首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Collagen type IV forms a network in the basement membrane into which other constituents of the tissue are incorporated. It also provides cell-adhesion sites that are specifically recognized by cell-surface receptors, i.e., the integrins. Different from the ubiquitous sequential RGD adhesion motif found in most of the matrix proteins, in collagen type IV, the responsible binding sites for alpha1beta1 integrin have been identified as Asp461 of the two alpha1 chains and Arg461 of the alpha2 chain. Because of the heterotrimeric character of this collagen, the spatial geometry of the binding epitope depends not only on the triple-helical fold, but decisively even on the stagger of the chains. To investigate the effects of chain registration on the conformational properties and binding affinities of this adhesion epitope, two synthetic heterotrimeric collagen peptides consisting of the identical three chains were assembled by an artificial cystine knot in two different registers, i.e., in the most plausible alpha2alpha1alpha1' and less probable alpha1alpha2alpha1' chain alignment. A detailed conformational characterization of both trimers allowed to correlate their different binding affinities for alpha1beta1 integrin with the degree of local plasticity of the two different triple helices. Optimal local breathing of the rod-shaped collagens is apparently crucial for selective recognition by proteins interacting with these main components of the extracellular matrix.  相似文献   

2.
Collagen type IV provides a biomechanically stable scaffold into which the other constituents of basement membranes are incorporated, but it also plays an important role in cell adhesion. This occurs with collagen type IV mainly via the alpha1beta1 integrin, and the proposed epitope involved in this type of collagen/integrin interaction corresponds to a non-sequential R/Xaa/D motif, where the arginine and aspartate residues are provided by the alpha2 and alpha1 chains of the collagen molecule, respectively. Since the stagger of the three alpha chains in native collagen type IV is still unknown and different alignments of the chains lead to different spatial epitopes, two heterotrimeric collagen peptides containing the natural 457-469 sequences of the cell adhesion site were synthesized in which the single chains were assembled via disulfide bonds into the two most plausible alpha1alpha2alpha1' and alpha2alpha1alpha1' registers. The differentiated triple-helical stabilities of the two heterotrimers suggest a significant structural role of the chain register in collagen, although the binding to alpha1beta1 integrin is apparently less affected as indicated by preliminary experiments.  相似文献   

3.
The interaction of collagen IV with cells is mediated mainly by the integrin alpha1beta1. The recognition site has been located to a segment of the triple-helical domain 100 nm away from the N terminus of the collagen molecule. The three essential amino acid residues of the alpha1beta1 binding site, arginine alpha2(IV)461 and the two aspartate residues alpha1(IV)461, are all located on different chains. Since the spatial array of the three residues depends on the stagger of the chains within the triple helix, the stagger has been elucidated using fluorescence resonance energy transfer with phenylalanine alpha1(IV)473 and tryptophan alpha2(IV)479 as the fluorescent donor/acceptor pair. The distance R between phenylalanine and tryptophan was determined by analysis of the energy transfer efficiency, E, and the orientation factor, kappa(2). In parallel, distance R and orientation factor, kappa(2 )were also calculated from the coordinates of the triple helix. Comparison of the calculated and empirically determined values unequivocally showed the stagger to be alpha1'alpha1alpha2. This arrangement of the three alpha chains describes the conformation of the alpha1beta1 integrin recognition site, that is the distinct orientation of the side-chains of the essential residues aspartate and arginine in respect to the helix axis.  相似文献   

4.
Collagen type IV is a highly specialized form of collagen found only in basement membranes, where it provides mechanical stability and structural integrity to tissues and organs, and binding sites for cell adhesion. In its ubiquitous form, collagen type IV consists of two alpha1 chains and one alpha2 chain, whose internal alignment within the triple helix seems to exert a strong influence on the binding affinity to alpha1beta1 integrin receptor. This has been assessed recently using two synthetic collagen peptides that contain the cell adhesion epitope of collagen type IV and are assembled into the most plausible alpha1alpha2alpha1' and alpha2alpha1alpha1' registers. In the present study, the effects of the chain register on the stability of the triple helix and the folding kinetics of these collagen peptides were investigated by CD spectroscopy and microcalorimetry. The results revealed a multi-domain structural organization for both trimers, with an unexpected strong effect of the chain alignment on the conformational stability. Molecular dynamics simulations served to rationalize more properly the experimental results.  相似文献   

