首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This investigation was performed to study the effect on plant water relations and growth when some of roots grow into dry soil. Common spring water (Triticum aestivum) plants were grown from seed in soil in 1.2 m long PVC (polyvinyl chloride) tubes. Some of the tubes had a PVC partition along their center so that plants developed a split root system (SPR). Part of the roots grew in fully irrigated soil on one side of the partition while the rest of the roots grew into a very dry (-4.1 MPa) soil on the other side of the partition. Split root plants were compared with plants grown from emergence on stored soil moisture (STOR) and with plants that were fully irrigated as needed (IRR). The experiment was duplicated over two temperature regimes (10°/20°C and 15°/25°C, night/day temperatures) in growth chambers. Data were collected on root dry matter distribution, soil moisture status, midday leaf water potential (LWP), leaf relative water content (RWC) and parameters of plant growth and yield.Some roots were found in the dry side of SPR already at 21 DAE (days after emergence) at a soil depth of 15 to 25 cm. Soil water potential around these roots was -0.7 to -1.0 MPa at midday, as compared with the initial value of -4.1 MPa. Therefore, water apparently flowed from the plant into the dry soil, probably during the night. Despite having most of their roots (around 2/3 of the total) in wet soil, SPR plants developed severe plant water stress, even in comparison with STOR plants. Already at 21 DAE, SPR plants had a LWP of -1.5 to -2.0 MPa, while IRR and STOR had a LWP of -0.5 MPa or higher. As a consequence of their greater plant water stress, SPR as compared with IRR plants were lower in tiller number, ear number, shoot dry matter, root dry matter, total biomass, plant height and grain yield and had more epicuticular wax on their leaves.It was concluded that the exposure of a relatively small part of a plant root system to a dry soil may result in a plant-to-soil water potential gradient which may cause severe plant water stress, leading to reduced plant growth and yield.  相似文献   

2.
A pot study was conducted to measure the extent of and determine the factors controlling fine root and nodule shedding following coppicing of Sesbania sesban and Leucaena leucocephala. Fine (<2 mm) root biomass decreased below pre-cutting values, but the decreases were not statistically significant in either species. Living (white) nodule biomass decreased and dead (brown) nodule biomass increased significantly two weeks after cutting in both species. These changes were relatively greater in Sesbania than in Leucaena. In the uncut treatments of both species, fine root and nodule biomass were correlated with leaf biomass, and in the cut treatments, root and nodule biomass returned to near this apparent equilibrium by two weeks after cutting. Stem growth rate per unit leaf area was not different between cut and uncut treatments, nor was it correlated with root:leaf ratios in either species. Leucaena allocated a greater fraction of its total biomass below-ground, and a greater fraction of its below-ground biomass to coarse (>2 mm) roots than Sesbania. These results are consistent with the hypothesis that relatively lower allocation to below-ground storage tissue is the cause for Sesbania's relatively greater sensitivity to cutting.  相似文献   

3.
Herbivory and water shortage are key ecological factors affecting plant performance. While plant compensatory responses to herbivory include reallocation of biomass from below‐ground to above‐ground structures, plant responses to reduced soil moisture involve increased biomass allocation to roots and a reduction in the number and size of leaves. In a greenhouse study we evaluated the effects of experimental drought and leaf damage on biomass allocation in Convolvulus demissus (Convolvulaceae), a perennial herb distributed in central Chile, where it experiences summer drought typical of Mediterranean ecosystems and defoliation by leaf beetles and livestock. The number of leaves and internode length were unaffected by the experimental treatments. The rest of plant traits showed interaction of effects. We detected that drought counteracted some plant responses to damage. Thus, only in the control watering environment was it observed that damaged plants produced more stems, even after correcting for main stem length (index of architecture). In the cases of shoot : root ratio, relative shoot biomass and relative root biomass we found that the damage treatment counteracted plant responses to drought. Thus, while undamaged plants under water shortage showed a significant increase in root relative biomass and a significant reduction in both shoot : root ratio and relative shoot biomass, none of these responses to drought was observed in damaged plants. Total plant biomass increased in response to simulated herbivory, apparently due to greater shoot size, and in response to drought, presumably due to greater root size. However, damaged plants under experimental drought had the same total biomass as control plants. Overall, our results showed counteractive biomass allocation responses to drought and damage in C. demissus. Further research must address the fitness consequences under field conditions of the patterns found. This would be of particular importance because both current and expected climatic trends for central Chile indicate increased aridity.  相似文献   

