首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The objectives of this study were to select and initially characterize mutants of soybean (Glycine max L. Merr. cv Williams) with decreased ability to reduce nitrate. Selection involved a chlorate screen of approximately 12,000 seedlings (progeny of mutagenized seed) and subsequent analyses for low nitrate reductase (LNR) activity. Three lines, designated LNR-2, LNR-3, and LNR-4, were selected by this procedure.

In growth chamber studies, the fully expanded first trifoliolate leaf from NO3-grown LNR-2, LNR-3, and LNR-4 plants had approximately 50% of the wild-type NR activity. Leaves from urea-grown LNR-2, LNR-3, and LNR-4 plants had no NR activity while leaves from comparable wild-type plants had considerable activity; the latter activity does not require the presence of NO3 in the nutrient solution for induction and on this basis is tentatively considered as a constitutive enzyme. Summation of constitutive (urea-grown wild-type plants) and inducible (NO3-grown LNR-2, LNR-3, or LNR-4 plants) leaf NR activities approximated activity in leaves of NO3-grown wild-type plants. Root NR activities were comparable in wild-type and mutant plants grown on NO3, and roots of both plant types lacked constitutive NR activity when grown on urea. In both growth chamber- and field-grown plants, oxides of nitrogen [NO(x)] were evolved from young leaves of wild-type plants, but not from leaves of LNR-2 plants, during in vivo NR assays. Analysis of leaves from different canopy locations showed that constitutive NR activity was confined to the youngest three fully expanded leaves of the wild-type plant and, therefore, on a total plant canopy basis, the NR activity of LNR-2 plants was approximately 75% that of wild-type plants. It is concluded that: (a) the NR activity in leaves of NO3-grown wild-type plants includes both constitutive and inducible activity; (b) the missing NR activity in LNR-2, LNR-3, and LNR-4 leaves is the constitutive component; and (c) the constitutive NR activity is associated with NO(x) evolution and occurs only in physiologically young leaves.

  相似文献   

2.
NADH:nitrate reductase (EC 1.6.6.1) and NAD(P)H:nitrate reductase (EC 1.6.6.2) were purified from wild-type soybean (Glycine max [L.] Merr., cv Williams) and nr1-mutant soybean plants. Purification included Blue Sepharose- and hydroxylapatite-column chromatography using acetone powders from fully expanded unifoliolate leaves as the enzyme source.

Two forms of constitutive nitrate reductase were sequentially eluted with NADPH and NADH from Blue Sepharose loaded with extract from wild-type plants grown on urea as sole nitrogen source. The form eluted with NADPH was designated c1NR, and the form eluted with NADH was designated c2NR. Nitrate-grown nr1 mutant soybean plants yielded a NADH:nitrate reductase (designated iNR) when Blue Sepharose columns were eluted with NADH; NADPH failed to elute any NR form from Blue Sepharose loaded with this extract. Both c1NR and c2NR had similar pH optima of 6.5, sedimentation behavior (s20,w of 5.5-6.0), and electrophoretic mobility. However, c1NR was more active with NADPH than with NADH, while c2NR preferred NADH as electron donor. Apparent Michaelis constants for nitrate were 5 millimolar (c1NR) and 0.19 millimolar (c2NR). The iNR from the mutant had a pH optimum of 7.5, s20,w of 7.6, and was less mobile on polyacrylamide gels than c1NR and c2NR. The iNR preferred NADH over NADPH and had an apparent Michaelis constant of 0.13 millimolar for nitrate.

Thus, wild-type soybean contains two forms of constitutive nitrate reductase, both differing in their physical properties from nitrate reductases common in higher plants. The inducible nitrate reductase form present in soybeans, however, appears to be similar to most substrateinduced nitrate reductases found in higher plants.

