首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The availability of complete genome sequences of many bacterial species is facilitating numerous computational approaches for understanding bacterial genomes. One of the major incentives behind the genome sequencing of many pathogenic bacteria is the desire to better understand their diversity and to develop new approaches for controlling human diseases caused by these microorganisms. This task has become even more urgent with the rapid evolution of antibiotic resistance among many bacterial pathogens. Novel drug targets are required in order to design new antimicrobials against antibiotic-resistant pathogens. The complete genome sequences of an ever increasing number of pathogenic microbes constitute an invaluable resource and provide lead information on potential drug targets. This review focuses on in silico analyses of microbial genomes, their host-specific adaptations, with specific reference to genome architecture, design, evolution, and trends in computational identification of microbial drug targets. These trends underscore the utility of genomic data for systematic in silico drug target identification in the post-genomic era.  相似文献   

2.
Since the first complete sequencing of a free-living organism, Haemophilus influenzae, genomics has been used to probe both the biology of bacterial pathogens and their evolution. Single-genome approaches provided information on the repertoire of virulence determinants and host-interaction factors, and, along with comparative analyses, allowed the proposal of hypotheses to explain the evolution of many of these traits. These analyses suggested many bacterial pathogens to be of relatively recent origin and identified genome degradation as a key aspect of host adaptation. The advent of very-high-throughput sequencing has allowed for detailed phylogenetic analysis of many important pathogens, revealing patterns of global and local spread, and recent evolution in response to pressure from therapeutics and the human immune system. Such analyses have shown that bacteria can evolve and transmit very rapidly, with emerging clones showing adaptation and global spread over years or decades. The resolution achieved with whole-genome sequencing has shown considerable benefits in clinical microbiology, enabling accurate outbreak tracking within hospitals and across continents. Continued large-scale sequencing promises many further insights into genetic determinants of drug resistance, virulence and transmission in bacterial pathogens.  相似文献   

3.
DNA microarrays represent a powerful technology that enables whole-scale comparison of bacterial genomes. This, coupled with new methods to model DNA microarray data, is facilitating the development of robust comparative phylogenomics analyses. Such studies have dramatically increased our ability to differentiate between bacteria, highlighting previously undetected genetic differences and population structures and providing new insight into virulence and evolution of bacterial pathogens. Recent results from such studies have generated insights into the evolution of bacterial pathogens, the levels of diversity and plasticity in the genome of a species, as well as the differences in virulence amongst pathogenic bacteria.  相似文献   

4.
Ecology and evolution of bacterial microdiversity   总被引:13,自引:0,他引:13  
Using high resolution molecular fingerprinting techniques like random amplification of polymorphic DNA, repetitive extragenic palindromic PCR and multilocus enzyme electrophoresis, a high bacterial diversity below the species and subspecies level (microdiversity) is revealed. It became apparent that bacteria of a certain species living in close association with different plants either as associated rhizosphere bacteria or as plant pathogens or symbiotic organisms, typically reflect this relationship in their genetic relatedness. The strain composition within a population of soil bacterial species at a given field site, which can be identified by these high resolution fingerprinting techniques, was markedly influenced by soil management and soil features. The observed bacterial microdiversity reflected the conditions of the habitat, which select for better adapted forms. In addition, influences of spatial separation on specific groupings of bacteria were found, which argue for the occurrence of isolated microevolution. In this review, examples are presented of bacterial microdiversity as influenced by different ecological factors, with the main emphasis on bacteria from the natural environment. In addition, information available from some of the first complete genome sequences of bacteria (Helicobacter pylori and Escherichia coli) was used to highlight possible mechanisms of molecular evolution through which mutations are created; these include mutator enzymes. Definitions of bacterial species and subspecies ranks are discussed in the light of detailed information from whole genome typing approaches.  相似文献   

5.
Evolutionary genomics of pathogenic bacteria   总被引:15,自引:0,他引:15  
Complete genome sequences are now available for multiple strains of several bacterial pathogens and comparative analysis of these sequences is providing important insights into the evolution of bacterial virulence. Recently, DNA microarray analysis of many strains of several pathogenic species has contributed to our understanding of bacterial diversity, evolution and pathogenesis. Comparative genomics has shown that pathogens such as Escherichia coli, Helicobacter pylori and Staphylococcus aureus contain extensive variation in gene content whereas Mycobacterium tuberculosis nucleotide divergence is very limited. Overall, these approaches are proving to be a powerful means of exploring bacterial diversity, and are providing an important framework for the analysis of the evolution of pathogenesis and the development of novel antimicrobial agents.  相似文献   