4.
Uptake of bacteriophage f2 through plant roots.   总被引:1,自引:1,他引:0       下载免费PDF全文
A model system was designed to measure viral uptake through the roots of plants and translocation to distal plant parts. For this study, uptake of bacteriophage f2 was measured in corn and bean plants growing in hydroponic solutions. Few phage were detected in plants with uncut roots. However, when roots of both plant types were cut just before exposure to very high concentrations of phage, the amount of phage uptake was several orders of magnitude greater than with uncut roots, but still was considerably less than that which was theoretically possible. Furthermore, cut roots were rapidly repaired, thus inhibiting uptake, and the amount of uptake in plants with cut roots was proportional to phage exposure levels. Finally, phage were transported to all plant parts examined, but their survival times within each portion of the plants appeared to be of limited duration. All of these factors tend to minimize the possible public health significance associated with viral uptake through the root systems of plants.  相似文献   

5.
改变土壤根系的分布以汲取深层土壤水分的能力是植物避免干旱的主要策略。山黧豆是一种抗逆性强的豆类作物,该研究通过起垄条播控制性沟灌的方式,设置传统灌溉(FI)、交替灌溉(PRD,灌水量减少50%)和不灌溉(NI)3种处理模式,探索不同灌溉模式对播种后不同时期山黧豆土壤水分、根系分布、叶片气体交换、水分利用效率和籽粒产量的影响。结果表明:(1)在FI、PRD和NI处理下,山黧豆的根系分别有89.8%、86.9%和84.9%生长在0~20 cm的表层土壤中;干旱胁迫使PRD和NI处理下深层土壤中根系的比例提高至13.05%和15.07%。(2)在整个生育期内,土壤干旱显著降低了山黧豆叶片的净光合速率、蒸腾速率和气孔导度;在种植后60 d时,PRD和NI处理下叶片的瞬时水分利用效率分别较FI处理显著提高了21.4%和14.9%。(3)干旱胁迫显著降低了山黧豆植株高度、第一豆荚高、平均结荚数和豆粒数以及地上部和根系的干重,但显著增加了根冠比;PRD处理对豆荚长度、豆荚重和每荚豆粒重没有显著影响;PRD和NI处理下山黧豆平均籽粒产量分别比FI处理显著降低了53%和63%。研究发现,在干旱胁迫条件下,山黧豆能够通过提高深层土壤中根系的比例、更多吸收深层土壤水分、显著增加根冠比以及显著提高生殖生长期叶片的瞬时水分利用效率,减轻干旱胁迫对自身生长的影响。该研究结果可为山黧豆在旱区推广种植提供理论依据。  相似文献   

6.
干旱胁迫对蒙古黄芪生长及根部次生代谢物含量的影响   总被引:3,自引:0,他引:3  
梁建萍  贾小云  刘亚令  吴云  周然  冯前进 《生态学报》2016,36(14):4415-4422
以山西道地药材黄芪一年生幼苗为试验材料,设置常规水分条件(CK)、轻度干旱胁迫(A1)、中度干旱胁迫(A2)、重度干旱胁迫(A3)4个不同处理,研究土壤干旱胁迫对黄芪生长及生理的影响。结果表明:黄芪茎叶快速生长集中在出苗后80—120d,以后生长减缓;当茎叶枯萎时,根中生物量短期快速积累。与常规水分条件相比,干旱胁迫处理显著降低了黄芪苗高及茎叶生物量,但对抗氧化能力、根系生长及次生代谢物积累产生了不同的影响。轻度干旱胁迫下SOD、POD、CAT 3种抗氧化酶活性升高,丙二醛(MDA)含量和细胞膜透性降低,同时根长与根生物量增加、多糖与皂苷两种次生代谢物积累增多,黄芪药材的质量得到显著提高(P0.05);胁迫上升到中度、重度时,SOD酶活性逐渐降低,重度胁迫下低于对照,而POD及CAT酶活性、MDA含量、细胞膜透性均随胁迫增强而升高,相反,根长、根生物量、多糖与皂苷含量降低,导致黄芪药材的质量显著降低(P0.01)。综上表明,干旱胁迫下,SOD酶表现较为敏感,可能在清除活性氧中起主要作用;轻度水分胁迫能有效启动黄芪体内抗氧化酶系统和次生代谢,它们相互协作共同对抗胁迫对细胞产生的伤害,通过降低地上部分的生长,将营养物质优先运往根部,促进根产量及药材质量的提高。这一结论,可在黄芪多糖和皂苷次生代谢物定向培育的水分管理中加以利用。  相似文献   

