首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of neurotensin (NT) on endogenous acetylcholine (ACh) release from basal forebrain, frontal cortex, and parietal cortex slices were tested. The results show that NT differentially regulates evoked ACh release from frontal and parietal cortex slices without altering either spontaneous or evoked ACh release from basal forebrain slices. In the frontal cortex, NT significantly inhibited evoked ACh release by a tetrodotoxin (TTX)-insensitive mechanism, suggesting an action directly on cholinergic terminals. In the parietal cortex, NT enhanced evoked ACh release by a TTX-sensitive mechanism, suggesting an action of NT on the cholinergic neuron or in close proximity to the cholinergic neuron. The effects of NT on ACh release were confined to evoked ACh release; that is, spontaneous ACh release was not affected. NT did not affect spontaneous or potassium-evoked ACh release from occipital cortex slices. The second set of experiments tested the effects of quinolinic acid (QUIN) lesions of the basal forebrain cell bodies on the NT-induced regulation of evoked ACh release in the cerebral cortex. QUIN lesions of basal forebrain cell bodies caused decreases in choline acetyltransferase activity (27 and 28%), spontaneous ACh release (14 and 21%), and evoked ACh release (38 and 44%) in frontal and parietal cortex, respectively. In addition, 11 days following QUIN lesions of basal forebrain cell bodies, the action of NT to regulate evoked ACh release in frontal cortex or parietal cortex was no longer observed. The results suggest that in the rat frontal and parietal cortex, NT differentially regulates the activity of cholinergic neurons by decreasing and increasing evoked ACh release, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
J M Gorell  B Czarnecki 《Life sciences》1986,38(24):2239-2246
This study was done to provide pharmacologic evidence for the location of those striatal dopamine D-1 and D-2 receptors that participate in the regulation of local acetylcholine (ACh) release. Striatal tissue slices from adult male Sprague-Dawley rats were preloaded with [3H]choline and superfused in separate experiments with buffer containing either: a D-2-specific agonist (LY141865 or LY171555), a D-2 specific antagonist (L-sulpiride), a D-1 specific agonist (SKF38393), or a D-1 antagonist (SCH23390), in the presence or absence of tetrodotoxin (TTX), used to block interneuronal activity. With either D-2 agonist there was a dose-dependent decrease in K+-stimulated [3H]ACh release, maximally at 5 X 10(-7)-10(-6) M [agonist] and to the same extent with each drug. Both SKF38393 and SCH23390 increased [3H]ACh release at tested concentrations of these agents. Results were unchanged when any of the drugs used was superfused in the presence of TTX, 5 X 10(-7) M. These data are consistent with the hypothesis that populations of striatal D-1 and D-2 receptors exist on local cholinergic neurons, where they regulate ACh release. Alternative interpretations are discussed.  相似文献   

3.
Rat striatal slices incubated with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine at 1 mM were exposed to different concentrations (1-100 microM) of the catecholamine-releasing drug amphetamine. This produced both a concentration-dependent release of endogenous dopamine and accumulation of cyclic AMP in the slices. The cyclic AMP accumulation due to amphetamine was greatly increased when slices were coincubated with the selective dopamine D-2 antagonist (-)-sulpiride (30 microM), but the amphetamine-induced release of dopamine from the slices was the same in the presence or absence of (-)-sulpiride. Pretreatment of animals with reserpine (5 mg/kg s.c., 18 h before death) and in vitro incubation with alpha-methyl-p-tyrosine (50 microM for 90 min), respectively, reduced the ability of amphetamine (1-100 microM) [in the presence of 30 microM (-)-sulpiride] to induce release of dopamine and to elevate cyclic AMP accumulation in striatal slices. A similar reduction in amphetamine-induced dopamine release and cyclic AMP accumulation in striatal slices was observed 7 days following unilateral 6-OHDA lesions of the medial forebrain bundle of rats. These results suggest that amphetamine induces release of endogenous dopamine from the terminals of nigrostriatal dopamine neurones. Released dopamine is then able functionally and concomitantly to activate D-1 and D-2 receptors, seen as stimulation and inhibition of cyclic AMP accumulation, respectively.  相似文献   