5.
The aim of this investigation was to identify the domains of type IV collagen participating in cell binding and the cell surface receptor involved. A major cell binding site was found in the trimeric cyanogen bromide-derived fragment CB3, located 100 nm away from the NH2 terminus of the molecule, in which the triple-helical conformation is stabilized by interchain disulfide bridges. Cell attachment assays with type IV collagen and CB3 revealed comparable cell binding activities. Antibodies against CB3 inhibited attachment on fragment CB3 completely and on type IV collagen to 80%. The ability to bind cells was strictly conformation dependent. Four trypsin derived fragments of CB3 allowed a closer investigation of the binding site. The smallest, fully active triple-helical fragment was (150)3-amino acid residues long. It contained segments of 27 and 37 residues, respectively, at the NH2 and COOH terminus, which proved to be essential for cell binding. By affinity chromatography on Sepharose-immobilized CB3, two receptor molecules of the integrin family, alpha 1 beta 1 and alpha 2 beta 1, were isolated. Their subunits were identified by sequencing the NH2 termini or by immunoblotting. The availability of fragment CB3 will allow for a more in-depth study of the molecular interaction of a short, well defined triple-helical ligand with collagen receptors alpha 1 beta 1 and alpha 2 beta 1.  相似文献   

6.
As a crucial molecular chaperone in collagen biosynthesis, Hsp47 interacts with the nascent form as well as the mature triple-helical form of procollagen. The location(s) of Hsp47 binding sites on the collagen molecule are, as yet, unknown. We have examined the substrate specificity of Hsp47 in vitro using well-characterized CNBr peptide fragments of type I and type II collagen along with radiolabeled, recombinant Hsp47. Interaction of these peptides with Hsp47 bound to collagen-coated microtiter wells showed several binding sites for Hsp47 along the length of the alpha1 and alpha2 chains of type I collagen and the alpha1 chain of type II collagen, with the N-terminal regions showing the strongest affinities. The latter observation was also supported by the results of a ligand-blot assay. Except for two peptides in the alpha2(I) chain, peptides that showed substantial binding to Hsp47 did so in their triple-helical and not random-coil form. Unlike earlier studies that used peptide models for collagen, the results obtained here on fragments of type I and type II collagen identify, for the first time, binding of Hsp47 to specific regions of the collagen molecule. They also point to additional structural requirements for Hsp47 binding besides the known preference for third-position Arg residues and the triple-helical conformation.  相似文献   

7.
The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by native triple-helical collagen. Here we have located three specific DDR2 binding sites by screening the entire triple-helical domain of collagen II, using the Collagen II Toolkit, a set of overlapping triple-helical peptides. The peptide sequence that bound DDR2 with highest affinity interestingly contained the sequence for the high affinity binding site for von Willebrand factor in collagen III. Focusing on this sequence, we used a set of truncated and alanine-substituted peptides to characterize the sequence GVMGFO (O is hydroxyproline) as the minimal collagen sequence required for DDR2 binding. Based on a recent NMR analysis of the DDR2 collagen binding domain, we generated a model of the DDR2-collagen interaction that explains why a triple-helical conformation is required for binding. Triple-helical peptides comprising the DDR2 binding motif not only inhibited DDR2 binding to collagen II but also activated DDR2 transmembrane signaling. Thus, DDR2 activation may be effected by single triple-helices rather than fibrillar collagen.  相似文献   