  相似文献   

3.
Nitrogen assimilation in three nitrate reductase (NR) mutants of soybean (Glycine max L. Merr. cv Williams) was studied in the growth chamber and in the field. These mutants, LNR-2, LNR-3, and LNR-4, lack the non-NO3-inducible or constitutive fraction of leaf NR activity found in wild-type plants, but this had no effect on the concentration of nitrogen accumulated when grown on NO3 in the growth chamber. Dry weight accumulation of two of the mutants (LNR-3 and LNR-4) was decreased relative to LNR-2 and wild type. In the field, LNR-2 had dry weights and nitrogen concentrations similar to the wild type at 34 and 61 days after planting, and at maturity. Acetylene reduction activities were also similar at 61 days.  相似文献   

4.
Soybean (Glycine max L. Merr.) leaves contain two forms of nitrate reductase (NR)—NAD(P)H:NR and NADH:NR. Wild-type (cv Williams), nr1 mutant and an unrelated cultivar (Prize) were grown with either no N source or with nitrate. Crude extracts were assayed for NR activities and the enzyme forms were purified on blue Sepharose. Analyses were done by polyacrylamide gel electrophoresis and `Western blotting' using antibodies specific for NR. NAD(P)H:NR was identified as the constitutive NR present in wild-type and Prize, but was absent from the mutant. All three soybean lines contained nitrate-inducible NADH:NR with highest activity at pH 7.5. The results showed that NAD(P)H:NR and constitutive NR were one in the same and confirmed the presence of NADH:NR with pH 7.5 optimum.  相似文献   

5.
Enzyme activities involved in nitrate assimilation were analyzed from crude leaf extracts of wild-type (cv. Williams) and mutant ( nr1 ) soybean [ Glycine max (L.) Merr.] plants lacking constitutive nitrate reductase (NR) activity. The nr1 soybean mutant (formerly LNR-2), had decreased NADH-NR, FMNH2-NR and cytochrome c reductase activities, all of which were associated with the loss of constitutive NR activity. Measurement of FMNH2-NR activity, by nitrite determination, was accurate since nitrite reductase could not use FMNH2 as a reductant source. Nitrite reductase activity was normal in the nr1 plant type in the presence of reduced methyl viologen. Assuming that constitutive NR is similar in structure to nitrate reductases from other plants, presence of xanthine dehydrogenase activity and loss of cytochrome c reductase activity indicated that the apoprotein and not the molybdenum cofactor had been affected in the constitutive enzyme of the mutant. Constitutive NR from urea-grown wild-type plants had 1) greater ability to use FMNH2 as an electron donor, 2) a lower pH optimum, and 3) decreased ability to distinguish between NO3 and HCO3, compared with inducible NR from NO3-grown nr1 plants. The presence in soybean leaves of a nitrate reductase with a pH optimum of 7.5 is contrary to previous reports and indicates that soybean is not an exception among higher plants for this activity.  相似文献   

6.
A two-step purification protocol was used in an attempt to separate the constitutive NAD(P)H-nitrate reductase [NAD(P)H-NR, pH 6.5; EC 1.6.6.2] activity from the nitric oxide and nitrogen dioxide (NO(x)) evolution activity extracted from soybean (Glycine max [L.] Merr.) leaflets. Both of these activities were eluted with NADPH from Blue Sepharose columns loaded with extracts from either wild-type or LNR-5 and LNR-6 (lack constitutive NADH-NR [pH 6.5]) mutant soybean plants regardless of nutrient growth conditions. Fast protein liquid chromatography-anion exchange (Mono Q column) chromatography following Blue Sepharose affinity chromatography was also unable to separate the two activities. These data provide strong evidence that the constitutive NAD(P)H-NR (pH 6.5) in soybean is the enzyme responsible for NO(x) formation. The Blue Sepharose-purified soybean enzyme has a pH optimum of 6.75, an apparent Km for nitrite of 0.49 millimolar, and an apparent Km for NADPH and NADH of 7.2 and 7.4 micromolar, respectively, for the NO(x) evolution activity. In addition to NAD(P)H, reduced flavin mononucleotide (FMNH2) and reduced methyl viologen (MV) can serve as electron donors for NO(x) evolution activity. The NADPH-, FMNH2-, and reduced MV-NO(x) evolution activities were all inhibited by cyanide. The NADPH activity was also inhibited by p-hydroxymer-curibenzoate, whereas, the FMNH2 and MV activities were relatively insensitive to inhibition. These data indicate that the terminal molybdenum-containing portion of the enzyme is involved in the reduction of nitrite to NO(x). NADPH eluted both NR and NO(x) evolution activities from Blue Sepharose columns loaded with extracts of either nitrate- or zero N-grown winged bean (Psophocarpus tetragonolobus [L.]), whereas NADH did not elute either type of activity. Winged bean appears to contain only one type of NR enzyme that is similar to the constitutive NAD(P)H-NR (pH 6.5) enzyme of soybean.  相似文献   

