首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Effect of glutamine on the induction of nitrate reductase   总被引:5,自引:0,他引:5  
Nitrate reductase (NR. EC 1.6.6.1/2) is a substrate inducible enzyme that could be repressed by its end product glutamine or amino acids. To test this hypothesis, 6-day-old maize seedlings ( Zea mays cv. W64A × W182E) were grown hydroponically in a 1/10 strength Hougland's salt solution modified to contain no nitrogen. Previous experiments had established that after a 24-h induction with NO3 (5 mM KNO3) the level of NR activity and protein had reached a constant level. In the present experiments when glutamine (5 mM) was included together with NO3, there was a significant reduction in NR activity (34% of the control values). NR protein and NR mRNA accumulation in the root. In the shoot, on the other hand, glutamine additions had little or no effect on the levels of either NR activity (81% of control) or NR protein. Inhibition of glutamine synthetase by methionine sulfoximine (MSX) resulted in reduced levels of glutamine in both root and shoot tissues. Contrary in our prediction, however, it had no effect on NR activity and mRNA content in roots. In the shoot, on the other hand, there was a marked reduction of NR activity (34% of the control value) and NR protein, but no apparent effect on NR mRNA. When detached shoots were treated with MSX and other inhibitors of glutamine synthetase (tabtoxinine-β-lactam or phosphinothricin) the induction of NR activity by NO3 was also inhibited. Glutamine additions 15 or 50 mM to detached shoots had essentially no effect on the induction of NR activity (90% of control). These results demonstrate that the influence of glutamine and MSX on the induction of NR in maize root and shoot tissues, respectively, is very different.  相似文献   

2.
The possibility to induce nitrate reductase (NR; EC 1.6.6.2) in needles of Scots pine ( Pinus sylvestris L.) seedlings was studied. The NR activity was measured by an in vivo assay. Although increased NR activities were found in the roots after application of NO3, no such increase could be detected in the needles. Detached seedlings placed in NO3 solution showed increasing NR activities with increasing NO3 concentrations. Exposure of seedlings to NOx (70–80 ppb NO2 and 8–12ppb NO) resulted in an increase of the NR activity from 10–20 nmol NO2 (g fresh weight)−1 h−1 to about 400 nmol NO2 (g fresh weight)−1 h−1. This level was reached after 2–4 days of exposure, thereafter the NR activity decreased to about 200 nmol NO2 (g fresh weight)−1 h−1. Analyses of free amino acids showed low concentrations of arginine and glutamine in NOx-fumigated seedlings compared to corresponding controls.  相似文献   

3.
Nitrate inhibits symbiotic N2 fixation and a number of hypotheses concerned with NO3 assimilation have been suggested to explain this inhibition. These hypotheses were tested using a pea ( Pisum sativum L. cv. Juneau) with normal nitrate reductase NR; (EC 1,6,6,4) activity and two mutants of cv. Juneau, A317 and A334, with impaired NR activity. The plants were inoculated with three strains of Rhizobium leguminosarum and grown for 3 weeks in N-free medium, followed by 1 week in medium supplemented with 0, 5 or 10 m M KNO3 before harvesting. NO3 was taken up at comparable rates by the parent and the mutants and accumulated in leaf and stem tissue of the latter. Acetylene reduction rates were inhibited similarly in both the parent and mutants in the presence of KNO3 but there were differences among rhizobial strains. Starch concentration of the nodules decreased by 46% in the presence of KNO3 and there were differences among rhizobial strains but not among pea genotypes. Malate and succinate accumulated in nodules in the presence of KNO3. These data are not consistent with the photosynthate deprivation hypothesis as a primary mechanism for NO3 inhibition of N2 fixation since NO3 affected the nodule carbohydrate composition of all three pea genotypes in a similar manner. The lack of correlation between NR activity and NO3 inhibition of N2 fixation suggests that NO3 assimilation may be only indirectly involved in the inhibition phenomenon.  相似文献   