8.
Müller JC  Ottl J  Moroder L 《Biochemistry》2000,39(17):5111-5116
The collagenase cleavage site of collagen type I, i.e., the sequence portions 772-784 (P(4)-P(9)') and 772-785 (P(4)-P(10)') of the two alpha1-chains and the sequence portion 772-784 (P(4)-P(9)') of the alpha2-chain, were assembled in an alpha1alpha2alpha1' register by C-terminal cross-linking of these peptides with an artificial cystine knot. The triple-helical conformation of the construct was stabilized by N-terminal extensions with (Gly-Pro-Hyp)(5) repeats. The gaps in the sequence alignment were filled up, and the alpha1-chain was dansylated and the alpha1'-chain was acylated with a tryptophan residue to place in spatial proximity the two chromophores for an efficient fluorescence resonance energy transfer. Although the incorporation of the two N-terminal chromophores leads to partial destabilization of the overall triple-helical fold, the heterotrimer behaved as a collagen-like substrate of the matrix metalloproteinases MMP-1 and MMP-13. Cleavage of the fluorogenic heterotrimer leads to a 6-fold increase in fluorescence intensity, thus making it a useful fluorogenic substrate for interstitial collagenases. With this folded heterotrimeric collagen molecule it was shown that fluorescence resonance energy transfer, as applied so far only for the design of linear fluorogenic enzyme substrates, can also be exploited in conformation dependency.  相似文献   

9.
Khew ST  Tong YW 《Biochemistry》2008,47(2):585-596
Most proteins fold into specific structures to exert their biological functions, and therefore the creation of protein-like molecular architecture is a fundamental prerequisite toward realizing a novel biologically active protein-like biomaterial. To do this with an artificial collagen, we have engineered a peptide template characterized by its collagen-like primary structure composed of Gly-Phe-Gly-Glu-Glu-Gly sequence to assemble (Pro-Hyp-Gly)n (n = 3 and 5) into triple-helical conformations that resemble the native structure of collagen. The peptide template has three carboxyl groups connected to the N-termini of three collagen peptides. The coupling was accomplished by a simple and direct branching protocol without complex strategies. A series of biophysical studies, including melting curve analyses and CD and NMR spectroscopy, demonstrated the presence of stable triple-helical conformation in the template-assembled (Pro-Hyp-Gly)3 and (Pro-Hyp-Gly)5 solution. Conversely, nontemplated peptides showed no evidence of assembly of triple-helical structure. A cell binding sequence (Gly-Phe-Hyp-Gly-Glu-Arg) derived from the collagen alpha1(I) chain was incorporated to mimic the integrin-specific cell adhesion of collagen. Cell adhesion and inhibition assays and immunofluorescence staining revealed a correlation of triple-helical conformation with cellular recognition of collagen mimetics in an integrin-specific way. This study offers a robust strategy for engineering native-like peptide-based biomaterials, fully composed of only amino acids, by maintaining protein conformation integrity and biological activity.  相似文献   

10.
Immune responses are tightly controlled by the opposing actions of activating and inhibitory immune receptors. Previously we identified collagens as ligands for the inhibitory leukocyte-associated Ig-like receptor-1 (LAIR-1), revealing a novel mechanism of peripheral immune regulation by inhibitory immune receptors binding to extracellular matrix collagens. This interaction can be blocked by LAIR-2, a secreted member of the LAIR-1 family.LAIR-1 specifically interacts with synthetic trimeric peptides containing 10 repeats of glycine-proline-hydroxyproline (GPO) residues which can directly inhibit immune cell activation in vitro. Here we studied the interaction of human LAIR-1 and LAIR-2 with collagen in more detail by using novel overlapping synthetic trimeric peptides (Toolkits) encompassing the entire triple-helical domain of human collagens II and III. LAIR-1 and LAIR-2 bind several of these collagen-like peptides, with LAIR-2 being able to bind more than LAIR-1. LAIR binding to trimeric collagen peptides was influenced by GPO content of the peptide, although additional non-GPO triplets contributed to the interaction. Furthermore, we identified several trimeric peptides that were potent LAIR-1 ligands and could efficiently induce inhibition of T cell activation and FceRI-induced degranulation of RBL-2H3 cells through binding to LAIR-1. A detailed understanding of the LAIR recognition motifs within collagen may lead to the development of potent reagents that can be used in in vitro, ex vivo, and in vivo functional studies to dissect the biology and function of the collagen/LAIR-1 interaction.  相似文献   

