首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
MOTIVATION: In protein chemistry, proteomics and biopharmaceutical development, there is a desire to know not only where a protein is cleaved by a protease, but also the susceptibility of its cleavage sites. The current tools for proteolytic cleavage prediction have often relied purely on regular expressions, or involve models that do not represent biological data well. RESULTS: A novel methodology for characterizing proteolytic cleavage site activities has been developed, which incorporates two fundamental features: activity class prediction and the use of an amino acid similarity matrix for (non-parametric) neural learning. The first solved the problem of predicting proteolytic efficiency. The second significantly improved the robustness in prediction and reduced the time complexity for learning. This study shows that activity class prediction is successful when applying this methodology to the prediction and characterization of Trypsin cleavage sites and the prediction of HIV protease cleavage sites. AVAILABILITY: Requests for software and data should be made respectively to Dr Zheng Rong Yang and Miss Rebecca Thomson.  相似文献   

2.
The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s). Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database) with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate sequence using machine learning techniques. It is freely available at http://lightning.med.monash.edu.au/PROSPER/.  相似文献   

3.
The biological functions of a protein are closely related to its attributes in a cell. With the rapid accumulation of newly found protein sequence data in databanks, it is highly desirable to develop an automated method for predicting the subcellular location of proteins. The establishment of such a predictor will expedite the functional determination of newly found proteins and the process of prioritizing genes and proteins identified by genomic efforts as potential molecular targets for drug design. The traditional algorithms for predicting these attributes were based solely on amino acid composition in which no sequence order effect was taken into account. To improve the prediction quality, it is necessary to incorporate such an effect. However, the number of possible patterns in protein sequences is extremely large, posing a formidable difficulty for realizing this goal. To deal with such difficulty, a well-developed tool in digital signal processing named digital Fourier transform (DFT) [1] was introduced. After being translated to a digital signal according to the hydrophobicity of each amino acid, a protein was analyzed by DFT within the frequency domain. A set of frequency spectrum parameters, thus obtained, were regarded as the factors to represent the sequence order effect. A significant improvement in prediction quality was observed by incorporating the frequency spectrum parameters with the conventional amino acid composition. One of the crucial merits of this approach is that many existing tools in mathematics and engineering can be easily applied in the predicting process. It is anticipated that digital signal processing may serve as a useful vehicle for many other protein science areas.  相似文献   

4.
Bio-support vector machines for computational proteomics   总被引:2,自引:0,他引:2  
MOTIVATION: One of the most important issues in computational proteomics is to produce a prediction model for the classification or annotation of biological function of novel protein sequences. In order to improve the prediction accuracy, much attention has been paid to the improvement of the performance of the algorithms used, few is for solving the fundamental issue, namely, amino acid encoding as most existing pattern recognition algorithms are unable to recognize amino acids in protein sequences. Importantly, the most commonly used amino acid encoding method has the flaw that leads to large computational cost and recognition bias. RESULTS: By replacing kernel functions of support vector machines (SVMs) with amino acid similarity measurement matrices, we have modified SVMs, a new type of pattern recognition algorithm for analysing protein sequences, particularly for proteolytic cleavage site prediction. We refer to the modified SVMs as bio-support vector machine. When applied to the prediction of HIV protease cleavage sites, the new method has shown a remarkable advantage in reducing the model complexity and enhancing the model robustness.  相似文献   

5.
Proteases have central roles in "life and death" processes due to their important ability to catalytically hydrolyze protein substrates, usually altering the function and/or activity of the target in the process. Knowledge of the substrate specificity of a protease should, in theory, dramatically improve the ability to predict target protein substrates. However, experimental identification and characterization of protease substrates is often difficult and time-consuming. Thus solving the "substrate identification" problem is fundamental to both understanding protease biology and the development of therapeutics that target specific protease-regulated pathways. In this context, bioinformatic prediction of protease substrates may provide useful and experimentally testable information about novel potential cleavage sites in candidate substrates. In this article, we provide an overview of recent advances in developing bioinformatic approaches for predicting protease substrate cleavage sites and identifying novel putative substrates. We discuss the advantages and drawbacks of the current methods and detail how more accurate models can be built by deriving multiple sequence and structural features of substrates. We also provide some suggestions about how future studies might further improve the accuracy of protease substrate specificity prediction.  相似文献   