7.
Summary The wild-type line and 14 nitrate reductase-deficient mutant cell lines of Nicotiana tabacum were tested for the presence of nitrate reductase partial activities, and for nitrite reductase and xanthine dehydrogenase activity. Data characterizing the electron donor specificity of nitrate reductase (EC 1.6.6.1., NADH:nitrate oxidoreductase) and nitrite reductase (EC 1.7.7.1., ferredoxin:nitrite oxidoreductase) of the wild-type line are presented. Three lines (designated cnx) simultaneously lack NADH-, FADH2-, red. benzyl viologen-nitrate reductase, and xanthine dehydrogenase activities, but retain the nitrate reductase-associated NADH-cytochrome c reductase activity. These mutants are, therefore, interpreted to be impaired in gene functions essential for the synthesis of an active molybdenum-containing cofactor. For cnx-68 and cnx-101, the sedimentation coefficient of the defective nitrate reductase molecules does not differ from that of the wild-type enzyme (7.6S). In 11 lines (designated nia) xanthine dehydrogenase activity is unaffected, and the loss of NADH-nitrate reductase is accompanied by a loss of all partial activities, including NADH-cytochrome c reductase. However, one line (nia-95) was found to possess a partially active nitrate reductase molecule, retaining its FADH2- and red. benzyl viologen nitrate reductase activity. It is likely that nia-95 is a mutation in the structural gene for the apoprotein. Both, the nia and cnx mutant lines exhibit nitrite reductase activity, being either nitrate-inducible or constitutive. Evidence is presented that, in Nicotiana tabacum, nitrate, without being reduced to nitrite, is an inducer of the nitrate assimilation pathway.  相似文献   

8.
A barley (Hordeum vulgare L.) mutant, nar1a (formerly Az12), deficient in NADH nitrate reductase activity is, nevertheless, capable of growth with nitrate as the sole nitrogen source. In an attempt to identify the mechanism(s) of nitrate reduction in the mutant, nitrate reductase from nar1a was characterized to determine whether the residual activity is due to a leaky mutation or to the presence of a second nitrate reductase. The results obtained indicate that the nitrate reductase in nar1a differs from the wild-type enzyme in several important aspects. The pH optima for both the NADH and the NADPH nitrate reductase activities from nar1a were approximately pH 7.7, which is slightly greater than the pH 7.5 optimum for the NADH activity and considerably greater than the pH 6.0 to 6.5 optimum for the NADPH activity of the wild-type enzyme. The nitrate reductase from nar1a exhibits greater NADPH than NADH activity and has apparent Km values for nitrate and NADH that are approximately 10 times greater than those of the wild-type enzyme. The nar1a nitrate reductase has apparent Km values of 170 micromolar for NADPH and 110 micromolar for NADH. NADPH, but not NADH, inhibited the enzyme at concentrations greater than 50 micromolar.  相似文献   

9.
The nitrate reductase activity of 5-day-old whole corn roots was isolated using phosphate buffer. The relatively stable nitrate reductase extract can be separated into three fractions using affinity chromatography on blue-Sepharose. The first fraction, eluted with NADPH, reduces nearly equal amounts of nitrate with either NADPH or NADH. A subsequent elution with NADH yields a nitrate reductase which is more active with NADH as electron donor. Further elution with salt gives a nitrate reductase fraction which is active with both NADH and NADPH, but is more active with NADH. All three nitrate reductase fractions have pH optima of 7.5 and Stokes radii of about 6.0 nanometers. The NADPH-eluted enzyme has a nitrate Km of 0.3 millimolar in the presence of NADPH, whereas the NADH-eluted enzyme has a nitrate Km of 0.07 millimolar in the presence of NADH. The NADPH-eluted fraction appears to be similar to the NAD(P)H:nitrate reductase isolated from corn scutellum and the NADH-eluted fraction is similar to the NADH:nitrate reductases isolated from corn leaf and scutellum. The salt-eluted fraction appears to be a mixture of NAD(P)H: and NADH:nitrate reductases.  相似文献   