11.
We have previously assigned an integrin alpha(2)beta(1)-recognition site in collagen I to the sequence, GFOGERGVEGPOGPA (O = Hyp), corresponding to residues 502-516 of the alpha(1)(I) chain and located in the fragment alpha(1)(I)CB3 (Knight, C. G., Morton, L. F., Onley, D. J., Peachey, A. R., Messent, A. J., Smethurst, P. A., Tuckwell, D. S., Farndale, R. W., and Barnes, M. J. (1998) J. Biol. Chem. 273, 33287-33294). In this study, we show that recognition is entirely contained within the six-residue sequence GFOGER. This sequence, when in triple-helical conformation, readily supports alpha(2)beta(1)-dependent cell adhesion and exhibits divalent cation-dependent binding of isolated alpha(2)beta(1) and recombinant alpha(2) A-domain, being at least as active as the parent collagen. Replacement of E by D causes loss of recognition. The same sequence binds integrin alpha(1) A-domain and supports integrin alpha(1)beta(1)-mediated cell adhesion. Triple-helical GFOGER completely inhibits alpha(2) A-domain binding to collagens I and IV and alpha(2)beta(1)-dependent adhesion of platelets and HT 1080 cells to these collagens. It also fully inhibits alpha(1) A-domain binding to collagen I and strongly inhibits alpha(1)beta(1)-mediated adhesion of Rugli cells to this collagen but has little effect on either alpha1 A-domain binding or adhesion of Rugli cells to collagen IV. We conclude that the sequence GFOGER represents a high-affinity binding site in collagens I and IV for alpha(2)beta(1) and in collagen I for alpha(1)beta(1). Other high-affinity sites in collagen IV mediate its recognition of alpha(1)beta(1).  相似文献   

12.
Four small type I collagen CNBr peptides containing complete natural sequences were purified from bovine skin and investigated by CD and 1H- and 13C-nmr spectroscopies to obtain information concerning their conformation and thermal stability. CD showed that a triple helix was formed at 10 degrees C in acidic aqueous solution by peptide alpha l(I) CB2 only, and to lesser extent, by alpha 1(I) CB4, whereas peptides alpha 1(I) CB5 and alpha 2(I) CB2 remained unstructured. Analytical gel filtration confirmed that peptides alpha 1(I) CB2 and alpha 1(I) CB4 only were able to form trimeric species at temperature between 14 and 20 degrees C, and indicated that the monomer = trimer equilibrium was influenced by the chaotropic nature of the salt present in the eluent, by its concentration, and by temperature variations. CD measurements at increasing temperatures showed that alpha 1(I) CB2 was less stable than its synthetic counterpart due to incomplete prolyl hydroxylation of the preparation from the natural source. 1H- and 13C-nmr spectra acquired in the temperature range 0-47 and 0-27 degrees C, respectively, indicated that with decreasing temperature the most abundant from of alpha 1(I) CB2 was in slow exchange with an assembled form, characterized by broad lines, as expected for the triple-helical conformation. A large number of trimer cross peaks was observed both in the proton and carbon spectra, and these were most likely due to the nonequivalence of the environments of the three chains in the triple helix. This nonequivalence may have implications for the aggregation of collagen molecules and for collagen binding to other molecules. The thermal transition from trimer to monomer was also monitored by 1H-nmr following the change in area of the signal belonging to one of the two beta protons of the C-terminal homoserine. The unfolding process was found to be fully reversible with a melting temperature of 13.4 degrees C, in agreement with CD results. The qualitative superposition of the melting curves obtained by CD for the peptide bond characteristics and by nmr for a side chain suggests that triple-helical backbone and side chains constitute a single unit.  相似文献   