6.
Protein nitration and nitrosylation are essential post-translational modifications(PTMs)involved in many fundamental cellular processes. Recent studies have revealed that excessive levels of nitration and nitrosylation in some critical proteins are linked to numerous chronic diseases.Therefore, the identification of substrates that undergo such modifications in a site-specific manner is an important research topic in the community and will provide candidates for targeted therapy. In this study, we aimed to develop a computational tool for predicting nitration and nitrosylation sites in proteins. We first constructed four types of encoding features, including positional amino acid distributions, sequence contextual dependencies, physicochemical properties, and position-specificscoring features, to represent the modified residues. Based on these encoding features, we established a predictor called DeepNitro using deep learning methods for predicting protein nitration and nitrosylation. Using n-fold cross-validation, our evaluation shows great AUC values for DeepNitro, 0.65 for tyrosine nitration, 0.80 for tryptophan nitration, and 0.70 for cysteine nitrosylation, respectively,demonstrating the robustness and reliability of our tool. Also, when tested in the independent dataset, DeepNitro is substantially superior to other similar tools with a 7%à42% improvement in the prediction performance. Taken together, the application of deep learning method and novel encoding schemes, especially the position-specific scoring feature, greatly improves the accuracy of nitration and nitrosylation site prediction and may facilitate the prediction of other PTM sites. DeepNitro is implemented in JAVA and PHP and is freely available for academic research at http://deepnitro.renlab.org.  相似文献   

7.
Information of protein subcellular location plays an important role in molecular cell biology. Prediction of the subcellular location of proteins will help to understand their functions and interactions. In this paper, a different mode of pseudo amino acid composition was proposed to represent protein samples for predicting their subcellular localization via the following procedures: based on the optimal splice site of each protein sequence, we divided a sequence into sorting signal part and mature protein part, and extracted sequence features from each part separately. Then, the combined features were fed into the SVM classifier to perform the prediction. By the jackknife test on a benchmark dataset in which none of proteins included has more than 90% pairwise sequence identity to any other, the overall accuracies achieved by the method are 94.5% and 90.3% for prokaryotic and eukaryotic proteins, respectively. The results indicate that the prediction quality by our method is quite satisfactory. It is anticipated that the current method may serve as an alternative approach to the existing prediction methods.  相似文献   

8.
We have developed an automated method for predicting signal peptide sequences and their cleavage sites in eukaryotic and bacterial protein sequences. It is a 2-layer predictor: the 1st-layer prediction engine is to identify a query protein as secretory or non-secretory; if it is secretory, the process will be automatically continued with the 2nd-layer prediction engine to further identify the cleavage site of its signal peptide. The new predictor is called Signal-CF, where C stands for "coupling" and F for "fusion", meaning that Signal-CF is formed by incorporating the subsite coupling effects along a protein sequence and by fusing the results derived from many width-different scaled windows through a voting system. Signal-CF is featured by high success prediction rates with short computational time, and hence is particularly useful for the analysis of large-scale datasets. Signal-CF is freely available as a web-server at http://chou.med.harvard.edu/bioinf/Signal-CF/ or http://202.120.37.186/bioinf/Signal-CF/.  相似文献   