4.
Potassium chloride (25 mM) and (+)-amphetamine (100 microM) both stimulated the release of radioactivity from slices of substantia nigra preincubated with [3H]3,4-dihydroxyphenylethylamine [( 3H]dopamine). Potassium chloride (25 mM) released radioactivity from slices of both zona compacta and zona reticulata. Prior 6-hydroxydopamine (6-OHDA) lesions of one nigrostriatal pathway did not reduce the spontaneous release of radioactivity, or the potassium chloride- or amphetamine-induced release of radioactivity from slices of nigra ipsilateral to the lesion after preincubation with [3H]dopamine. The accumulation of radioactivity following incubation of nigral slices from 6-OHDA-lesioned animals with [3H]dopamine was increased when compared to uptake into slices from intact tissue. In synaptosomal preparations of striatum, nomifensine but not desipramine or fluoxetine inhibited [3H]dopamine uptake. In contrast, nomifensine, desipramine, and fluoxetine all inhibited [3H]dopamine uptake in nigral synaptosomal preparations. Following 6-OHDA lesions of one nigrostriatal pathway the uptake of [3H]dopamine into nigral synaptosomal preparations was unchanged but uptake into striatal preparations was substantially decreased. In contrast, bilateral electrolesions of the dorsal and medial raphe nuclei reduced [3H]dopamine uptake into nigral preparations but not into striatal synaptosomes. The uptake of [3H]5-hydroxytryptamine ([3H]5-HT) into synaptosomal preparations of substantia nigra was abolished by fluoxetine and reduced by desipramine, but was unaffected by nomifensine. In contrast, fluoxetine, desipramine, and nomifensine all inhibited [3H]5-HT uptake into striatal synaptosomal preparations. Following 6-OHDA lesions of one nigro-striatal pathway the uptake of [3H]5-HT into nigral synaptosomal preparations was unchanged but uptake into striatal preparations was reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Abstract: The effect of a series of indoleamines on the potassium-evoked tritium release of previously accumulated [3H]dopamine from rat striatal slices has been investigated. The indoleamines 5-hydroxytryptamine, 5-methoxy-tryptamine, 5-methoxy- N, N' -dimethyltryptamine and tryptamine (10−7 to 10−3 M) all reduced potassium-evoked release of tritium, to a maximum of 50%. The uptake of [3H]dopamine was unaffected by these compounds. A series of 5-hydroxytryptamine antagonists were examined for their ability to reduce the inhibition of potassium-evoked tritium release induced by 5-methoxytryptamine. The relative order of antagonist potency obtained was methysergide > metergoline > methiothepin > cinanserin > cyproheptadine > mianserin, and was consistent with an action on 5-hydroxytryptamine receptors. It is concluded that there are inhibitory 5-hydroxytryptamine receptors located on the terminals of dopaminergic neurones in the striatum.  相似文献   