13.
Khew ST  Tong YW 《Biomacromolecules》2007,8(10):3153-3161
In this study, the affinity of two different cell types toward a specific cell binding sequence (Gly-Phe-Hyp-Gly-Glu-Arg or GFOGER) derived from type I collagen using peptide template (PT)-assembled collagen peptides of different triple helicity as a model for natural collagen is examined. A series of biophysical studies, including melting curve analysis and circular dichroism spectroscopy, demonstrated the presence of stable triple-helical conformation in the PT-assembled (GPO)3-GFOGER-(GPO)3, (GPO)-GFOGER-(GPO), and (Pro-Hyp-Gly)5 solution. Conversely, non-templated peptides, except (GPO)3-GFOGER-(GPO)3, showed no evidence of assembly into triple-helical structure. Biological assays, including cell adhesion, competitive inhibition, and immunofluorescence staining, revealed a correlation of triple-helical conformation with the cellular recognition of GFOGER in an integrin-specific manner. The triple helix was shown to be important, but not crucial for cell adhesion to native collagen. Hep3B and L929 cells displayed significant differences in the recognition of GFOGER, mainly because of the differences in their expression of specific integrin receptors for collagen. For example, PT-assembled (GPO)3-GFOGER-(GPO)3 was shown to perform comparably to collagen for L929, but not Hep3B, cell adhesion. The result showed that a specific cell binding motif may not fully mimic the extracellular matrix (ECM) microenvironment, suggesting the need to use a combination of two or more cell binding sequences for targeting a wide range of integrin receptors expressed by a specific cell type to better mimic the ECM.  相似文献   

14.
Identification of integrin collagen receptors on human melanoma cells   总被引:29,自引:0,他引:29  
Integrin receptors may mediate the adhesion of cells to a number of extracellular matrix components. We found that the attachment of human melanoma cells to collagen types I and IV was blocked by antibodies to the integrin beta 1 subunit but not by peptides containing the Arg-Gly-Asp sequence. Ligand affinity chromatography was used to search for integrin-related receptors which mediate adhesion to native collagens. Detergent extracts of surface 125I-iodinated melanoma cells were chromatographed on type I or IV collagen-Sepharose columns. Bound material was eluted and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. EDTA, but not Arg-Gly-Asp peptides, eluted a mixture of two integrin-related heterodimeric complexes. Each complex contained the integrin beta 1 chain with Mr of 110,000 and a distinct alpha chain with Mr of either 200,000 or 150,000. Immunoprecipitation with specific monoclonal antibodies identified the complexes as very late activation antigen (VLA)-1 (alpha 1 beta 1) and VLA-2 (alpha 2 beta 1), respectively. The binding of these receptors to collagen appeared to be specific because they failed to be retained on fibronectin- or laminin-Sepharose columns. Immunofluorescent staining of cells on collagen substrates with antibodies to VLA-1 and VLA-2 localized these complexes in vinculin-positive adhesion plaques. In contrast, the receptor complexes were not detected in adhesion plaques of cells attached to fibronectin- or laminin-coated substrates. These results indicate that melanoma cells express at least two different integrin-related collagen-binding receptor complexes that appear to mediate cell adhesion to collagen.  相似文献   

15.
The NC1 domains of human type IV collagen, in particular alpha3NC1, are inhibitors of angiogenesis and tumor growth (Petitclerc, E., Boutaud, A., Prestayko, A., Xu, J., Sado, Y., Ninomiya, Y., Sarras, M. P., Jr., Hudson, B. G., and Brooks, P. C. (2000) J. Biol. Chem. 275, 8051-8061). The recombinant alpha3NC1 domain contained a RGD site as part of a short collagenous sequence at the N terminus, designated herein as RGD-alpha3NC1. Others, using synthetic peptides, have concluded that this RGD site is nonfunctional in cell adhesion, and therefore, the anti-angiogenic activity is attributed exclusively to alpha(v)beta(3) integrin interactions with non-RGD motifs of the RGD-alpha3NC1 domain (Maeshima, Y., Colorado, P. C., and Kalluri, R. (2000) J. Biol. Chem. 275, 23745-23750). This nonfunctionality is surprising given that RGD is a binding site for alpha(v)beta(3) integrin in several proteins. In the present study, we used the alpha3NC1 domain with or without the RGD site, expressed in HEK 293 cells for native conformation, as an alternative approach to synthetic peptides to assess the functionality of the RGD site and non-RGD motifs. Our results demonstrate a predominant role of the RGD site for endothelial adhesion and for binding of alpha(v)beta(3) and alpha(v)beta(5) integrins. Moreover, we demonstrate that the two non-RGD peptides, previously identified as the alpha(v)beta(3) integrin-binding sites of the alpha3NC1 domain, are 10-fold less potent in competing for integrin binding than the native protein, indicating the importance of additional structural and/or conformational features of the alpha3NC1 domain for integrin binding. Therefore, the RGD site, in addition to non-RGD motifs, may contribute to the mechanisms of endothelial cell adhesion in the human vasculature and the anti-angiogenic activity of the RGD-alpha3NC1 domain.  相似文献   