9.
Signal-3L: A 3-layer approach for predicting signal peptides   总被引:3,自引:0,他引:3  
Functioning as an "address tag" that directs nascent proteins to their proper cellular and extracellular locations, signal peptides have become a crucial tool in finding new drugs or reprogramming cells for gene therapy. To effectively and timely use such a tool, however, the first important thing is to develop an automated method for rapidly and accurately identifying the signal peptide for a given nascent protein. With the avalanche of new protein sequences generated in the post-genomic era, the challenge has become even more urgent and critical. In this paper, we have developed a novel method for predicting signal peptide sequences and their cleavage sites in human, plant, animal, eukaryotic, Gram-positive, and Gram-negative protein sequences, respectively. The new predictor is called Signal-3L that consists of three prediction engines working, respectively, for the following three progressively deepening layers: (1) identifying a query protein as secretory or non-secretory by an ensemble classifier formed by fusing many individual OET-KNN (optimized evidence-theoretic K nearest neighbor) classifiers operated in various dimensions of PseAA (pseudo amino acid) composition spaces; (2) selecting a set of candidates for the possible signal peptide cleavage sites of a query secretory protein by a subsite-coupled discrimination algorithm; (3) determining the final cleavage site by fusing the global sequence alignment outcome for each of the aforementioned candidates through a voting system. Signal-3L is featured by high success prediction rates with short computational time, and hence is particularly useful for the analysis of large-scale datasets. Signal-3L is freely available as a web-server at http://chou.med.harvard.edu/bioinf/Signal-3L/ or http://202.120.37.186/bioinf/Signal-3L, where, to further support the demand of the related areas, the signal peptides identified by Signal-3L for all the protein entries in Swiss-Prot databank that do not have signal peptide annotations or are annotated with uncertain terms but are classified by Signal-3L as secretory proteins are provided in a downloadable file. The large-scale file is prepared with Microsoft Excel and named "Tab-Signal-3L.xls", and will be updated once a year to include new protein entries and reflect the continuous development of Signal-3L.  相似文献   

10.
The rapid increase in the amount of protein sequence data has created a need for automated identification of sites that determine functional specificity among related subfamilies of proteins. A significant fraction of subfamily specific sites are only marginally conserved, which makes it extremely challenging to detect those amino acid changes that lead to functional diversification. To address this critical problem we developed a method named SPEER (specificity prediction using amino acids' properties, entropy and evolution rate) to distinguish specificity determining sites from others. SPEER encodes the conservation patterns of amino acid types using their physico-chemical properties and the heterogeneity of evolutionary changes between and within the subfamilies. To test the method, we compiled a test set containing 13 protein families with known specificity determining sites. Extensive benchmarking by comparing the performance of SPEER with other specificity site prediction algorithms has shown that it performs better in predicting several categories of subfamily specific sites.  相似文献   

11.
Proteases are enzymes that cleave and hydrolyse the peptide bonds between two specific amino acid residues of target substrate proteins. Protease-controlled proteolysis plays a key role in the degradation and recycling of proteins, which is essential for various physiological processes.Thus, solving the substrate identification problem will have important implications for the precise understanding of functions and physiological roles of proteases, as well as for therapeutic target identification and pharmaceutical applicability. Consequently, there is a great demand for bioinformatics methods that can predict novel substrate cleavage events with high accuracy by utilizing both sequence and structural information. In this study, we present Procleave, a novel bioinformatics approach for predicting protease-specific substrates and specific cleavage sites by taking into account both their sequence and 3D structural information. Structural features of known cleavage sites were represented by discrete values using a LOWESS data-smoothing optimization method,which turned out to be critical for the performance of Procleave. The optimal approximations of all structural parameter values were encoded in a conditional random field(CRF) computational framework, alongside sequence and chemical group-based features. Here, we demonstrate the outstanding performance of Procleave through extensive benchmarking and independent tests. Procleave is capable of correctly identifying most cleavage sites in the case study. Importantly, when applied to the human structural proteome encompassing 17,628 protein structures, Procleave suggests a number of potential novel target substrates and their corresponding cleavage sites of different proteases.Procleave is implemented as a webserver and is freely accessible at http://procleave.erc.monash.edu/.  相似文献   