6.
The nigrostriatal dopaminergic system of rats was unilaterally lesioned with 6-hydroxydopamine. Part of the animals was grafted 2 weeks later with fetal dopaminergic cells on the lesioned side; untreated rats of the same strain served as controls. Both 3 and 12-14 months after surgery the striatal dopamine (DA) content and the in vivo rotational response following injection of D-amphetamine showed significant changes in grafted as compared to lesioned animals. At 12-14 months after transplantation, the electrically evoked release of tritiated DA and acetylcholine (ACh) in slices (preincubated with [3H]DA or [3H]choline, respectively) of striata of intact, lesioned, or grafted animals was also investigated. Electrical field stimulation of striatal slices of the lesioned side did not evoke any significant [3H]DA overflow, whereas a marked [3H]DA release was observed in slices of grafted and control striata. Moreover, both DL-amphetamine (3 microM) and nomifensine (10 microM) strongly enhanced basal 3H outflow in these slices. Electrically evoked [3H]ACh release was significantly reduced in slices from all striatal tissues by 0.01 microM apomorphine. In slices from denervated striata a clearcut hypersensitivity for this action of apomorphine was present, indicating supersensitivity of DA receptors on cholinergic terminals; this hypersensitivity was significantly reduced in graft-bearing striata. Furthermore, because this hypersensitivity was unchanged in slices of lesioned striata under stimulation conditions (four pulses/100 Hz) avoiding inhibition by endogenously released DA, it is concluded that lesion-induced DA receptor supersensitivity is caused by an increase in receptor density or efficacy rather than by a decreased competition between endogenous and exogenous agonists. Both reuptake blockade of DA with nomifensine (10 microM) and release of endogenous DA by DL-amphetamine (3 microM) potently reduced [3H]ACh release only in control and grafted but not in lesioned tissue. In experiments using potassium-evoked [3H]ACh release, tetrodotoxin had no effect on the inhibitory activity of amphetamine and nomifensine, indicating that the DA receptors involved in their indirect inhibitory action are located directly on the cholinergic terminals.  相似文献   

7.
The activation by endogenous dopamine of the inhibitory 3,4-dihydroxyphenylethylamine (dopamine) receptors modulating the electrically evoked release of [3H]acetylcholine [( 3H]ACh) and [3H]dopamine in rat striatal slices is a function of the concentration of dopamine accumulated in the synaptic cleft during electrical stimulation. When the release of 3H-neurotransmitters was elicited with a 2-min period of stimulation at a frequency of 1 Hz, neither dopamine autoreceptors nor dopamine receptors modulating [3H]ACh were activated by endogenously released dopamine. On the other hand, exposure to (S)-sulpiride facilitated the release of [3H]dopamine and [3H]ACh elicited when the 2-min stimulation was carried out at a frequency of 3 Hz but this effect was not observed at a lower frequency of stimulation (1 Hz). In the presence of amphetamine the dopamine receptors modulating the electrically evoked release of [3H]ACh can be activated by endogenous dopamine even at the lower frequency of stimulation (1 Hz). Similar effects can be obtained if the neuronal uptake of dopamine is inhibited by cocaine or nomifensine. The inhibition by amphetamine of the release of [3H]ACh elicited by electrical stimulation at 1 Hz involves dopamine receptors and can be fully antagonized by clozapine, haloperidol, chlorpromazine, or pimozide. The stereoselectivity of this antagonism can be demonstrated with the optical enantiomers of sulpiride and butaclamol. This inhibitory effect of amphetamine on cholinergic neurotransmission appears to be the result of the stimulation of dopamine receptors of the D2 subtype, as they were resistant to blockade by the preferential D1 receptor antagonist SCH 23390.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
B Scatton 《Life sciences》1982,31(25):2883-2890
The relative involvement of D1 (cyclase linked) and D2 dopamine receptors in dopaminergic control of striatal cholinergic transmission has been investigated in the rat by comparing the effects of SKF 38393 and LY 141865 (which act as specific agonists at D1 and D2 dopamine receptors, respectively) on striatal acetylcholine and dopamine metabolite concentrations and on the potassium-evoked release of 3H-acetylcholine from rat striatal slices. LY 141865 given systemically produced a dose-dependent increase in acetylcholine concentrations and a concomitant reduction of homovanillic and dihydroxyphenylacetic acid levels in the striatum (ED50 0.1 mg/kg) whereas SKF 38393 (1–30 mg/kg) did not. SKF 38393 (30 mg/kg) also failed to modify the LY 141865 (1 mg/kg) induced alterations of striatal acetylcholine and dopamine metabolite levels when given concomitantly with the latter compound. In experiments in vitro, LY 141865 reduced (EC50 0.14 μM), whereas SKF 38393 (up to 100 μM) failed to affect, the potassium-evoked release of 3H-acetylcholine from striatal slices. When given concomitantly with LY 141865, SKF 38393 (10 μM) did not modify the ability of the former compound to diminish striatal 3H-acetylcholine release. Finally, SKF 38393 also failed to affect the release of striatal 3H-acetylcholine after chemical lesion of the nigro-striatal dopaminergic pathway. The present results provide evidence for the involvement of D2 but not D1 dopamine receptors in dopaminergic control of striatal cholinergic transmission and indicate that D1 dopamine receptors do not exert any modulatory influence on D2 dopamine receptor mediated dopaminergic transmission.  相似文献   