16.
Tumor cell binding to components of the basement membrane is well known to trigger intracellular signaling pathways. Signaling ultimately results in the modulation of gene expression, facilitating metastasis. Type IV collagen is the major structural component of the basement membrane and is known to be a polyvalent ligand, possessing sequences bound by the alpha1beta1, alpha2beta1, and alpha3beta1 integrins, as well as cell surface proteoglycan receptors, such as CD44/chondroitin sulfate proteoglycan (CSPG). The role of alpha2beta1 integrin and CD44/CSPG receptor binding on human melanoma cell activation has been evaluated herein using triple-helical peptide ligands incorporating the alpha1(IV)382-393 and alpha1(IV)1263-1277 sequences, respectively. Gene expression and protein production of matrix metalloproteinases-1 (MMP-1), -2, -3, -13, and -14 were modulated with the alpha2beta1-specific sequence, whereas the CD44-specific sequence yielded significant stimulation of MMP-8 and lower levels of modulation of MMP-1, -2, -13, and -14. Analysis of enzyme activity confirmed different melanoma cell proteolytic potentials based on engagement of either the alpha2beta1 integrin or CD44/CSPG. These results are indicative of specific activation events that tumor cells undergo upon binding to select regions of basement membrane collagen. Based on the present study, triple-helical peptide ligands provide a general approach for monitoring the regulation of proteolysis in cellular systems.  相似文献   

17.
The denatured alpha1(I) chain and the cyanogen bromide peptide, alpha1(I)-CB5, of chick skin collagen cause the relaese of serotonin and leakage of lactic dehydrogenase from human platelets in a manner similar to the release reaction mediated by adenosine diphosphate and native collagen. These peptides also cause a decrease in the level of adenosine 3':5'-monophosphate (cAMP) in platelets. Adenylate cyclase activity of platelets is partially inhibited by these peptides as well as by native collagen, ADP, and epinephrine, but cAMP phosphodiesterase activity is unaltered by these substances. In contrast, the level of platelet guanosine 3':5'-monophosphate (cGMP) is increased by the collagen peptides as well as the other aggregating agents. The increase is associated with increased guanylate cyclase, but normal cGMP phosphodiesterase activities of platelets. Optical rotatory and viscometric measurements of the alpha1 chains and alpha1-CB5 of chick skin in 0.01 M phosphate/0.15 M sodium chloride, pH 7.4, at various temperatures as a function of time indicate that no detectable renaturation occurs at 37 degrees for at least 30 min of observation. Molecular sieve chromatography of alpha1-CB5 in the phosphate buffer at 37 degrees shows that its elution position is identical to that performed under denaturing conditions (at 45 degrees) with no evidence of higher molecular weight aggregates, and the alpha1-CB5 glycopeptide fraction eluting from the column at the position of its monomer retains the platelet aggregating activity. Additionally, electron microscopic examination of the platelet-rich plasma that had been reacted with these peptides fail to show any ordered collagen structures. These data indicate that the denatured alpha1 chain and alpha1-CB5 glycopeptide of chick skin collagen mediate platelet aggregation through the "physiologic" release reaction in a manner similar to that induced by other aggregating agents such as ADP, epinephrine, or native collagen, and support the conclusion that the aggregating activity of the alpha1 chain and alpha1-CB5 is not likely to be due to the formation of polymerized products.  相似文献   

