首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of amino acids on glutathione (GSH) production by Saccharomyces cerevisiae T65 were investigated in this paper. Cysteine was the most important amino acids, which increased intracellular GSH content greatly but inhibited cell growth at the same time. The suitable amino acids addition strategy was two-step addition: in the first step, cysteine was added after two hours culture to 2 mM and then, the three amino acids (glutamic acid, glycine, and serine) were added after seven hours culture. The optimum concentration of those three key amino acids (10 mM glutamic acid, 10 mM glycine, and 10 mM serine) was obtained by orthogonal matrix method. With the optimum amino acids addition strategy a 1.63% intracellular GSH content was obtained in shake flask culture. Intracellular GSH content was 55.2% higher than the experiments without three amino acids addition. The cell biomass and GSH yield were 9.4 g/L and 153.2 mg/L, respectively. Using this amino acids addition strategy in the fed-batch culture of S. cerevisiae T65, GSH content, the biomass, and GSH yield reached 1.41%, 133 g/L, and 1875 mg/L, respectively, after 44 hours fermentation. GSH yield was about 2.67 times as that of amino acids free.  相似文献   

2.
Advanced control of glutathione fermentation process   总被引:18,自引:0,他引:18  
A study was performed to understand the fermentation process for production of glutathione fermentation (GSH) with an improved strain of baker's yeast. Simultaneous utilization of sugar and ethanol has been found to be a key factor in the industrial process to produce GSH using Saccharomyces cerevisiae KY6186. Based on this observation, the optimal sugar feed profile for the fed-batch operation has been determined. A feedforward/feedback control system was developed to regulate the sugar feed rate so as to maximize GSH production yields. Using the feedforward/feedback control system and the on-line data of oxygen and ethanol concentration in exhaust gas, the successful scaleup to the production level was accomplished. An average of 40% improvement of glutathione production compared to a conventionally programmed control of exponential fed-batch operation was found in the new process. (c) 1992 John Wiley & Sons, Inc.  相似文献   

3.
目的: 提高地衣芽孢杆菌BF-002的芽孢产量,实现氮源流加过程的自动化控制,降低生产成本,为其他芽孢杆菌提高芽孢产率的研究提供一种思路。方法: 通过摇瓶做单因素实验,筛选最佳温度和碳氮源,在此基础上进行5 L发酵罐实验。初始添加不同浓度的氮源,探索芽孢形成与氮源的关系。提出相对氨基氮的概念,通过恒速补料、间歇补料和基于尾气CO2浓度反馈流加三个策略控制相对氨基氮浓度水平。采用Python语言编写计算机控制程序,实现基于尾气CO2浓度反馈流加策略的自动化控制。结果: 摇瓶筛选最佳温度及碳氮源分别为:37℃、葡萄糖、鱼粉蛋白胨、豆粕。上罐结果表明,相对氨基氮浓度越低芽孢率越高,采用基于尾气CO2浓度反馈流加能将相对氨基氮控制在8.42 mg/OD600水平,芽孢量可达4.25×109 cfu/mL。利用计算机程序自动控制低价氮源氯化铵的流加,可以使芽孢量达到1.87×1010 cfu/mL,是前期最优批次的4.4倍,同时降低原料成本。结论: 将相对氨基氮浓度控制在适宜水平可以得到芽孢量较高的培养液,自动流加氯化铵策略能降低生产成本并实现自动化控制,为研究芽孢杆菌产孢提供一种思路。  相似文献   

4.
The present study investigated the effects of three constituent amino acids on glutathione production in flask culture of Candida utilis. Although l-glutamic acid and glycine had little impact on cell growth and glutathione biosynthesis, l-cysteine positively influenced glutathione production, despite inhibiting cell growth when it was added prior to stationary phase. Adding 8 mmol/L of l-cysteine to the culture broth at 16 h boosted glutathione production by 91%, increasing the intracellular glutathione content by 106% compared to untreated controls. A temperature-shift strategy, in which we shifted batch and fed-batch cultures of C. utilis from 30 to 26°C, also significantly enhanced glutathione production. Applying both strategies (i.e. adding 20 mmol/L l-cysteine and shifting the temperature from 30 to 26°C) at 33 h enhanced the glutathione concentration and the intracellular glutathione content to 1,312 mg/L and 3.75%, respectively, during fed-batch cultivation (glucose feeding at a constant rate of 18.3 g/h). The average specific glutathione production rate under this condition was 129% higher than that of the control without strategy.  相似文献   

