.0, 22 degrees C. During the activation of factor VIII, heavy-chain cleavage is necessary to activate the procoagulant function, whereas light-chain cleavage is required to dissociate factor VIII from von Willebrand factor. The kinetics of activation of free factor VIII and factor VIII-von Willebrand factor complex were identical. The steady-state kinetics of thrombin-catalyzed heavy-chain cleavages and light-chain cleavage of factor VIII either free or in complex with von Willebrand factor were studied using sodium dodecyl sulfate-polyacrylamide gel radioelectrophoresis and scanning densitometry of fragments derived from 125I-labeled factor VIII. Association of factor VIII with von Willebrand factor resulted in an 8-fold increase in the catalytic efficiency (kcat/Km) of light-chain cleavage (from 7 x 10(6) to 54 x 10(6) M-1 s-1). The catalytic efficiencies of heavy-chain cleavage at position 372 (approximately 6 x 10(6) M-1 s-1) and position 740 (approximately 100 x 10(6) M-1 s-1) were not affected by von Willebrand factor. We conclude that von Willebrand factor promotes cleavage of the factor VIII light chain by thrombin which is followed by rapid dissociation of the complex, so that the rate-limiting step becomes heavy-chain cleavage at position 372. This accounts for the observation that von Willebrand factor has no effect on the kinetics of activation of factor VIII by thrombin.  相似文献   

13.
Factor VIII is represented as a series of heterodimers composed of an 83(81) kDa light chain noncovalently bound to a variable size (93 to 210 kDa) heavy chain. Activated protein C inactivates factor VIII causing several cleavages of the factor VIII heavy chain(s). When factor VIII subunits were dissociated and component heavy and light chains isolated, the heavy chains were no longer a substrate for proteolysis by activated protein C. However, when factor VIII heavy chains were recombined with light chain, the reconstituted factor VIII activity was inactivated by activated protein C. The rate of factor VIII inactivation catalyzed by activated protein C was reduced by the presence of free light chain. The extent of this inhibition was dependent upon the concentration of light chain. Control experiments indicated that this protective effect of free light chain was not the result of inhibition of the activated protein C - lipid interaction. Fluorescence analysis demonstrated binding between the factor VIII light chain, chemically modified with eosin maleimide, and activated protein C, modified at its active site by dansyl-Glu-Gly-Arg chloromethyl ketone. Similar to proteolysis of factor VIII by activated protein C, this binding was dependent upon a lipid surface. Based upon the degree of fluorescence quenching, a spatial distance of 26 A was calculated separating the two fluorophores. These results demonstrate direct binding of activated protein C to the factor VIII light chain and suggest that this binding is an obligate step for activated protein C-catalyzed inactivation of factor VIII.  相似文献   

14.
Two conditions were identified that interfered with the complex polymerization process in biosynthesis of von Willebrand factor (vWf). Treatment of human umbilical vein endothelial cells with tunicamycin inhibited N-linked glycosylation of nascent vWf and the resulting pro-vWf monomers failed to dimerize. The single subunits accumulated in the endoplasmic reticulum and were neither processed further nor secreted. In the presence of a weak base (ammonium chloride or chloroquine), interdimer disulfide bond formation was inhibited in a dose-dependent manner. This process appeared therefore to be pH sensitive and likely to be initiated in the acidic trans-Golgi apparatus (Anderson, R. G. W., and R. K. Pathak, 1985, Cell, 40: 635-643). The weak base had no obvious effect on the other processing steps, i.e. dimerization, complex carbohydrate formation and sulfation, and produced only slight inhibition of prosequence cleavage. On the other hand, the weak base interfered with the targeting of newly synthesized vWf into Weibel-Palade bodies, with all of the vWf being secreted constitutively and none stored in the Weibel-Palade bodies. In summary, initial glycosylation of the nascent vWf protein and low pH in the trans-Golgi apparatus were important conditions for the successful polymerization of human vWf. Genetic defects disrupting any one of these conditions could result in the phenotype of von Willebrand disease.  相似文献   

15.
A third immunoglobulin class in amphibians   总被引:3,自引:0,他引:3  
A new class of immunoglobulin (IgX) has been found in the South African frog, Xenopus laevis, and other related species. IgX can be immunoprecipitated by monoclonal antibodies directed against determinants found on Xenopus light chain, or on variable regions of heavy chains. Reagents specific for the heavy chain of IgM or the amphibian IgG equivalent, IgY, failed to react with IgX. IgX, which exists in serum as a polymer, is composed of subunits of disulfide-bonded heavy chains of 80,000 daltons and light chains of 25,000 to 29,000 daltons. Like mu, the heavy chain of IgX carries a large amount of asparagine-linked carbohydrate, but the partial peptide maps of the two are different. Although the concentration of IgX varies greatly in the serum of individual frogs, it is always secreted in cultures of cells from the spleen and intestinal mucosae.  相似文献   