18.
Integrin alpha2beta1, which is a membrane protein consisting of noncovalently bound alpha2 and beta1 chains, mediates cell binding to collagen and plays a role in platelet functions. DNAs encoding the chimeric proteins in which the extracellular domains of each alpha2 and beta1 chain was fused to hinge and Fc regions of human IgG(1)gamma chain were cotransfected into CHO cells. Soluble integrin alpha2beta1 (salpha2beta1) in which alpha2 and beta1 chains were covalently bound by disulfide bonds was recovered from the culture supernatant. salpha2beta1 maintained functional characteristics of cell surface alpha2beta1 as indicated by cation-dependent binding to collagen and conformational changes induced by cations or ligand. Intravenously administered salpha2beta1 in rats colocalized with collagen in inflamed microvessels. Moreover, salpha2beta1-conjugated liposome administered intravenously reduced bleeding time of the thrombocytopenic mice. These results indicated that salpha2beta1 has pharmaceutical utilities as an agent for detecting injured vessels and a component of platelet substitute.  相似文献   

19.
Glucosylation of galactosylhydroxylysyl residues in various collagen polypeptide chains and in small peptides prepared from collagen was studied in vitro using collagen glucosyltransferase purified about 200 to 500-fold from extract prepared from chick embryos. When various denatured polypeptide or peptide chains were compared as substrates for the enzyme, no significant differences were found between citrate-soluble collagens from normal or lathyritic rats and isolated alpha1 and alpha2 chains. In contrast, gelatinized insoluble calf skin collagen, and peptides prepared from collagen and having an average molecular weight of about 500 were clearly less effective substrates as judged from their Km and V values. A marked difference was found between native and heat-denatured citrate-soluble collagen in that no synthesis of glucosylgalactosylhydroxylysine was observed with the native collagen when the reaction was studied at 30 degrees C with different times, enzyme concentrations, and substrate concentrations. When the reaction was studied as a function of temperature, little glucosylation of native collagen was observed below 37 degrees C, but there was a sharp transition in the rate of glucosylation of native collagen at temperatures above 37 degrees C, similar to that observable in the melting curve of collagen. The data suggest that triple-helical conformation of collagen prevents that glucosylation of galactosylhydroxylysyl residues.  相似文献   

20.
The alpha-subunit of an abundant chick gizzard integrin was isolated (T. Kelly, L. Molony, and K. Burridge, 1987, J. Biol. Chem. 262, 17,189-17,199) and fragmented by proteolytic digestion. The N-terminal sequences of the intact polypeptide and of several internal peptides were determined and were found to be highly homologous to the mammalian integrin alpha 1-subunit. Monoclonal antibodies to the chick integrin beta 1-chain react on immunoblots with the gizzard integrin beta-subunit (U. Hofer, J. Syfrig, and R. Chiquet-Ehrismann, 1990, J. Biol. Chem. 265, 14,561-14,565). The chain composition of the abundant chick gizzard integrin is therefore alpha 1 beta 1. Polyclonal antibodies to the avian integrin alpha 1-subunit block attachment of embryonic gizzard cells to human and chick collagen IV completely and inhibit attachment to mouse Engelbreth-Holm-Swarm (EHS) tumor laminin partially. In ELISA-style receptor assays, the isolated alpha 1 beta 1 integrin bound to human and chick collagen IV and to mouse EHS tumor and chick heart laminin. While the binding to collagen IV was abolished by removal of divalent cations, the binding to laminin was not sensitive to EDTA under the conditions used. Collagen I bound the isolated avian alpha 1 beta 1 integrin only weakly. As collagen IV was the only extracellular matrix protein for which a consistent, divalent cation-dependent, binding to the avian alpha 1 beta 1 integrin could be demonstrated in both cellular and molecular assays we suggest that it is a preferred ligand for this integrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号