9.
Rat striatal slices prelabelled with [3H]choline were superfused with dopamine D-1 and D-2 agonists and antagonists, separately and in combination, during measurement of [3H]acetylcholine (ACh) release. SKF38393 (D-1 agonist), 10(-7)-10(-4) M, and SCH23390 (D-1 antagonist), 10(-7)-10(-5) M, produced a dose-dependent increase in [3H]ACh release when given separately. The increased [3H]ACh release induced by either drug could not be attenuated by sufficient L-sulpiride to block D-2 receptors. Yet both SKF38393, 10(-6)-10(-5) M, and SCH23390, 10(-6)-10(-5) M, were able to partially or fully overcome the [3H]ACh release-depressant effect of cosuperfused LY171555 (D-2 agonist), 10(-6) M. This suggests that a functional antagonism regarding striatal ACh release exists between D-1 and D-2 dopaminergic receptor-mediated mechanisms, but that D-1 modulation of local ACh release does not occur at the level of the recognition site of the striatal D-2 receptor. Finally, although attenuation of the increased release of striatal [3H]ACh induced by 10(-5) M SCH23390 by SKF38393 was seen, it is possible that such functional antagonism is not mediated by exclusively D-1 dopaminergic means.  相似文献   

10.
The present study investigated the effect of halothane on acetylcholine (ACh) and dopamine (DA) release from the rat striatum. Halothane decreased DA release in a concentration-dependent manner, while increased ACh release. In our previous investigation, a volatile anesthetic, halothane, inhibited DA release from the rat striatal slices in a concentration-dependent manner. Although the release of ACh from cholinergic interneurons is tonically modulated by DA in the striatum, the effect of halothane on the relationship between the release of ACh and DA has not been discussed. Using double-labeled techniques, we investigated the effect of halothane on ACh and DA release simultaneously. The slices were incubated with [14C]-choline and [3H]-DA and superfused with modified Krebs solution containing 1 microM of hemicholinium-3. We applied electrical field stimulation (2 Hz, 240 shocks), and the amount of the release of radioactivity evoked by stimulation was calculated by subtraction of the basal radioactive outflow from the total outflow at the beginning of the respective stimulation periods. The effects of drugs on the release were expressed as the ratio of stimulation-evoked fractional releases (FR), measured in the presence and absence (FRS2/FRS1) of the drug. Halothane decreased DA release in a concentration-dependent manner (FRS2/FRS1=0.767+/-0.021, 0.715+/-0.026, 0.671+/-0.014 and 0.639+/-0.033 at the concentration of 0, 0.5, 2 and 4%, respectively), while ACh release showed a biphasic change in the presence of different concentrations of halothane. The release of ACh was significantly increased at the concentration of 2%, but not at 0.5 or 4%. Halothane failed to increase the release of ACh in striatal slices after lesion by 6-OH-dopamine. The application of amphetamine reduced the release of ACh and abolished the effect of halothane. These results indicate that the effect of halothane on ACh release is indirect: it increases the release by attenuating the inhibitory effect of DA released from the nigro-striatal pathway. The nonsynaptic interaction between DA and ACh release is involved in the effect of halothane on ACh release.  相似文献   