10.
The cotyledons of soybean begin to develop photosynthetic capacity shortly after emergence. The cotyledons develop nitrate reductase (NR) activity in parallel with an increase in chlorophyll and a decrease in protein. In crude extracts of 5- to 8-day-old cotyledons, NR activity is greatest with NADH as electron donor. In extracts of older cotyledons, NR activity is greatest with NADPH. Blue-Sepharose was used to purify and separate the NR activities into two fractions. When the blue-Sepharose was eluted with NADPH, NR activity was obtained which was most active with NADPH as electron donor. Assays of the NADPH-eluted NR with different concentrations of nitrate revealed that the highest activity was obtained in 80 millimolar KNO3. Thus, this fraction has properties similar to the low nitrate affinity NAD(P)H:NR of soybean leaves. When 5- to 8-day-old cotyledons were extracted and purified, further elution of the blue-Sepharose with KNO3, subsequent to the NADPH elution, yielded an NR fraction most active with NADH. Assays of this fraction with different nitrate concentrations revealed that this NR had a higher nitrate affinity and was similar to the NADH:NR of soybean leaves. The KNO3-eluted NR fraction which was purified from the extracts of 9- to 14-day-old cotyledons, was most active with NADPH. The analysis of these fractions prepared from the extracts of older cotyledons indicated that residual NAD(P)H:NR contaminated the NADH:NR. Despite this complication, the pattern of development of the purified NR fractions was consistent with the changes observed in the crude extract NR activities. It was concluded that NADH:NR was most active in young cotyledons and that as the cotyledons aged the NAD(P)H:NR became more active.  相似文献   

11.
Summary Ten nitrate reductase-deficient Hordeum vulgare mutants were characterized for NADH and FMNH2 nitrate reductase (NR), cytochrome C reductase (CR) and nitrite reductase (NiR) activities. The mutants sort into four major groups. Group I represented by mutants Az 12, Az 23, Az 29 and Az 30 have low Nr and Cr activities. Group II represented by mutants Az 13, Az 31, Az 33 and Az 34 have low NR activities but intermediate CR activities. Group III represented by mutant Az 28 has low NR activity, but above normal CR activity. Group IV represented by Az 32 has low NADH-NR, low CR, but above normal FMNH2-NR activity. All ten mutants have elevated NiR activities. None of the ten mutants were constitutive for nitrite reductase activity. Only Az 34 showed a definite high temperature sensitivity when the NADH nitrate reductase activity was compared in the 12 to 26° C range. The mutants Az 12, Az 13, Az 23, Az 28, Az 29, Az 30, Az 31, Az 32 and Az 33 are allelic and were assigned the locus designation nar1. Mutant Az 34 represents a different genetic locus designated nar2. The nar1 gene is codominant and the nar2 gene is recessive.Scientific Paper No. 5463. College of Agriculture Research Center, Washington State University, Pullman, Project Nos. 0233 and 0430. Supported in part by National Science Foundation Grants PCM 78-07649 and PCM 78-16025  相似文献   

12.
Some characteristics of nitrate reductase from higher plants   总被引:45,自引:28,他引:17       下载免费PDF全文
With respect to cofactor requirements, NADH, and FMNH2 were equally effective as electron donors for nitrate reductase obtained from leaves of maize, marrow, and spinach, when the cofactors were supplied in optimal concentrations. The concentration of FMNH2 required to obtain half-maximal activity was from 40- to 100-fold higher than for NADH. For maximal activity with the corn enzyme, 0.8 millimolar FMNH2 was required. In contrast, NADPH was functional only when supplied with NADP:reductase and exogenous FMN (enzymatic generation of FMNH2).