5.
The production of ethanol from carob pod extract by free and immobilized Saccharomyces cerevisiae cells in batch and fed-batch culture was investigated. Fed-batch culture proved to be a better fermentation system for the production of ethanol than batch culture. In fed-batch culture, both free and immobilized S. cerevisiae cells gave the same maximum concentration (62 g/L) of final ethanol at an initial sugar concentration of 300 g/L and F = 167 mL/h. The maximum ethanol productivity (4.4 g/L h) was obtained with both free and immobilized cells at a substrate concentration of 300 g/L and F = 334 mL/h. In repeated fed-batch culture, immobilized S. cerevisiae cells gave a higher overall ethanol concentration compared with the free cells. The immobilized S. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 10 days. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
A novel amino acid supplementation strategy was developed for enhancing the production of IL-2 (interleukin-2; as a model protein) by recombinant Escherichia coli BL21 (pET21a-hil2) in fed-batch high-cell-density cultures. The amino acids most needed and their amounts were determined using a stoichiometric model, and full factorial design experiments were conducted to determine the effects of single amino acids and amino acid mixtures on production. One of the most effective amino acid mixtures was found to be leucine, aspartic acid and glycine. This amino acid mixture was utilized for the production of IL-2 in batch and fed-batch fermentations. The amount of IL-2 produced increased from 403 to 722 mg/l and from 5.15 × 103 to 8.08 × 103 mg/l in batch and fed-batch cultures respectively. The results also revealed that the above amino acid mixture specifically increases IL-2 concentration in the cells.  相似文献   

7.
可溶性TRAIL蛋白的高密度培养及补料策略研究   总被引:3,自引:0,他引:3  
采用分批补料的方法高密度培养重组大肠杆菌C600/PbvTRAIL制备人可溶性TRAIL蛋白,优化发酵工艺,探索简单高效的分离纯化方法并测定蛋白生物活性。通过比较几种不同的补料策略:间歇流加、Dostat、pHstat,摸索了一种流加策略,即DOstatpHstat组合流加,有效的避免了发酵过程中,尤其是诱导表达阶段乙酸积累的增加,使TRAIL蛋白在高密度培养条件下,得到高效表达。菌体密度最终达到300g/L(WCW)以上,可溶性TRAIL蛋白占菌体总蛋白的4.2%,含量为1.1g/L。在整个发酵过程中,乙酸浓度接近于0,且未使用任何特殊手段,如纯氧、加压等,简化了发酵工艺,降低了发酵成本,为TRAIL的工业化生产创造了条件。  相似文献   

8.
Cell concentration, recombinant protein (beta-galactosidase) level, and the specific enzyme expression level were increased from 19 to 184 g/L, 18.3 to 129 U/mL, and 3.2 to 5.7 U/mg protein, respectively, in fed-batch culture of recombinant Bacillus subtilis when glucose concentration was controlled at 1 g/L as compared with those of conventional fed-batch culture. Glucose concentration of the culture broth was monitored by an automatic on-line glucose analyzer and controlled with a moving identification combined with optimal control (MICOC) strategy. When glucose concentrations were controlled at 10, 1, and 0.2 g/L, accumulated propionic acid concentrations and specific enzyme activities were 18.5, 4.4, and 0.6 g/L and 2.9, 5.7, and 7.1 U/mg protein, respectively. The addition of various concentrations of sodium propionate to the growth medium in batch cultures resulted in a drastic decrease in the growth rate with respect to propionate concentration. The propionic acid was shown to be responsible for cell growth inhibition and enzyme activity reduction in fed-batch culture. (c) 1992 John Wiley & Sons, Inc.  相似文献   

9.
Alcohol fermentation of starch was investigated using a direct starch fermenting yeast, Saccharomyces cerevisiae SR93, constructed by integrating a glucoamylase-producing gene (STA1) into the chromosome of Saccharomyces cerevisiae SH1089. The glucoamylase was constitutively produced by the recombinant yeast. The ethanol concentration produced by the recombinant yeast was 14.3 g/L which was about 1.5-fold higher than by the conventional mixed culture using an amylolytic microorganism and a fermenting microorganism. About 60% of the starch was converted into ethanol by the recombinant yeast, and the ethanol yield reached its maximum value of 0.48 at the initial starch concentration of 50 g/L. The fed-batch culture, which maintains the starch concentration in the range of 30 to 50 g/L, was used to produce a large amount of ethanol from starch. The amount of ethanol produced in the fed-batch culture increased about 20% compared to the batch culture. (c) 1997 John Wiley & Sons, Inc.  相似文献   

10.
Summary The acetic acid concentration in a batch culture of Acetobacter aceti M23 increased up to 90 g/l by adding ethanol intermittently. Although the bacterial cells ceased growth at about 60 g acetic acid/l, non-viable cells still preserved ethanol oxidation activity. Cell recycling by filtration in a repeated fed-batch culture increased the overall acetic acid production rate 2.84-fold compared to that without cell recycling for the purpose of obtaining an acetic acid concentration of 80.8 g/l. Repeated fed-batch cultivation with cell recycle was effective for increasing the production rate of acetic acid and obtaining high amounts close to a lethal concentration (90 g/l).Offprint requests to: Kiyoshi Toda  相似文献   