7.
As competition for the limited water supply available for irrigation of horticultural crops increases, research into crop management practices that enhance drought resistance, plant water-use efficiency and plant growth when water supply is limited has become increasingly essential. This experiment was conducted to determine the effect of potassium (K) nutritional status on the drought resistance of Hibiscus rosa-sinensis L. cv. Leprechaun (Hibiscus). All the treatments were fertilized with Hoagland's nutrient solution, modified to supply K as K2SO4, at 0 mM K (K0), 2.5 mM K (K2.5), and 10 mM K (K10), under two irrigation regimes (drought stressed [DS] and non-drought stressed [non-DS]). Regular irrigation and fertigation were adopted for 54 days, and drought stress treatment (initiated on day 55) lasted for 21 days; while non-DS control plants continued to receive regular irrigation and fertigation. Following the 21-day drought stress period, plants were labeled with 86Rb+ to determine the percentage of post-drought stress live roots. Both K deficiency (K0) and drought stress reduced shoot growth, but drought stress increased root growth and thus the root:shoot ratio. At K0, plants were K-deficient and had the lowest leaf K, Fe, Mn, Zn, Cu, B, Mo and Al, and highest Ca concentrations. Although the percentage of live roots was decreased by drought stress, K2.5 and K10 plants (with similar percent live roots) had greater root survival ratio after drought treatment than the K-deficient plants. These observations indicate that adequate K nutrition can improve drought resistance and root longevity in Hibiscus rosa-sinensis.  相似文献   

8.
Container and field experiments, in which Typha latifolia L. and Typha angustifolia L. were cut either above or below the water level, were conducted to determine the physiological basis for reports that the latter treatment was more effective as a control measure. In containers, measurements of oxygen concentrations within the aerenchyma of the rhizome both with an oxygen electrode and by gas chromatography showed that oxygen could diffuse very readily to plant parts growing in an anoxic environment if there was a small amount of leaf or cut plant stem growing above the water level. When all shoots were cut below water, the oxygen in submersed plant parts was rapidly consumed and anaerobic respiration resulted in the production of ethanol. Lactate or elevated malate levels were not found. The below-water biomass decayed rapidly under these conditions and the plants had a much lower regenerative ability than plants cut above water where oxygen continued to reach the roots and rhizomes. In the field, three cuts during the growing season below water were sufficient to kill nearly all the underwater biomass; similar cuts above water reduced the total biomass compared with uncut plants, but much of the underwater biomass remained healthy and able to regenerate.  相似文献   

9.
The arbuscular mycorrhizal (AM) symbiosis alters host plant physiology under drought stress, but no information is available on whether or not the AM affects respond to drought locally or systemically. A split‐root system was used to obtain AM plants with total or only half root system colonized as well as to induce physiological drought affecting the whole plant or non‐physiological drought affecting only the half root system. We analysed the local and/or systemic nature of the AM effects on accumulation of osmoregulatory compounds and aquaporins and on antioxidant systems. Maize plants accumulated proline both, locally in roots affected by drought and systemically when the drought affected the whole root system, being the last effect ampler in AM plants. PIPs (plasma membrane intrinsic proteins) aquaporins were also differently regulated by drought in AM and non‐AM root compartments. When the drought affected only the AM root compartment, the rise of lipid peroxidation was restricted to such compartment. On the contrary, when the drought affected the non‐AM root fraction, the rise of lipid peroxidation was similar in both root compartments. Thus, the benefits of the AM symbiosis not only rely in a lower oxidative stress in the host plant, but it also restricts locally such oxidative stress.  相似文献   