11.
Abstract: Using the endogenous cannabinoid receptor agonist anandamide, the synthetic agonist CP 55940 {[1α,2β( R )5α]-(−)-5-(1,1-dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol}, and the specific antagonist SR 141716 [ N -(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1 H -pyrazole-3-carboxamide hydrochloride], second messenger activation of the central cannabinoid receptor (CB1) was examined in rat striatal and cortical slices. The effects of these cannabinoid ligands on electrically evoked dopamine (DA) release from [3H]dopamine-prelabelled striatal slices were also investigated. CP 55940 (1 µ M ) and anandamide (10 µ M ) caused significant reductions in forskolin-stimulated cyclic AMP accumulation in rat striatal slices, which were reversed in the presence of SR 141716 (1 µ M ). CP 55940 (1 µ M ) had no effect on either KCl- or neurotransmitter-stimulated 3H-inositol phosphate accumulation in rat cortical slices. CP 55940 and anandamide caused significant reductions in the release of dopamine after electrical stimulation of [3H]dopamine-prelabelled striatal slices, which were antagonised by SR 141716. SR 141716 alone had no effect on electrically evoked dopamine release from rat striatal slices. These data indicate that the CB1 receptors in rat striatum are negatively linked to adenylyl cyclase and dopamine release. That the CB1 receptor may influence dopamine release in the striatum suggests that cannabinoids play a modulatory role in dopaminergic neuronal pathways.  相似文献   

12.
Abstract: The purpose of this study was to determine the effects of localized delivery of the D2 antagonist (−)-sulpiride (via microdialysis) on spontaneous and evoked dopamine release in the neostriatum of urethane-anesthetized rats 5, 10, 15, 21, and 70 days of age. Sulpiride increased spontaneous dopamine release approximately threefold relative to baseline measures, and this effect decreased with maturation. The relationship between sulpiride- and potassium-evoked release was complex; sulpiride increased evoked dopamine outflow at 5, 10, and 15 days of age. At 21 and 70 days of age, however, the effects of sulpiride were inversely related to the degree of stimulation with potassium. Furthermore, the D2 agonist quinpirole (100 µ M ) reversed the effects of sulpiride (10 µ M ), suggesting receptor mediation. These experiments demonstrate that the maturational decline in the efficacy and potency of D2 antagonism appears to be related to the degree of stimulation at the nerve terminal.  相似文献   

13.
We investigated the release of acetylcholine (ACh) from tissue slices obtained from the nucleus basalis magnocellularis (nbM) of the rat brain. Potassium (35 mM) depolarization produced a 10- to 12-fold increase in the release of endogenous ACh above spontaneous release. Potassium-evoked ACh release was Ca2+ dependent. Injection of the excitotoxin quinolinic acid into the nbM produced a 72.8 +/- 13.0% decrease in spontaneous ACh release and a 60.4 +/- 8.2% decrease in potassium-evoked release. A fourfold increase in ACh release was observed following perfusion of the tissue with 1 mM 3,4-diaminopyridine (3,4-DAP) whereas 10 mM 3,4-DAP caused a sevenfold increase. The increase in ACh release caused by 3,4-DAP was inhibited by tetrodotoxin. Tissue slices accumulated [3H]choline by high-affinity choline uptake and this could be inhibited by hemicholinium-3. These results indicate that ACh can be released from tissue slices of the nbM by a calcium-dependent process and that a part of this release appears to be from the cholinergic neurons of the nbM.  相似文献   

14.
Rat brain striatum slices were incubated with [3H]choline, perfused with a physiological buffer, and stimulated by perfusion with a K+-enriched buffer for 2 min. The tritium overflow evoked by K+ was decreased by 5-hydroxytryptamine (serotonin, 5-HT) (maximal inhibition 10(-6) M). This effect of 5-HT was mimicked by several agonists (5-methoxytryptamine, N,N-dimethyl-tryptamine, bufotenin) and blocked by serotonergic antagonists (methiothepin, methysergide, cinanserin) but not by haloperidol; methiothepin and methysergide alone slightly increased the K+-evoked overflow of tritium (3H). Inhibition of the tritium release by 5-HT was not suppressed in the presence of tetrodotoxin (TTX) (10(-6) M). These results suggest that 5-HT tonically inhibits acetylcholine (ACh) release from striatal cholinergic neurons by acting on a presynaptic receptor localized on cholinergic terminals.  相似文献   