4.
Carbon and nitrogen partitioning was examined in a wild-type and a nitrate reductase-deficient mutant (A317) of Pisum sativum L. (ev. Juneau), effectively inoculated with two strains of Rhizobium leguminosarum (128C23 and 128C54) and grown hydroponically in medium without nitrogen for 21 days, followed by a further 7 days in medium without and with 5 mM NH4NO3. In wild-type symbioses the application of NH4NO3 significantly reduced nodule growth, nitrogenase (EC 1.7.99.2) activity, nodule carbohydrates (soluble sugars and starch) and allocation of [14C]-labelled (NO3, NH4+, amino acids) in roots. In nodules, there was a decline in amino acids together with an increase in inorganic nitrogen concentration. In contrast, symbioses involving A317 exhibited no change in nitrogenase activity or nodule carbohydrates, and the concentrations of all nitrogenous solutes measured (including asparagine) in roots and nodules were enhanced. Photosynthate allocation to the nodule was reduced in the 128C23 symbiosis. Nitrite accumulation was not detected in any case. These data cannot be wholly explained by either the carbohydrate deprivation hypothesis or the nitrite hypothesis for the inhibition of symbiotic nitrogen fixation by combined nitrogen. Our result with A317 also provided evidence against the hypothesis that NO3 and NH4+ or its assimilation products exert a direct effect on nitrogenase activity. It is concluded that more than one legume host and Rhizobium strain must be studied before generalizations about Rhizobium /legume interactions are made.  相似文献   

5.
Activities of nitrate reduction enzymes, nitrate reductase activity (NRA) and nitrite reductase activity (NiRA) from roots and nodules of 5 mutant genotypes and one commercial cultivar (Alameda) of faba bean ( Vicia faba L. var. minor) grown in the presence of N2 alone or with additional NO3 in the medium have been studied. A naturally occurring mutant (VFM109) with impaired ability to reduce nitrate in its nodules is described. All the other cultivars of V. faba showed nodule NRA, although the range was very wide, from almost negligible (VFM72) up to 2 μmol h−1 (g FW)−1. This activity was entirely of plant origin. Root NRA also ranged widely accross cultivars. However, the level of activity expressed as well as the response of NRA to nitrate followed a pattern opposite to that observed in nodules. Roots and nodules of all cultivars showed very high rates of NiRA, respectively 50 and 150-fold higher than NRA, thus precluding accumulation of nitrite in these tissues. Root enzymes were significantly stimulated by nitrate while negative (NRA) or little effect (NiRA) was found for nodules. Nitrate and nitrite reduction are carried out by inducible enzymes in roots of V. faba and by constitutive enzymes in nodules, indicating that there may be different forms of these enzymes in each tissue. Differences in the plant genotype were a major cause of the variability in nitrate and nitrite reduction by nodulated root systems of V. faba .  相似文献   

6.
In vivo nitrate reductase (NR, EC 1.6.6.1.) activity was measured in leaves, branches and trunk of field-grown Alnus glutinosa (L.) Gaertn. All of the assayed tissues enzymatically reduced nitrate with a decreasing activity [μmol NO2 (g dry weight)−1 h−1] in the order: leaves > branch bark > inner branch tissues > trunk xylem. The NR activity of the various tissues of excised branches was inhibited by tungstate added to the transpiration stream. Part of the nitrate added to the feeding solution (0.2, 0.5 or 1 m M KNO3) of excised branches disappeared during its transport via the transpiration stream in the perennial tissues. This disappearance was enzymatic since it was decreased by tungstate.
No evidence was obtained for the presence of nitrate in natural xylem sap nor for a significant correlation between nitrate content of soil and leaf NR activity. These results indicate that in the field-grown black alder, the nitrate not reduced in the roots could be reduced in the perennial tissues of aerial parts. Since the leaf NR activity does not reflect the actual in situ nitrate reduction, the existence of a constitutive NR activity in Alnus leaves is suggested.  相似文献   

7.
Regulation of nitrogenase is not sufficiently understood to engineer symbioses that achieve a high N2 fixation rate under high levels of soil N. In the present hydroponic growth chamber study we evaluated the hypothesis that nitrogenase activity and the extent of its inhibition by NO3 may be related to both N and carbohydrate levels in plant tissues. A wide range of C:N ratios in various plant tissues (8.5 to 41.0, 1.9 to 3.7, and 0.8 to 1.8, respectively, in shoots, roots, and nodules) was generated through a combination of light and CO2 levels, using two soybean genotypes differing in C and N acquisition rates. For both genotypes, N concentration in shoots was negatively correlated to nitrogenase activity and positively correlated to the extent of nitrogenase inhibition by NO3. Furthermore, nitrogenase activity was positively correlated to total nonstructural carbohydrates (TNC) and C:N ratio in shoot and nodules for both genotypes. Nitrogenase inhibition by NO3 was negatively correlated to TNC and C:N ratio in shoots, but not in nodules for both genotypes. At the onset of nitrogenase inhibition by NO3, C:N ratio declined in shoots but not in nodules. These results indicate that both C and N levels in plant tissues are involved in regulation of nitrogenase activity. We suggest that the level of nitrogenase activity may be determined by (1) N needs (as determined by shoot C:N) and (2) availability of carbohydrates in nodules. Modulation of the nitrogenase activity may occur through sensing changes in plant N, i.e. changes in shoot C:N ratio, possibly through some phloem translocatable compound(s).  相似文献   