All attempts to separate the NADH2- and FMNH2-dependent nitrate reductase activities were unsuccessful and regardless of cofactor used equal activities were obtained, if cofactor concentration was optimal. Unity of NADH to FMNH2 activities were obtained during: A) purification procedures (4 step, 30-fold); B) induction of nitrate reductase in corn seedlings with nitrate; and C) inactivation of nitrate reductase in intact or excised corn seedlings. The NADH- and FMNH2-dependent activities were not additive.

A half-life for nitrate reductase of approximately 4 hours was estimated from the inactivation studies with excised corn seedlings. Similar half-life values were obtained when seedlings were incubated at 35° in a medium containing nitrate and cycloheximide (to inhibit protein synthesis), or when both nitrate and cycloheximide were omitted.

In those instances where NADH activity but not FMNH2 activity was lost due to treatment (temperature, removal of sulfhydryl agents, addition of p-chloromercuribenzoate), the loss could be explained by inactivation of the sulfhydryl group (s) required for NADH activity. This was verified by reactivation with exogenous cysteine.

Based on these current findings, and previous work, it is concluded that nitrate reductase is a single moiety with the ability to utilize either NADH or FMNH2 as cofactor. However the high concentration of FMNH2 required for optimal activity suggests that in vivo NADH is the electron donor and that nitrate reductase in higher plants should be designated NADH:nitrate reductase (E.C. 1.6.6.1).

  相似文献   

13.
Studies on the diurnal variations of nitrate reductase (NR) activity during the life cycle of synchronized Chlorella sorokiniana cells grown with a 7:5 light-dark cycle showed that the NADH:NR activity, as well as the NR partial activities NADH:cytochrome c reductase and reduced methyl viologen:NR, closely paralleled the appearance and disappearance of NR protein as shown by sodium dodecyl sulfate gel electrophoresis and immunoblots. Results of pulse-labeling experiments with [35S]methionine further confirmed that diurnal variations of the enzyme activities can be entirely accounted for by the concomitant synthesis and degradation of the NR protein.  相似文献   

14.
Sixty-five Nicotiana plumbaginifolia mutants affected in the nitrate reductase structural gene (nia mutants) have been analyzed and classified. The properties evaluated were: (a) enzyme-linked immunosorbent assay (two-site ELISA) using a monoclonal antibody as coating reagent and (b) presence of partial catalytic activities, namely nitrate reduction with artificial electron donors (reduced methyl viologen, reduced flavin mononucleotide, or reduced bromphenol blue), and cytochrome c (Cyt c) reduction with NADH. Four classes have been defined: 40 mutants fall within class 1 which includes all mutants that have no protein detectable in ELISA and no partial activities; mutants of classes 2 and 3 exhibit an ELISA-detectable nitrate reductase protein and lack either Cyt c reductase activity (class 2: fourteen mutants) or the terminal nitrate reductase activities (class 3: eight mutants) of the enzyme. Three mutants (class 4) are negative in the ELISA test, lack Cyt c reductase activity, and lack or have a very low level of reduced methyl viologen or reduced flavin mononucleotide-nitrate reductase activities; however, they retain the reduced bromphenol blue nitrate reductase activity. Variations in the degrees of terminal nitrate reductase activities among the mutants indicated that the flavin mononucleotide and methyl viologen-dependent activities were linked while the bromphenol blue-dependent activity was independent of the other two. The putative positions of the lesions in the mutant proteins and the nature of structural domains of nitrate reductase involved in each partial activity are discussed.  相似文献   

15.
Incubation of 5-d-old maize seedlings in the half-strength Hoagland's nutrient solution containing 10 mM KNO3 with FeCl3 or FeSO4 (0.5 or 2.0 mM) caused a significant increase in nitrate reductase (NR) activity and slightly increased total protein content in root, shoot and scutellum. In case of root, NADPH:NR activity was inhibited contrary to the NADH:NR activity. In spite of NR activity, nitrate uptake was inhibited from 13 to 37 % by the iron. The results presented demonstrate an isoform specific, organ specific, and to some extent salt specific responses of NR to iron.  相似文献   