15.
The effects of a newly synthesized compound, 7-(3-[4-(2,3-dimethylphenyl)piperazinyl]propoxy)-2(1H)-quinolinone (OPC-4392), on tyrosine hydroxylation in situ and in vitro were studied using rat striatal slices and tyrosine hydroxylase (TH) purified from bovine adrenal medulla, respectively. OPC-4392 dose-dependently inhibited L-dihydroxyphenylalanine (DOPA) formation in rat striatal slices with IC50 values of about 10(-6) M. The inhibitory effect of OPC-4392 on in situ DOPA formation was dose-dependently reversed by addition of sulpiride, a dopamine D2 receptor antagonist, whereas no change was observed by addition of nomifensine (5 X 10(-6) M), a blocker of dopamine uptake. From in vitro experiment using purified TH, OPC-4392 affected neither the enzymatic activity nor the Km value for 6-methyl-5,6,7,8-tetrahydropterin (6MPH4). These results suggest that OPC-4392 impairs in situ DOPA formation by stimulating presynaptic dopamine D2 receptor as a dopamine agonist, and not by directly inhibiting the TH activity.  相似文献   

16.
In Huntington's disease (HD), neuronal loss is most prominent in the striatum leading to emotional, cognitive and progressive motor dysfunction. The R6/2 mice, transgenic for exon 1 of the HD gene, develop a neurological phenotype with similarities to these features of HD. In striatal tissue, electrically evoked release of tritiated acetylcholine (ACh) and dopamine (DA) were compared in wild-type (WT) and R6/2 mice. In R6/2 mice, the evoked release of ACh, its M2 autoreceptor-mediated maximum inhibition and its dopamine D2 heteroreceptor-mediated maximum inhibition was diminished to 51%, 74% and 87% of controls, respectively. Also, the activities of choline acetyltransferase and of synaptosomal high-affinity choline uptake decreased progressively with age in these mice. In the DA release model, however, electrical stimulation elicited equal amounts of [3H]-DA both in WT and R6/2 mice. Moreover, high-affinity DA uptake into striatal slices was similar in WT and R6/2 mice. In order to confirm these findings in vivo, intrastriatal levels of extracellular DA were measured by intracerebral microdialysis in freely moving mice: striatal DA levels were found to be equal in WT and R6/2 mice. In conclusion, in the transgenic R6/2 mice changes occur mainly in striatal cholinergic neurones and their pre-synaptic modulation, but not in the dopaminergic afferent terminals. Whether similar events also contribute to the pathogenesis of HD in humans has to be established.  相似文献   

17.
The present experiments show that N-[3H]-methylcarbamylcholine ([3H]MCC) binds specifically and with high affinity to rat hippocampus, frontal cortex, and striatum. The highest maximal density of binding sites was apparent in frontal cortex and the lowest in hippocampus. [3H]MCC binding was potently inhibited by nicotinic, but not muscarinic, agonists and by the nicotinic antagonist dihydro-beta-erythroidine in all three brain regions studied. The effect of unlabeled MCC on acetylcholine (ACh) release from slices of rat brain was tested. The drug significantly enhanced spontaneous ACh release from slices of hippocampus and frontal cortex, but not from striatal slices. This effect of MCC to increase ACh release from rat hippocampus and frontal cortex was antagonized by the nicotinic antagonists dihydro-beta-erythroidine and d-tubocurarine, but not by alpha-bungarotoxin or by the muscarinic antagonist atropine. The MCC-induced increase in spontaneous ACh release from hippocampal and frontal cortical slices was not affected by tetrodotoxin. The results suggest that MCC might alter cholinergic transmission in rat brain by a direct activation of presynaptic nicotinic receptors on the cholinergic terminals. That this alteration of ACh release is apparent in hippocampus and frontal cortex, but not in striatum, suggests that there may be a regional specificity in the regulation of ACh by nicotinic receptors in rat brain.  相似文献   