8.
Regulation of nitrogenase is not sufficiently understood to engineer symbioses that achieve a high N2 fixation rate under high levels of soil N. In the present hydroponic growth chamber study we evaluated the hypothesis that nitrogenase activity and the extent of its inhibition by NO3 may be related to both N and carbohydrate levels in plant tissues. A wide range of C:N ratios in various plant tissues (8.5 to 41.0, 1.9 to 3.7, and 0.8 to 1.8, respectively, in shoots, roots, and nodules) was generated through a combination of light and CO2 levels, using two soybean genotypes differing in C and N acquisition rates. For both genotypes, N concentration in shoots was negatively correlated to nitrogenase activity and positively correlated to the extent of nitrogenase inhibition by NO3. Furthermore, nitrogenase activity was positively correlated to total nonstructural carbohydrates (TNC) and C:N ratio in shoot and nodules for both genotypes. Nitrogenase inhibition by NO3 was negatively correlated to TNC and C:N ratio in shoots, but not in nodules for both genotypes. At the onset of nitrogenase inhibition by NO3, C:N ratio declined in shoots but not in nodules. These results indicate that both C and N levels in plant tissues are involved in regulation of nitrogenase activity. We suggest that the level of nitrogenase activity may be determined by (1) N needs (as determined by shoot C:N) and (2) availability of carbohydrates in nodules. Modulation of the nitrogenase activity may occur through sensing changes in plant N, i.e. changes in shoot C:N ratio, possibly through some phloem translocatable compound(s).  相似文献   

9.
Abstract: The putative role of glutamine, exported from leaves to roots, as a negative feedback signal for nitrate uptake was investigated in Zea mays L. seedlings. Glutamine (Gln) was supplied by immersion of the tip-cut leaves in a concentrated solution. Nitrate (NO3) uptake was measured by its depletion in amino acid-free medium. The treatment with Gln resulted in a strong inhibition of nitrate uptake rate, accompanied by a significant enrichment of amino compounds in root tissue. The effect of N-availability on NO3 uptake was determined in split-root cultures. The plants were subjected to complete or localized N supply. Inducible NO3 uptake systems were also induced in N-deprived roots when the opposite side of the root system was supplied with KNO3. The inhibitory effect of Gln was unaffected by localized N supply on one side of the split-root. The potential role of Gln in the shoot-to-root control of NO3 uptake is discussed.  相似文献   

10.
Enzyme activities involved in nitrate assimilation were analyzed from crude leaf extracts of wild-type (cv. Williams) and mutant ( nr1 ) soybean [ Glycine max (L.) Merr.] plants lacking constitutive nitrate reductase (NR) activity. The nr1 soybean mutant (formerly LNR-2), had decreased NADH-NR, FMNH2-NR and cytochrome c reductase activities, all of which were associated with the loss of constitutive NR activity. Measurement of FMNH2-NR activity, by nitrite determination, was accurate since nitrite reductase could not use FMNH2 as a reductant source. Nitrite reductase activity was normal in the nr1 plant type in the presence of reduced methyl viologen. Assuming that constitutive NR is similar in structure to nitrate reductases from other plants, presence of xanthine dehydrogenase activity and loss of cytochrome c reductase activity indicated that the apoprotein and not the molybdenum cofactor had been affected in the constitutive enzyme of the mutant. Constitutive NR from urea-grown wild-type plants had 1) greater ability to use FMNH2 as an electron donor, 2) a lower pH optimum, and 3) decreased ability to distinguish between NO3 and HCO3, compared with inducible NR from NO3-grown nr1 plants. The presence in soybean leaves of a nitrate reductase with a pH optimum of 7.5 is contrary to previous reports and indicates that soybean is not an exception among higher plants for this activity.  相似文献   