12.
The membrane protein type is an important feature in characterizing the overall topological folding type of a protein or its domains therein. Many investigators have put their efforts to the prediction of membrane protein type. Here, we propose a new approach, the bootstrap aggregating method or bragging learner, to address this problem based on the protein amino acid composition. As a demonstration, the benchmark dataset constructed by K.C. Chou and D.W. Elrod was used to test the new method. The overall success rate thus obtained by jackknife cross-validation was over 84%, indicating that the bragging learner as presented in this paper holds a quite high potential in predicting the attributes of proteins, or at least can play a complementary role to many existing algorithms in this area. It is anticipated that the prediction quality can be further enhanced if the pseudo amino acid composition can be effectively incorporated into the current predictor. An online membrane protein type prediction web server developed in our lab is available at http://chemdata.shu.edu.cn/protein/protein.jsp.  相似文献   

13.
We present a new method for predicting protein–ligand-binding sites based on protein three-dimensional structure and amino acid conservation. This method involves calculation of the van der Waals interaction energy between a protein and many probes placed on the protein surface and subsequent clustering of the probes with low interaction energies to identify the most energetically favorable locus. In addition, it uses amino acid conservation among homologous proteins. Ligand-binding sites were predicted by combining the interaction energy and the amino acid conservation score. The performance of our prediction method was evaluated using a non-redundant dataset of 348 ligand-bound and ligand-unbound protein structure pairs, constructed by filtering entries in a ligand-binding site structure database, LigASite. Ligand-bound structure prediction (bound prediction) indicated that 74.0 % of predicted ligand-binding sites overlapped with real ligand-binding sites by over 25 % of their volume. Ligand-unbound structure prediction (unbound prediction) indicated that 73.9 % of predicted ligand-binding residues overlapped with real ligand-binding residues. The amino acid conservation score improved the average prediction accuracy by 17.0 and 17.6 points for the bound and unbound predictions, respectively. These results demonstrate the effectiveness of the combined use of the interaction energy and amino acid conservation in the ligand-binding site prediction.  相似文献   

14.
Li BQ  Hu LL  Niu S  Cai YD  Chou KC 《Journal of Proteomics》2012,75(5):1654-1665
S-nitrosylation (SNO) is one of the most important and universal post-translational modifications (PTMs) which regulates various cellular functions and signaling events. Identification of the exact S-nitrosylation sites in proteins may facilitate the understanding of the molecular mechanisms and biological function of S-nitrosylation. Unfortunately, traditional experimental approaches used for detecting S-nitrosylation sites are often laborious and time-consuming. However, computational methods could overcome this demerit. In this work, we developed a novel predictor based on nearest neighbor algorithm (NNA) with the maximum relevance minimum redundancy (mRMR) method followed by incremental feature selection (IFS). The features of physicochemical/biochemical properties, sequence conservation, residual disorder, amino acid occurrence frequency, second structure and the solvent accessibility were utilized to represent the peptides concerned. Feature analysis showed that the features except residual disorder affected identification of the S-nitrosylation sites. It was also shown via the site-specific feature analysis that the features of sites away from the central cysteine might contribute to the S-nitrosylation site determination through a subtle manner. It is anticipated that our prediction method may become a useful tool for identifying the protein S-nitrosylation sites and that the features analysis described in this paper may provide useful insights for in-depth investigation into the mechanism of S-nitrosylation.  相似文献   

15.
An algorithm for the prediction of proteasomal cleavages   总被引:13,自引:0,他引:13  
Proteasomes, major proteolytic sites in eukaryotic cells, play an important part in major histocompatibility class I (MHC I) ligand generation and thus in the regulation of specific immune responses. Their cleavage specificity is of outstanding interest for this process.In order to generalize previously determined cleavage motifs of 20 S proteasomes, we developed network-based model proteasomes trained by an evolutionary algorithm with experimental cleavage data of yeast and human 20 S proteasomes. A window of ten flanking amino acid residues proved sufficient for the model proteasomes to reproduce the experimental results with 98-100 % accuracy. Actual experimental data were reproduced significantly better than randomly selected cleavage sites, suggesting that our model proteasomes were able to extract rules inherent to proteasomal cleavage data. The affinity parameters of the model, which decide for or against cleavage, correspond with the cleavage motifs determined experimentally. The predictive power of the model was verified for unknown (to the program) test conditions: the prediction of cleavage numbers in proteins and the generation of MHC I ligands from short peptides.In summary, our model proteasomes reproduce and predict proteasomal cleavages with high degree of accuracy. They present a promising approach for predicting proteasomal cleavage products in future attempts and, in combination with existing algorithms for MHC I ligand prediction, will be tested to improve cytotoxic T lymphocyte epitope prediction.  相似文献   