10.
A wastewater culture system was designed to study the root growth of eight species of wetland plants with two different root types. The system included a plastic barrel for holding the wastewater and a foam plate for holding the plant. The results indicated that the root growth of the plants with fibril roots was faster than that of the plants with rhizomatic roots. The species with fibril roots had higher root number (1349 per plant) than species with rhizomatic roots (549 per plant) after ten weeks of cultivation. The average root biomass of plants with fibril roots was 11.3 g per plant, whereas that of plants with rhizomatic roots was 7.4 g per plant. Fine root biomass of diameter ≤ 1 mm constituted 51.9% of the total root biomass in plants with fibril roots, whereas it accounted for only 25.1% in plants with rhizomatic roots. The root surface area of the plants with fibril roots (6933 cm2 per plant) was markedly larger than that of the species with rhizomatic roots (1897 cm2 per plant). The species with rhizomatic roots showed a longer root lifespan (46.6 days) than those with fibril roots (34.8 days).  相似文献   

11.
Drought is one of the abiotic stresses controlling plant function and ecological stability. In the context of climate change, drought is predicted to occur more frequently in the future. Despite numerous attempts to clarify the overall effects of drought stress on the growth and physiological processes of plants, a comprehensive evaluation on the impacts of drought stress on biomass allocation, especially on reproductive tissues, remains elusive. We conducted a meta‐analysis by synthesizing 164 published studies to elucidate patterns of plant biomass allocation in relation to drought stress. Results showed that drought significantly increased the fraction of root mass but decreased that of stem, leaf, and reproductive mass. Roots of herbaceous plants were more sensitive to drought than woody plants that reduced reproductive allocation more sharply than the former. Relative to herbaceous plants, drought had a more negative impact on leaf mass fraction of woody plants. Among the herbaceous plants, roots of annuals responded to drought stress more strongly than perennial herbs, but their reproductive allocation was less sensitive to drought than the perennial herbs. In addition, cultivated and wild plants seemed to respond to drought stress in a similar way. Drought stress did not change the scaling exponents of the allometric relationship between different plant tissues. These findings suggest that the allometric partitioning theory, rather than the optimal partitioning theory, better explains the drought‐induced changes in biomass allocation strategies.  相似文献   

12.
13.
The use of Rhizobium inoculant for groundnut is a common practice in India. Also, co-inoculation of Rhizobium with other plant growth-promoting bacteria received considerable attention in legume growth promotion. Hence, in the present study we investigated effects of co-inoculating the sulfur (S)-oxidizing bacterial strains with Rhizobium, a strain that had no S-oxidizing potential in groundnut. Chemolithotrophic S-oxidizing bacterial isolates from different sources by enrichment isolation technique included three autotrophic (LCH, SWA5 and SWA4) and one heterotrophic (SGA6) strains. All the four isolates decreased the pH of the growth medium through oxidation of elemental S to sulfuric acid. Characterization revealed that these isolates tentatively placed into the genus Thiobacillus. Clay-based pellet formulation (2.5 x 10(7) cf ug(-1) pellet) of the Thiobacillus strains were developed and their efficiency to promote plant growth was tested in groundnut under pot culture and field conditions with S-deficit soil. Experiments in pot culture yielded promising results on groundnut increasing the plant biomass, nodule number and dry weight, and pod yield. Co-inoculation of Thiobacillus sp. strain LCH (applied at 60 kg ha(-1)) with Rhizobium under field condition recorded significantly higher nodule number, nodule dry weight and plant biomass 136.9 plant(-1), 740.0mg plant(-1) and 15.0 g plant(-1), respectively, on 80 days after sowing and enhanced the pod yield by 18%. Also inoculation of S-oxidizing bacteria increased the soil available S from 7.4 to 8.43 kg ha(-1). These results suggest that inoculation of S-oxidizing bacteria along with rhizobia results in synergistic interactions promoting the yield and oil content of groundnut, in S-deficit soils.  相似文献   