6.
Phase variation is the adaptive process by which bacteria undergo frequent and reversible phenotypic changes resulting from genetic alterations in specific loci of their genomes. This process is crucial for the survival of pathogens and commensals in hostile and ever-changing host environments. Despite important differences in the molecular mechanisms that mediate and regulate phase variation, related strategies have evolved to generate high levels of genetic diversity through complex and combinatorial reshuffling of genetic information. Recent studies, supported by the emergence of global genomic approaches, have revealed that bacterial pathogens often use a combination of different mechanisms to vary the expression of a variety of biological functions, providing new insights into bacterial adaptation and virulence mechanisms. Recent advances in the understanding of the molecular mechanisms of phase variation are reviewed, and differences in these mechanisms outlined.  相似文献   

7.
To understand the evolution of genetic diversity within species--bacterial and others--we must dissect the first steps of genetic adaptation to novel habitats, particularly habitats that are suboptimal for sustained growth where there is strong selection for adaptive changes. Here, we present the view that bacterial human pathogens represent an excellent model for understanding the molecular mechanisms of the adaptation of a species to alternative habitats. In particular, bacterial pathogens allow us to develop analytical methods to detect genetic adaptation using an evolutionary 'source-sink' model, with which the evolution of bacterial pathogens can be seen from the angle of continuous switching between permanent (source) and transient (sink) habitats. The source-sink model provides a conceptual framework for understanding the population dynamics and molecular mechanisms of virulence evolution.  相似文献   

8.
Measureable rates of genome evolution are well documented in human pathogens but are less well understood in bacterial pathogens in the wild, particularly during and after host switches. Mycoplasma gallisepticum (MG) is a pathogenic bacterium that has evolved predominantly in poultry and recently jumped to wild house finches (Carpodacus mexicanus), a common North American songbird. For the first time we characterize the genome and measure rates of genome evolution in House Finch isolates of MG, as well as in poultry outgroups. Using whole-genome sequences of 12 House Finch isolates across a 13-year serial sample and an additional four newly sequenced poultry strains, we estimate a nucleotide diversity in House Finch isolates of only ~2% of ancestral poultry strains and a nucleotide substitution rate of 0.8-1.2×10(-5) per site per year both in poultry and in House Finches, an exceptionally fast rate rivaling some of the highest estimates reported thus far for bacteria. We also found high diversity and complete turnover of CRISPR arrays in poultry MG strains prior to the switch to the House Finch host, but after the invasion of House Finches there is progressive loss of CRISPR repeat diversity, and recruitment of novel CRISPR repeats ceases. Recent (2007) House Finch MG strains retain only ~50% of the CRISPR repertoire founding (1994-95) strains and have lost the CRISPR-associated genes required for CRISPR function. Our results suggest that genome evolution in bacterial pathogens of wild birds can be extremely rapid and in this case is accompanied by apparent functional loss of CRISPRs.  相似文献   

9.
The same evolutionary forces that cause diversification in sexual eukaryotes are expected to cause diversification in bacteria. However, in bacteria, the wider variety of mechanisms for gene exchange (or lack thereof) increases the range of expected diversity patterns compared to those of sexual organisms. Two parallel concepts for bacterial speciation have developed, based on ecological divergence or barriers to recombination in turn. Recent evidence from DNA sequence data shows that both processes can generate independently evolving groups that are equivalent to sexual species and that represent separate arenas within which recombination (when it occurs), selection and drift occur. It remains unclear, however, how often different processes act in concert to generate simple units of diversity, or whether a more complex model of diversity is required, specifying hierarchical levels at which different cohesive processes operate. We advocate an integrative approach that evaluates the effects of multiple evolutionary forces on diversity patterns. There is also great potential for laboratory studies of bacterial evolution that test evolutionary mechanisms inferred from population genetic analyses of multi-locus and genome sequence data.  相似文献   