11.
To utilize Pichia pastoris to produce glutathione, an intracellular expression vector harboring two genes (gsh1 and gsh2) from Saccharomyces cerevisiae encoding enzymes involved in glutathione synthesis and regulated by the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter was transformed into P. pastoris GS115. Through Zeocin resistance and expression screening, a transformant that had higher glutathione yield (217 mg/L) in flask culture than the host strain was obtained. In fed-batch culture process, this recombinant strain displayed high activity for converting precursor amino acids into glutathione. The glutathione yield and biomass achieved 4.15 g/L and 98.15 g (dry cell weight, DCW)/L, respectively, after 50 h fermentation combined with addition of three amino acids (15 mmol/L glutamic acid, 15 mmol/L cysteine, and 15 mmol/L glycine).  相似文献   

12.
This study investigated the effects of DO concentration on DHA fermentation and of DO-stat fed-batch fermentation using a pH control strategy, on 1,3-dihydroxyacetone (DHA) production. The results showed that DO-stat fed-batch fermentation with pH-shift control was the optimal bioprocess for DHA production. DO-stat fed-batch fermentation was carried out at 30% air saturation, and the culture pH was automatically maintained at pH 6.0 during the first 20 h and then shifted to pH 5.0 until the end of the fermentation. An optimal DHA concentration of 175.9 ± 6.7 g/L, with a production yield to glycerol of 0.87 ± 0.04 g/g, was obtained at 72 h of DO-stat fed-batch fermentation at 30°C in a 15 L fermenter.  相似文献   

13.
A gratuitous induction system in the yeast Kluyveromyces lactis was evaluated for the expression of intracellular and extracellular products during fed-batch culture. The Escherichia coli lacZ gene (beta-galactosidase; intracellular) and MFalpha1 leader-BPTI cassette (bovine pancreatic trypsin inhibitor; extracellular) were placed under the control of the inducible K. lactis LAC4 promotor, inserted into partial-pKD1 plasmids, and transformed into a ga1-209 K. lactis strain. To obtain a high level of production, culture conditions for growth and expression were initially evaluated in tube cultures. A selective medium containing 5 g/L glucose (as carbon source) and 0.5 g/L galactose (as inducer) demonstrated the maximum activity of both beta-galactosidase and secreted BPTI. This level of expression had no significant effect on the growth of the recombinant cells; growth rate dropped by approximately 11%, whereas final biomass concentrations remained the same. In shake-flask culture, biomass concentration, beta-galactosidase activity, and BPTI secreted activity were 4 g/L, 7664 U/g dry cell, and 0.32 mg/L, respectively. Fed-batch culture (with a high glucose concentration and a low galactose [inducer] concentration feed) resulted in a 6.5-fold increase in biomass, a 23-fold increase in beta-galactosidase activity, and a 3-fold increase in BPTI secreted activity. The results demonstrate the success of gratuitous induction during high-cell-density fed-batch culture of K. lactis. A very low concentration of galactose feed was sufficient for a high production level.  相似文献   

14.
Using fed-batch operation for high-cell-density cultivation, efforts are frequently made for optimization of culture parameters, particularly feeding strategy. The current study also emphasized the importance of selecting strains for the production of recombinant proteins in high-cell-density cultures. With Escherichia coli penicillin acylase (PAC) as a target protein, the host/vector system of MDdeltaP7 harboring pTrcKnPAC2902 and pKS12 was designed for optimization of fed-batch cultivation for recombinant protein production. The host, MDdeltaP7, potentially had a high translational and periplasmic processing efficiency for pac expression. On the other hand, the vector, pTrcKnPAC2902, was genetically constructed for pac overexpression. Coexistence of the other vector, pKS12, significantly enhanced PAC production by improving cell physiology and reducing the amount of inclusion body formation upon pac overexpression. An extremely high volumetric PAC activity at 37,500 U/L was obtained with the use of the developed host/vector system under optimum fed-batch culture conditions.  相似文献   

15.
补料方式对酵母菌生产谷胱甘肽的影响   总被引:9,自引:0,他引:9  
比较了酵母菌发酵生产谷胱甘肽(GSH)的几种补料分批培养方式。实验发现补料可以明显地促进酵母菌的生长和谷胱甘肽的合成,同时还发现不同的补料方式对发酵液中的菌体浓度和GSH浓度有不同的影响。采用指数流加方式可获得极高的菌体浓度,但菌体中的GSH浓度较低;而采用恒-pH补料分批培养既可以达到较高菌体浓度,菌体中又含有较高的GSH含量,因此,其总的GSH产量最高,可达到977.8mg/L。  相似文献   