14.
干旱胁迫对花生根系生长发育和生理特性的影响   总被引:2,自引:0,他引:2  
以花育17号和唐科8号两个花生品种为试验材料,在防雨棚栽培池内进行土柱栽培试验,研究了中度干旱胁迫和正常供水处理下花生生育后期根系形态发育特征和生理特性.结果表明: 唐科8号具有较发达的根系及较高的产量和抗旱系数,花育17号根系对干旱胁迫的适应性小于唐科8号.两品种根长密度、根系生物量均主要分布于0~40 cm土层中,但同一土层内两品种根系性状存在差异.与正常供水处理相比,干旱胁迫处理使花育17号各生育期总根长、根系总表面积和总体积均降低,而唐科8号除花针期显著降低外,其余生育期均明显升高;干旱胁迫增加了两品种20~40 cm土层内根系生物量、根系表面积和体积,而降低了40 cm以下土层内各根系性状;干旱胁迫处理使两品种饱果期40 cm以下土层内根系活力降低,且花育17号降低幅度高于唐科8号.干旱胁迫下两品种生育后期根系发育和生理特性的差异表明其根系在干旱胁迫下对水分吸收和利用存在差异.  相似文献   

15.
16.
This study evaluates antioxidant responses and jasmonate regulation in Digitaria eriantha cv. Sudafricana plants inoculated (AM) and non-inoculated (non-AM) with Rhizophagus irregularis and subjected to drought, cold, or salinity. Stomatal conductance, photosynthetic efficiency, biomass production, hydrogen peroxide accumulation, lipid peroxidation, antioxidants enzymes activities, and jasmonate levels were determined. Stomatal conductance and photosynthetic efficiency decreased in AM and non-AM plants under all stress conditions. However, AM plants subjected to drought, salinity, or non-stress conditions showed significantly higher stomatal conductance values. AM plants subjected to drought or non-stress conditions increased their shoot/root biomass ratios, whereas salinity and cold caused a decrease in these ratios. Hydrogen peroxide accumulation, which was high in non-AM plant roots under all treatments, increased significantly in non-AM plant shoots under cold stress and in AM plants under non-stress and drought conditions. Lipid peroxidation increased in the roots of all plants under drought conditions. In shoots, although lipid peroxidation decreased in AM plants under non-stress and cold conditions, it increased under drought and salinity. AM plants consistently showed high catalase (CAT) and ascorbate peroxidase (APX) activity under all treatments. By contrast, the glutathione reductase (GR) and superoxide dismutase (SOD) activity of AM roots was lower than that of non-AM plants and increased in shoots. The endogenous levels of cis-12-oxophytodienoc acid (OPDA), jasmonic acid (JA), and 12-OH-JA showed a significant increase in AM plants as compared to non-AM plants. 11-OH-JA content only increased in AM plants subjected to drought. Results show that D. eriantha is sensitive to drought, salinity, and cold stresses and that inoculation with AM fungi regulates its physiology and performance under such conditions, with antioxidants and jasmonates being involved in this process.  相似文献   

17.
We investigated the impact of drought and arbuscular mycorrhizal (AM) fungi on the morphological structure and physiological function of shoots and roots of male and female seedlings of the dioecious plant Populus cathayana Rehder. Pot-grown seedlings were subjected to well watered or water-limiting conditions (drought) and were grown in soil that was either inoculated or not inoculated with the AM fungus Rhizophagus intraradices. No significant differences were found in the infection rates between the two sexes. Drought decreased root and shoot growth, biomass and root morphological characteristics, whereas superoxide radical (O2–) and hydrogen peroxide content, peroxidase (POD) activity, malondialdehyde (MDA) concentration and proline content were significantly enhanced in both sexes. Male plants that formed an AM fungal symbiosis showed a significant increase in shoot and root morphological growth, increased proline content of leaves and roots, and increased POD activity in roots under both watering regimes; however, MDA concentration in the roots decreased. By contrast, AM fungi either had no effect or a slight negative effect on the shoot and root growth of female plants, with lower root biomass, total biomass and root/shoot ration under drought. In females, MDA concentration increased in leaves and roots under both watering regimes, and the proline content and POD activity of roots increased under drought conditions; however, POD activity significantly decreased under well-watered conditions. These findings suggest that AM fungi enhanced the tolerance of male plants to drought by improving shoot and root growth, biomass and the antioxidant system. Further investigation is needed to unravel the complex effects of AM fungi on the growth and antioxidant system of female plants.  相似文献   