10.
It has been more than 10 years since the first bacterial genome sequence was published. Hundreds of bacterial genome sequences are now available for comparative genomics, and searching a given protein against more than a thousand genomes will soon be possible. The subject of this review will address a relatively straightforward question: “What have we learned from this vast amount of new genomic data?” Perhaps one of the most important lessons has been that genetic diversity, at the level of large-scale variation amongst even genomes of the same species, is far greater than was thought. The classical textbook view of evolution relying on the relatively slow accumulation of mutational events at the level of individual bases scattered throughout the genome has changed. One of the most obvious conclusions from examining the sequences from several hundred bacterial genomes is the enormous amount of diversity—even in different genomes from the same bacterial species. This diversity is generated by a variety of mechanisms, including mobile genetic elements and bacteriophages. An examination of the 20 Escherichia coli genomes sequenced so far dramatically illustrates this, with the genome size ranging from 4.6 to 5.5 Mbp; much of the variation appears to be of phage origin. This review also addresses mobile genetic elements, including pathogenicity islands and the structure of transposable elements. There are at least 20 different methods available to compare bacterial genomes. Metagenomics offers the chance to study genomic sequences found in ecosystems, including genomes of species that are difficult to culture. It has become clear that a genome sequence represents more than just a collection of gene sequences for an organism and that information concerning the environment and growth conditions for the organism are important for interpretation of the genomic data. The newly proposed Minimal Information about a Genome Sequence standard has been developed to obtain this information.  相似文献   

11.
12.
Mutations in an organism’s genome can arise spontaneously, that is, in the absence of exogenous stress and prior to selection. Mutations are often neutral or deleterious to individual fitness but can also provide genetic diversity driving evolution. Mutagenesis in bacteria contributes to the already serious and growing problem of antibiotic resistance. However, the negative impacts of spontaneous mutagenesis on human health are not limited to bacterial antibiotic resistance. Spontaneous mutations also underlie tumorigenesis and evolution of drug resistance. To better understand the causes of genetic change and how they may be manipulated in order to curb antibiotic resistance or the development of cancer, we must acquire a mechanistic understanding of the major sources of mutagenesis. Bacterial systems are particularly well-suited to studying mutagenesis because of their fast growth rate and the panoply of available experimental tools, but efforts to understand mutagenic mechanisms can be complicated by the experimental system employed. Here, we review our current understanding of mutagenic mechanisms in bacteria and describe the methods used to study mutagenesis in bacterial systems.  相似文献   

13.
利用重组酶和辅助蛋白共同作用于DNA片段上,使不同基因重新组合以完成基因重组的现象在细菌中广泛存在,基因重组对于细菌的遗传多样性、进化等具有重要意义。目前,细菌基因重组主要分为同源重组、位点特异性重组和转座重组3种类型。本文主要对细菌重组系统重组酶的种类、作用机制及其在细菌遗传操作中的应用策略进行阐述。  相似文献   

14.
Secreted proteins are central to the success of plant pathogenic bacteria. They are used by plant pathogens to adhere to and degrade plant cell walls, to suppress plant defence responses, and to deliver bacterial DNA and proteins into the cytoplasm of plant cells. However, experimental investigations into the identity and role of secreted proteins in plant pathogenesis have been hindered by the fact that many of these proteins are only expressed or secreted in planta, that knockout mutations of individual proteins frequently have little or no obvious phenotype, and that some obligate and fastidious plant pathogens remain recalcitrant to genetic manipulation. The availability of genome sequence data for a large number of agriculturally and scientifically important plant pathogens enables us to predict and compare the complete secretomes of these bacteria. In this paper we outline strategies that are currently being used to identify secretion systems and secreted proteins in Proteobacterial plant pathogens and discuss the implications of these analyses for future investigations into the molecular mechanisms of plant pathogenesis.  相似文献   

15.
The genome sequences of a number of Acinetobacter baumannii strains, including representatives of the main epidemic international lineages, have now been determined, and several others are in progress. The study of A. baumannii genomics has provided an expanded view of the adaptation and virulence capacities of this bacterial species, whilst also presenting novel insights into its intraspecies diversity and genome evolution. Genomic analyses have revealed that the current A. baumannii clinical population consists of low-grade pathogens, whose pathogenicity relies mainly on an ability to persist in the hospital setting and survive antibiotic treatment. A. baumannii has a high capacity to acquire new genetic determinants and displays an open pan genome; this feature may have played a crucial role in the evolution of this human opportunistic pathogen towards clinical success.  相似文献   