18.
The N-methyl-D-aspartate (NMDA) receptor-mediated regulation of the release of newly synthesized [3H]dopamine [( 3H]DA) was studied in vitro, both on rat striatal slices using a new microsuperfusion device and on rat striatal synaptosomes. Under Mg2(+)-free medium conditions, the NMDA (5 X 10(-5) M)-evoked release of [3H]DA from slices was found to be partly insensitive to tetrodotoxin (TTX). This TTX-resistant stimulatory effect of NMDA was blocked by either Mg2+ (10(-3) M) or the noncompetitive antagonist MK-801 (10(-6) M). In addition, the TTX-resistant NMDA-evoked response could be potentiated by glycine (10(-6) M) in the presence of strychnine (10(-6) M). The coapplication of NMDA (5 X 10(-5) M) and glycine (10(-6) M) stimulated the release of [3H]DA from striatal synaptosomes. This effect was blocked by Mg2+ (10(-3) M) or MK-801 (10(-5) M). These results indicate that some of the NMDA receptors involved in the facilitation of DA release are located on DA nerve terminals. These presynaptic receptors exhibit pharmacological properties similar to those described in electrophysiological studies for postsynaptic NMDA receptors.  相似文献   

19.
An in vitro model of ischemia was utilized to study the effects of both oxygen and glucose depletion on transmitter release from rat striatal slices. The spontaneous and stimulation-evoked releases of tritiated dopamine, gamma-aminobutyric acid, glutamate, and acetylcholine were measured. Hypoxia increased the evoked release of glutamate and dopamine without effect on the resting release. In contrast, hypoglycemia itself increased the resting release of dopamine. Hypoxia in combination with hypoglycemia provoked a massive release of glutamate, dopamine, and gamma-aminobutyric acid. The effect on acetylcholine release was less pronounced. Ca2+ withdrawal partly reduced the effect of hypoxia combined with hypoglycemia on dopamine release and application of tetrodotoxin (1 microM) abolished it. MK-801 (3 microM), an N-methyl-D-aspartate receptor antagonist, attenuated the effect of hypoxia and hypoglycemia on [3H]dopamine release. omega-Conotoxin (0.1 microM) had a similar effect on stimulation-evoked release under a hypoxic condition. The D2 receptor antagonist sulpiride (100 microM) failed to enhance the release of [3H]acetylcholine in hypoxia combined with hypoglycemia. It was suggested that in response to hypoxia combined with hypoglycemia there is a massive release of glutamate due to the increased firing rate which in turn releases dopamine from the axon terminals through stimulation of presynaptic N-methyl-D-aspartate receptors. Dopaminergic inhibitory control on ACh release seems not to be operative under conditions of hypoxia combined with hypoglycemia.  相似文献   

20.
Abstract: The effect of dopamine on the release of endogenous acetylcholine from striatal slices and synaptosomes and from cerebral cortex synaptosomes was studied. K+ (56 m M ) and veratrine (75 μM ) increased the release of acetylcholine from striatal slices by 3.7 and 3.3 times the resting release, respectively. The effect of veratrine was completely abolished by tetrodotoxin (1 μM ). Dopamine (10−6 to 10−3 M ) reduced the K+-evoked release of acetylcholine from striatal slices in a dose-dependent manner. The resting release of acetylcholine was also significantly reduced by dopamine. Apomorphine (20 μM ) significantly reduced the K+-evoked release of acetylcholine, and both this effect and the inhibition due to dopamine (1 m M ) were significantly antagonised by chlorpromazine (20 μM ). Dopamine had a similar effect on the release of acetylcholine from striatal synaptosome beds; the resting release was depressed 32% by the presence of dopamine (1 m M ). A greater effect of dopamine was seen on the release of acetylcholine from cerebral cortex synaptosome beds, the resting release being reduced by 54% and the K+-evoked release by 29%. These results are discussed in terms of the possible role of presynaptic dopamine receptors in controlling the release of acetylcholine and the magnitude of their contribution compared with that of the postsynaptic dopamine receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号