18.
内生真菌感染对干旱胁迫下黑麦草生长的影响   总被引:8,自引:0,他引:8       下载免费PDF全文
 内生真菌是生活在健康植物的茎叶内,形成不明显感染的一类真菌。以黑麦草(Lolium perenne L.)为实验材料,研究在不同强度的干旱胁迫下内生真菌(Neotyphodium lolii)侵染对其叶片延伸生长、分蘖数和生物量的影响。结果表明,与非感染种群相比,内生真菌感染对黑麦草叶片延伸速率无明显促进作用;内生真菌感染种群具有明显较多的分蘖数;在重度胁迫并经过恢复期后,内生真菌感染种群具有较高的根冠比。因而内生真菌可能通过提高植物的分蘖能力和促进有机物向根系的分配来促进宿主植物的营养生长并提高其抗旱性  相似文献   

19.
Proline is emerging as a critical component of drought tolerance and fine tuning of its metabolism under stress affects the plants sensitivity and response to stress. Thus the study was carried out to analyse the effect of water deficit on the proline content and principal enzymes involved in its synthesis (Δ1-pyrolline-carboxylate synthetase) and catabolism (proline dehydrogenase) at different developmental stages and in different organs (roots, nodules, leaves, pod wall, and seeds) of two chickpea (Cicer arietinum L.) cultivars differing in drought tolerance (drought tolerant ICC4958 and drought sensitive ILC3279). It was observed that increased Δ1-pyrolline-carboxylate synthetase activity under moderate stress in roots and nodules of ICC4958 caused an increase in proline content during initiation of reproductive development whereas increased proline dehydrogenase activity in nodules and leaves at this period helped to maintain reducing power and energy supply in tissues and proper seed development as seed biomass increased consistently up to maturity. On the other hand, roots and nodules of ILC3279 responded to stress by increasing proline content after the developmental phase of reproductive organs was over (near maturity) which negatively affected the response of pod wall to stress. Concurrent increase in activities of Δ1-pyrolline-carboxylate synthetase and proline dehydrogenase in pod wall of ILC3279 aggravated the oxidative stress and affected seed development as seed biomass initially increased rapidly under stress but was unaffected near maturity.  相似文献   

20.
Soil compaction leads to changes in soil physical properties such as density, penetration resistance and porosity, and, by consequence, affects root and plant growth. The initial growth of Brazilian pine is considered as being more affected by soil physical than chemical conditions, and the presence of a well-developed tap root system has been associated with this fact. A greenhouse experiment was conducted in order to evaluate the impact of soil compaction on the growth of Brazilian pine seedlings and on their susceptibility to a simulated drought period. In the first phase of the experiment, the effects of three levels of soil compaction on root morphology and plant growth were examined. Soil cylinders were artificially compacted in PVC tubes. Pre-germinated seeds were planted, and 147 days later 10 plants from each treatment were harvested for analysis. Higher values of soil density were associated with a shorter and thicker tap root. Growth of lateral roots and shoots remained unaffected at this stage. In the second phase, half of the plants (12) in each compaction treatment were drought-stressed by withholding water for a period of 77 days. Increased soil compaction again resulted in reduced length and increased diameter of the main tap root. This time, the effects were also extended to the lateral roots. Shoot extension growth and overall plant mass, however, increased with soil compaction. This greater mass accumulation in plants growing under increased soil compaction may be attributed to a more intimate contact between roots and soil particles. Drought stress reduced both root and shoot growth, but root mass was more negatively affected by drought stress in plants growing under high levels of soil compaction. Future investigations on the effects of soil compaction on the initial growth of Brazilian pine should include a wider range of compaction levels to better establish the relationship between soil physical parameters and plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号