16.
The advent of whole-genome sequencing of bacteria and advances in bioinformatics have revolutionized the study of bacterial pathogenesis, enabling the targeting of possible vaccine candidates starting from genomic information. Nowadays, the availability of hundreds of bacterial genomes enables identification of the genetic differences across several genomes from the same species. The unexpected degree of intra-species diversity suggests that a single genome sequence is not entirely representative and does not offer a complete picture of the genetic variability of a species. The practical consequence is that, in many cases, a universal vaccine is possible only by including a combination of antigens and this combination must take into account the pathogen population structure.  相似文献   

17.
The efficient evolution of a population requires both genetic diversity and stable reproduction of advantageous genotypes. The accuracy of DNA replication guarantees the stable reproduction, while errors during DNA replication produce the genetic diversity. Thus, one key to the promotion of evolution is inherent in DNA replication. In bacteria, replication forks progress bidirectionally from the single origin of replication on a genome. One replication fork contains two DNA polymerase molecules so that four DNA polymerases simultaneously carry out the replication of a genome. It is generally believed that the fidelity of the intracellular DNA polymerases is identical (parity strategy). To test this, we examined the effects of the intracellular coexistence of a mutator polymerase with low fidelity and a normal polymerase with high fidelity on adaptive evolution (disparity strategy). From the analysis using genetic algorithms based on the bacterial replication, it was found that the population using the disparity strategy could further expand its genetic diversity and preserve the advantageous genotypes more profoundly than the parity population. This strongly suggests that bacteria replicating with a disparity strategy may undergo rapid evolution, particularly during severe environmental changes. The implications of the conspicuous adaptability of Escherichia coli mutator strains are discussed in this context.  相似文献   

18.
The population genetics of pathogenic bacteria has been intensively studied in order to understand the spread of disease and the evolution of virulence and drug resistance. However, much less attention has been paid to bacterial carriage populations, which inhabit hosts without producing disease. Since new virulent strains that cause disease can be recruited from the carriage population of bacteria, our understanding of infectious disease is seriously incomplete without knowledge on the population structure of pathogenic bacteria living in an asymptomatic host. We report the first extensive survey of the abundance and diversity of a human pathogen in asymptomatic animal hosts. We have found that asymptomatic swine from livestock productions frequently carry populations of Salmonella enterica with a broad range of drug-resistant strains and genetic diversity greatly exceeding that previously described. This study shows how agricultural practice and human intervention may lead and influence the evolution of a hidden reservoir of pathogens, with important implications for human health.  相似文献   

19.
Bacterial pathogens impose a heavy burden of disease on human populations worldwide. The gravest threats are posed by highly virulent respiratory pathogens, enteric pathogens, and HIV-associated infections. Tuberculosis alone is responsible for the deaths of 1.5 million people annually. Treatment options for bacterial pathogens are being steadily eroded by the evolution and spread of drug resistance. However, population-level whole genome sequencing offers new hope in the fight against pathogenic bacteria. By providing insights into bacterial evolution and disease etiology, these approaches pave the way for novel interventions and therapeutic targets. Sequencing populations of bacteria across the whole genome provides unprecedented resolution to investigate (i) within-host evolution, (ii) transmission history, and (iii) population structure. Moreover, advances in rapid benchtop sequencing herald a new era of real-time genomics in which sequencing and analysis can be deployed within hours in response to rapidly changing public health emergencies. The purpose of this review is to highlight the transformative effect of population genomics on bacteriology, and to consider the prospects for answering abiding questions such as why bacteria cause disease.  相似文献   

20.
The Leguminosae is one of the largest families of plants. It has a broad geographical distribution. The principal legume species have defined sites of origin and these coincide with the diversification centers for their “specific” symbiotic bacteria. These nitrogen-fixing bacteria, which form nodules in the roots or stems of the plants, belong to different bacterial lineages (Rhizobium, Bradyrhizobium, and Azorhizobium) related to other nonsymbiotic bacteria. A remarkable characteristic of these bacteria is their large genetic diversity. The genetic relationships among the different bacterial groups are being defined based mainly on the analysis of the sequences of the ribosomal genes. Recent results point out the need to have a broader genomic scope. Gene maps, genome sizes, and sequence of metabolic genes would serve to validate the present Rhizobium and Bradyrhizobium phylogenies. More realistic phylogenies should perhaps consider lateral transfer between clusters of bacteria.

A compilation of records of bacterial genetic diversity, including enterobacteria and pathogens, is presented and compared with Rhizobium diversity. It is proposed that human activities are having important effects on microbe diversity.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号