16.
Two nitrate reductase deficient mutants of soybean (Glycine max [L.] Merr. cv Bragg) were isolated from approximately 10,000 M2 seedlings, using a direct enzymic assay in microtiter plates. Stable inheritance of NR345 and NR328 phenotypes has been demonstrated through to the M5 generation. Both mutants were affected in constitutive nitrate reductase activity. Assayable activities of cNR in nitrate-free grown seedlings was about 3 to 4% of the control for NR345 and 14 to 16% of the control for NR328. Both mutants expressed inducible NR during early plant development and were sensitive to nitrate and urea inhibition of nodulation. These new mutants will allow an extension of the characterization of nitrate reductases and their function in soybean. Preliminary evidence indicates that NR345 is similar to the previously isolated mutant nr1, while NR328 is different.  相似文献   

17.
Homogeneous squash cotyledon reduced nicotinamide-adenine dinucleotide (NADH):nitrate reductase (NR) was isolated using blue-Sepharose and polyacrylamide gel electrophoresis. Gel slices containing NR were pulverized and injected into a previously unimmunized rabbit. This process was repeated weekly and antiserum to NR was obtained after four weeks. Analysis of the antiserum by Ouchterlony double diffusion using a blue-Sepharose preparation of NR resulted in a single precipitin band while immunoelectrophoresis revealed two minor contaminants. The antiserum was found to inhibit the NR reaction and the partial reactions to different degrees. When the NADH:NR and the reduced methyl viologen:NR activities were inhibited 90% by specifically diluted antiserum, the reduction of cytochrome c was inhibited 50%, and the reduction of ferricyanide was inhibited only 30%. Antiserum was also used to compare the cross reactivities of NR from squash cotyledons, spinach, corn, and soybean leaves, Chlorella vulgaris, and Neurospora crassa. These tests revealed a high degree of similarity between NADH:NR from the squash and spinach, while NADH:NR from corn and soybean and the NAD(P)H:NR from soybean were less closely related to the squash NADH:NR. The green algal (C. vulgaris) NADH:NR and the fungal (N. crassa) NADPH:NR were very low in cross reactivity and are apparently quite different from squash NADH:NR in antigenicity. Antiserum to N. crassa NADPH:NR failed to give a positive Ouchterlony result with higher plant or C. vulgaris NADH:NR, but this antiserum did inhibit the activity of squash NR. Thus, it can be concluded from these immunological comparisons that all seven forms of assimilatory NR studied here have antigenic determinants in common and are probably derived from a common ancestor. Although these assimilatory NR have similar catalytic characteristics, they appear to have diverged to a great degree in their structural features.  相似文献   

18.
Pyridine nucleotide specificity of barley nitrate reductase   总被引:6,自引:4,他引:2       下载免费PDF全文
Dailey FA  Kuo T  Warner RL 《Plant physiology》1982,69(5):1196-1199
NADPH nitrate reductase activity in higher plants has been attributed to the presence of NAD(P)H bispecific nitrate reductases and to the presence of phosphatases capable of hydrolyzing NADPH to NADH. To determine which of these conditions exist in barley (Hordeum vulgare L. cv. Steptoe), we characterized the NADH and NADPH nitrate reductase activities in crude and affinity-chromatography-purified enzyme preparations. The pH optima were 7.5 for NADH and 6 to 6.5 for the NADPH nitrate reductase activities. The ratio of NADPH to NADH nitrate reductase activities was much greater in crude extracts than it was in a purified enzyme preparation. However, this difference was eliminated when the NADPH assays were conducted in the presence of lactate dehydrogenase and pyruvate to eliminate NADH competitively. The addition of lactate dehydrogenase and pyruvate to NADPH nitrate reductase assay media eliminated 80 to 95% of the NADPH nitrate reductase activity in crude extracts. These results suggest that a substantial portion of the NADPH nitrate reductase activity in barley crude extracts results from enzyme(s) capable of converting NADPH to NADH. This conversion may be due to a phosphatase, since phosphate and fluoride inhibited NADPH nitrate reductase activity to a greater extent than the NADH activity. The NADPH activity of the purified nitrate reductase appears to be an inherent property of the barley enzyme, because it was not affected by lactate dehydrogenase and pyruvate. Furthermore, inorganic phosphate did not accumulate in the assay media, indicating that NADPH was not converted to NADH. The wild type barley nitrate reductase is a NADH-specific enzyme with a slight capacity to use NADPH.  相似文献   