16.
The effect of ethanol concentration on cloned gene expression in recombinant Saccharomyces cerevisiae strain 20B-12 containing one of two plasmids, pNA3 and pNA7, was investigated in batch cultures. Plasmids pNA3 and pNA7 contain the alpha-amylase gene under the control of the SUC2 or PGK promoter, respectively. When the ethanol concentration was controlled at 2 to 5 g/L, the gene expressions were two times higher than those at 20 g/L ethanol. The increase the gene expression by maintaining both the ethanol and glucose concentrations at low levels, a fuzzy ontroller was developed. The concentrations of glucose and ethanol were controlled simultaneously at 0.15 and 2 g/L, respectively, in the production phase using the fuzzy controller in fed-batch culture. The synthesis of alpha-amylase was induced by the low glucose concentration and maintained at a high level of activity by regulating the ethanol concentration at 2 g/L. The secretory alpha-amylase was induced by the low glucose concentration and maintained at a high level of activity by regulating the ethanol concentration at 2 g/L. The secretory alpha-amylase activities of cells harboring plasmids pNA3 and pNA7 in fed-batch culture were 175 and 395 U/mL, and their maximal specific activities 7.7 and 12.4 U/mg dry cells, respectively. These values are two to three times higher in activity and three to four times higher in specific activity than those obtained when glucose only was controlled. (c) 1994 John Wiley & Sons, Inc.  相似文献   

17.
以树干毕赤酵母为发酵菌种,纯木糖为发酵底物,通过分批补料来提高糖利用率以及乙醇得率。结果表明,在24h内,最佳初始木糖浓度为80g/L,在28h的发酵周期中,可以将木糖浓度提高至90g/L,在32h发酵周期内可以将木糖浓度提高至100g/L。通过分批补料,乙醇浓度得到明显提高。当总糖浓度分别为80g/L、90g/L时,24h发酵周期内,分批补料次数以1次为宜,乙醇浓度分别达30.95g/L、32.60g/L,相比于不补料即一次性投料,乙醇浓度分别提高了9.36%、9.18%。总糖浓度100g/L,28h发酵周期内,补料2次效果最佳,乙醇浓度达37.49g/L,比一次性投料下提高了10.36%,较一次性投料达到相同发酵效果缩短了4h。  相似文献   

18.
A feedback control system of the glucose feed rate in a bakers' yeast fed-batch culture was developed by keeping the ethanol concentration constant. A PID controller and on–off controller were applied and discussed with the aid of the porous Teflon tubing method. Experimental results showed the effectiveness of the control system for avoiding the glucose effect and glucose starvation. It was shown that the feedback control system developed hare could achieve a maximum specific growth rate of 0.3 h?1 or a maximum cell yield of 0.5 g cell/g glucose in the fedhyphen;batch culture.  相似文献   

19.
Raman spectroscopy as a process analytical technology tool was implemented for the monitoring and control of ethanol fermentation carried out with Saccharomyces cerevisiae. The need for the optimization of bioprocesses such as ethanol production, to increase product yield, enhanced the development of control strategies. The control system developed by the authors utilized noninvasive Raman measurements to avoid possible sterilization problems. Real-time data analysis was applied using partial least squares regression (PLS) method. With the aid of spectral pretreatment and multivariate data analysis, the monitoring of glucose and ethanol concentration was successful during yeast fermentation with the prediction error of 4.42 g/L for glucose and 2.40 g/L for ethanol. By Raman spectroscopy-based feedback control, the glucose concentration was maintained at 100 g/L by the automatic feeding of concentrated glucose solution. The control of glucose concentration during fed-batch fermentation resulted in increased ethanol production. Ethanol yield of 86% was achieved compared to the batch fermentation when 75 % yield was obtained. The results show that the use of Raman spectroscopy for the monitoring and control of yeast fermentation is a promising way to enhance process understanding and achieve consistently high production yield.  相似文献   

20.
To develop the easier control method for fed-batch culture of sophorolipid production, we chose rapeseed oil as the most productive oil and compared their productivities in relation to different concentrations of glucose. The optimal concentration of glucose was 30 g/L for sophorolipid production. A fed-batch method was conducted using Candida bombicola ATCC 22214 with rapeseed oil as a secondary substrate. The feeding rate of rapeseed oil was dependent on pH and was calculated by the consumption rate of NaOH and rapeseed oil. The glucose concentration was constantly maintained between 30 and 40 g/L. As a result, we have produced a crude sophorolipid up to 365 g/L for 8 days through a feeding-rate-controlled fed-batch process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号