16.
17.
The calpain family of Ca2+‐dependent cysteine proteases plays a vital role in many important biological processes which is closely related with a variety of pathological states. Activated calpains selectively cleave relevant substrates at specific cleavage sites, yielding multiple fragments that can have different functions from the intact substrate protein. Until now, our knowledge about the calpain functions and their substrate cleavage mechanisms are limited because the experimental determination and validation on calpain binding are usually laborious and expensive. In this work, we aim to develop a new computational approach (LabCaS) for accurate prediction of the calpain substrate cleavage sites from amino acid sequences. To overcome the imbalance of negative and positive samples in the machine‐learning training which have been suffered by most of the former approaches when splitting sequences into short peptides, we designed a conditional random field algorithm that can label the potential cleavage sites directly from the entire sequences. By integrating the multiple amino acid features and those derived from sequences, LabCaS achieves an accurate recognition of the cleave sites for most calpain proteins. In a jackknife test on a set of 129 benchmark proteins, LabCaS generates an AUC score 0.862. The LabCaS program is freely available at: http://www.csbio.sjtu.edu.cn/bioinf/LabCaS . Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Ho SY  Yu FC  Chang CY  Huang HL 《Bio Systems》2007,90(1):234-241
In this paper, we investigate the design of accurate predictors for DNA-binding sites in proteins from amino acid sequences. As a result, we propose a hybrid method using support vector machine (SVM) in conjunction with evolutionary information of amino acid sequences in terms of their position-specific scoring matrices (PSSMs) for prediction of DNA-binding sites. Considering the numbers of binding and non-binding residues in proteins are significantly unequal, two additional weights as well as SVM parameters are analyzed and adopted to maximize net prediction (NP, an average of sensitivity and specificity) accuracy. To evaluate the generalization ability of the proposed method SVM-PSSM, a DNA-binding dataset PDC-59 consisting of 59 protein chains with low sequence identity on each other is additionally established. The SVM-based method using the same six-fold cross-validation procedure and PSSM features has NP=80.15% for the training dataset PDNA-62 and NP=69.54% for the test dataset PDC-59, which are much better than the existing neural network-based method by increasing the NP values for training and test accuracies up to 13.45% and 16.53%, respectively. Simulation results reveal that SVM-PSSM performs well in predicting DNA-binding sites of novel proteins from amino acid sequences.  相似文献   

19.
Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectively used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.  相似文献   

20.
Understanding the active site preferences of an enzyme is critical to the design of effective inhibitors and to gaining insights into its mechanisms of action on substrates. While the subsite specificity of thrombin is understood, it is not clear whether the enzyme prefers individual amino acids at each subsite in isolation or prefers to cleave combinations of amino acids as a motif. To investigate whether preferred peptide motifs for cleavage could be identified for thrombin, we exposed a phage-displayed peptide library to thrombin. The resulting preferentially cleaved substrates were analyzed using the technique of association rule discovery. The results revealed that thrombin selected for amino acid motifs in cleavage sites. The contribution of these hypothetical motifs to substrate cleavage efficiency was further investigated using the B1 IgG-binding domain of streptococcal protein G as a model substrate. Introduction of a P(2)-P(1)' LRS thrombin cleavage sequence within a major loop of the protein led to cleavage of the protein by thrombin, with the cleavage efficiency increasing with the length of the loop. Introduction of further P(3)-P(1) and P(1)-P(1)'-P(3)' amino acid motifs into the loop region yielded greater cleavage efficiencies, suggesting that the susceptibility of a protein substrate to cleavage by thrombin is influenced by these motifs, perhaps because of cooperative effects between subsites closest to the scissile peptide bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号