16.
Inactivation of factor VIII by activated protein C and protein S   总被引:4,自引:0,他引:4  
Factor VIII was inactivated by activated protein C in the presence of calcium and phospholipids. Analysis of the activated protein C-catalyzed cleavage products of factor VIII indicated that inactivation resulted from the cleavage of the heavy chains. The heavy chains appeared to be converted into 93- and 53-kDa peptides. Inactivation of factor VIII that was only composed of the 93-kDa heavy chain and 83-kDa light chain indicated that the 93-kDa polypeptide could be degraded into a 68-kDa peptide that could be subsequently cleaved into 48- and 23-kDa polypeptides. Thus, activated protein C catalyzed a minimum of four cleavages in the heavy chain. Activated protein C did not appear to alter the factor VIII light chain. The addition of protein S accelerated the rate of inactivation and the rate of all of the cleavages. The effect of protein S could be observed on the cleavage of the heavy chains and on secondary cleavages of the smaller products, including the 93-, 68-, and 53-kDa polypeptides. The addition of factor IX to the factor VIII-activated protein C reaction mixture resulted in the inhibition of factor VIII inactivation. The effect of factor IX was dose dependent. Factor VIII was observed to compete with factor Va for activated protein C. The concentration dependence of factor VIII inhibition of factor Va inactivation suggested that factor VIII and factor Va were equivalent substrates for activated protein C.  相似文献   

17.
Secretory immunoglobulin (Ig) A is a decameric Ig composed of four alpha-heavy chains, four light chains, a joining (J) chain, and a secretory component (SC). The heavy and light chains form two tetrameric Ig molecules that are joined by the J chain and associate with the SC. Expression of a secretory monoclonal antibody in tobacco (Nicotiana tabacum) has been described: this molecule (secretory IgA/G [SIgA/G]) was modified by having a hybrid heavy chain sequence consisting of IgG gamma-chain domains linked to constant region domains of an IgA alpha-chain. In tobacco, about 70% of the protein assembles to its final, decameric structure. We show here that SIgA/G assembly and secretion are slow, with only approximately 10% of the newly synthesized molecules being secreted after 24 h and the bulk probably remaining in the endoplasmic reticulum. In addition, a proportion of SIgA/G is delivered to the vacuole as at least partially assembled molecules by a process that is blocked by the membrane traffic inhibitor brefeldin A. Neither the SC nor the J chain are responsible for vacuolar delivery, because IgA/G tetramers have the same fate. The parent IgG tetrameric molecule, containing wild-type gamma-heavy chains, is instead secreted rapidly and efficiently. This strongly suggests that intracellular retention and vacuolar delivery of IgA/G is due to the alpha-domains present in the hybrid alpha/gamma-heavy chains and indicates that the plant secretory system may partially deliver to the vacuole recombinant proteins expected to be secreted.  相似文献   

18.
The asparagine-linked oligosaccharide chains of human von Willebrand factor (vWF) purified from pooled plasma were quantitatively liberated from the polypeptide moiety by hydrazinolysis. After N-acetylation, these were fractionated by paper electrophoresis and sequential chromatography on lectin-affinity columns of concanavalin A, Phaseolus vulgaris erythrophytohemagglutinin, Datura stramonium agglutinin, Ricinus communis agglutinin 120, and Ulex europaeus agglutinin I and on a Bio-Gel P-4 column. Their structures were investigated by sequential exoglycosidase digestion in conjunction with methylation analysis. The glycoprotein was shown to be unique in its great diversity of oligosaccharide structures. Another noteworthy finding which had not been reported previously was the occurrence of asparagine-linked oligosaccharide chains with blood group A, B, and H(O) structures. In the present study, this glycoprotein was shown to contain mono- (0.4% of the total oligosaccharides), bi-(78.2%), tri- (12.3%), and tetraantennary (2.3%) complex type oligosaccharides in addition to a series of high mannose type oligosaccharides, Man6-9GlcNAc2 (0.8%). Biantennary complex type oligosaccharide chains were those with (8.2%) and without (70.0%) a bisecting GlcNAc residue and approximately 13.2%, 2.2%, and 0.4% of these contained blood group H(O), A, and B structures, respectively. The tri- and tetraantennary complex type chains were those with and without N-acetyllactosamine repeats, and about 13.0% of the triantennary chains without the N-acetyllactosamine repeat contained the blood group H(O) structure. Occurrence of these asparagine-linked oligosaccharides with blood group A and B structures suggest that the repeated use of factor VIII/vWF pooled concentrate for the treatment of hemophiliacs could result in the production of antibodies against vWF with a different blood group from that of the patient, and this development may be pathogenic.  相似文献   

19.
Blood coagulation factor VIII is a large glycoprotein that circulates in plasma at relative low concentration (0.1 microgram/ml). It consists of a heterogeneous mixture of a series heavy-chain peptides (90-200 kDa), each associated with a light chain of 80 kDa. To gain insight into the physical properties of the protein, we have characterized purified human factor VIII by electron microscopy and rotary shadowing. Electron microscopy of rotary shadowed factor VIII molecules showed predominantly a single globular domain structure, with a somewhat asymmetric shape, while two-domain structures were also encountered. The overall dimensions of the globular domains ranged from 4 x 6 nm to 8 x 12 nm. EDTA treatment of factor VIII reduced the overall dimensions (2.5 x 5 nm to 6 x 10 nm) while treatment with thrombin reduced the dimensions to a small extent. In complexes with von Willebrand factor, factor VIII appeared localized at the globular domains of von Willebrand factor multimers. In addition, incubation of factor VIII with Staphylococcus aureus V8 protease fragments SpII and SpIII revealed only binding to the globular domains of SpIII. In this study, the first morphological characterization of human factor VIII is presented, together with its direct localization on von Willebrand factor multimers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号