19.
Plasma-membrane (PM) vesicles isolated from 6-d-old corn roots by sucrose gradient centrifugation or two-phase partitioning showed an NADH-dependent nitrate reductase (NR) activity averaging at 40 nmol per milligram PM protein per hour. This membrane-associated NR activity could not be removed from two-phase-partitioned PM vesicles by salt washing, osmotic shock treatment, sonication, or freeze-thawing to reverse vesicle sidedness. Therefore, it could not be attributed to contamination of membrane vesicles by the soluble, cytosolic NR. Plasma-membrane vesicles reduced NO 3 - in the presence of the electron donors NADH or NADPH at an activity ratio of 2.2. The NADH- and NADPH-dependent NR activities of outside-out oriented PM vesicles differed in their sensitivity toward the detergent Brij 58, leading to a latency of 65% or 29% using NADH or NADPH as electron donor, respectively. The activities of NO 3 - reduction in the presence of saturating concentrations of NADH and NADPH were additive. Furthermore, both activities were characterized by a different pH dependence with a pH optimum of 7.5 for the NADH-dependent activity and of 6.8 for the NADPH-dependent activity. The membrane-associated NAD(P)H-dependent NR activities responded to different nitrogen nutrition of plants in a manner different from the soluble forms of the enzyme. The data confirm the existence of a corn PM NR and suggest that there may be two different NO 3 - -reducing enzymes located at the PM of corn roots.Abbreviations PM Plasma membrane - NR nitrate reductase This research was supported by grants from the National Research Council of Italy (bilateral project between Italy and Germany to Z.V. and U.L.), by the Ministero dell' Università e Ricera Scientifice e Tecnologica (MURST 40%) and by the Deutsche Forschungsgemeinschaft.  相似文献   

20.
Blue Sepharose affinity chromatography was used to study the distribution of the constitutive NAD(P)H-nitrate reductase (EC 1.6.6.2: Cl-NR) and of the constitutive and inducible NADH-nitrate reductases (EC 1.6.6.1; C2-NR and i-NR, respectively), in the unifoliolate leaf (F0), the first and the second trifoliolate leaves (F1 and F2) and the roots of urea- and nitrate-grown soybean ( Glycine max [L.] Merr.) plants. The C1-NR eluted by NADPH is present in the F0 and F1 leaves and nearly absent in the F2 leaf. The activity pattern of this isoform is not modified by nitrate nutrition. The C2-NR eluted by NADH is high in the F0 leaf, low in the F1 leaf and nearly absent in the F2 leaf of urea-grown plants. The NADH elution from leaves of nitrate-grown plants is a mixture of C2-NR and i-NR, requiring careful interpretation of results. However, i-NR appears the principal isoform in the leaves especially in the F2 leaf. This i-NR is the only NR present in the roots.
The pH effect on the assay of the 3 partially purified isoforms was studied using LNR2 and LNR5 soybean mutants to remove the cross contamination. It appears that C1-NR and C2-NR activities are negligible at pH 8.5, which allows the assay of only the i-NR in a crude extract at this pH, even when C1-NR and C2-NR are present. It appears also that the assay of C1-NR activity at pH 6.5 with NADPH is free of interference by the i-NR. To estimate the C2-NR activity with NADH at pH 6.5 in a crude extract in the presence of C1-NR and i-NR, we propose a simple calculation using the coefficient from the pH responses. These calculations are used to compare the development of C1-NR, C2-NR and i-NR activities in the F0 and F1 leaves of plants previously grown on urea and transferred to nitrate. Only the activity of the inducible isoform is modified by the nitrogen treatment. Activity of the constitutive isofroms appear stable during the 48 h treatment, with only a slight decrease in C1-NR activity being observed with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号