11.
An improved method of cell fractionation allowed the extraction of soluble (sNR) and membrane-associated (mNR) forms of nitrate reductase (NR) from a dinoflagellate, even though in previous studies only mNR had been found in these algae. Both activities were assayed in cell-free extracts of Peridinium gatunense from Lake Kinneret, Israel, after disruption of the cells and differential centrifugation. In the cultures used, sNR showed much higher NO3-reducing activity. Only a low proportion, 2.5–3% of NR activity, was found to be associated with mNR. Moreover, mNR comprised two forms as indicated by protein solubilization: a tightly membrane-bound and a more weakly attached NR. Ascorbate inhibited all NR activities, but that of mNR recovered after its removal. Polyvinyl pyrrolidone (PVP) and DTT also diminished sNR and mNR activities. For both enzymes, pH optima (7.65) and temperature optima (13–25°C) were similar, and agreed with those for optimum growth of P. gatunense both in culture and in the lake. The most efficient electron donor was NADH, though NADPH sustained low NR activities. Carboxylic anions such as succinate and malate did not support any reduction of NO3, nor did they cause any stimulation of sNR or mNR activities. Both forms of NR showed a high affinity for their substrates: K m was c. 10 μM for NO3 and c. 5 μM for NADH. The high efficiency of NO3 assimilation by Peridinium seems to be limited mainly by energy under otherwise optimal nutritional conditions and, at low nitrate concentrations, the low K m may be one of the main reasons for the high competitivity of this alga in Lake Kinneret.  相似文献   

12.
Shoot activity has been reported to affect rates of ion uptake by plant roots in other ways than merely through supply of assimilates. To elucidate the mechanisms by which a signal from the upper part of the plant controls the rate of K+ and NO3 uptake by roots, both uptake of K+ and NO3 and secretion into the xylem of young sunflower plants ( Helianthus annuus L.) were measured after changes in light intensity.
No close correlation was observed between the uptake of NO3 and that of K+; an increase in light intensity produced a much greater stimulation of NO3 uptake than of K+ uptake. On the other hand, secretion of NO3 into the xylem was tightly coupled to that of K+, and this coupling was strongly disturbed by excision of the root. The results suggest the involvement of the K2-malate shuttle on the regulation by the shoot of K+ and NO3 secretion in the xylem, which is linked to NO3 uptake, while K+ uptake is independent of this regulation mechanism.  相似文献   

13.
Response of nitrogen metabolism to boron toxicity in tomato plants   总被引:1,自引:0,他引:1  
Boron (B) toxicity has become important in areas close to the Mediterranean Sea where intensive agriculture has been developed. The objective of this research was to study the effects of B toxicity (0.5 m m and 2.0 m m B) on nitrogen (N) assimilation of two tomato cultivars that are often used in these areas. Leaf biomass, relative leaf growth rate (RGRL), concentration of B, nitrate (NO3), ammonium (NH4+), organic N, amino acids and soluble proteins, as well as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities were analysed in leaves. Boron toxicity significantly decreased leaf biomass, RGRL, organic N, soluble proteins, and NR and NiR activities. The lowest NO3 and NH4+ concentration in leaves was recorded when plants were supplied with 2.0 m m B in the root medium. Total B, amino acids, activities of GS, GOGAT and GDH increased under B toxicity. Data from the present study prove that B toxicity causes inhibition of NO3 reduction and increases NH4+ assimilation in tomato plants.  相似文献   

14.
The plant fraction of alfalfa ( Medicago sativa L. cv. Aragon) nodules contained both nitrate reductase (NR) and nitrite reductase (NiR). Specific activity of NADH-NR from the cytosol of nodules not treated with NO3- was about 30 nmol (mg protein)-1-h-1 and was not basically affected by NO3 addition. In contrast, typical specific activity for cytosolic NiR was 1.5 umol (mg protein)-1h-1 using methyl viologen as electron donor. This activity strongly increased with NO3 concentration, probably due to substrate induction. Maximal activity was 3.5 μmol (mg protein)-1h-1 at 50 to 200 mM NO3.
Estimates indicate that the contribution of cytosol to the overall NR and NiR activities of alfalfa nodules is distinctly different: less than 10% and about 70%, respectively. The increasing amounts of NO2 accumulating in the cytosol upon NO3, supply, and the different response to NO3 of bacteroid and cytosolic NRs support the concept that most of this NO2 comes from the bacteroids.  相似文献   

15.
Soybean root and nodule nitrate reductase   总被引:5,自引:0,他引:5  
Nitrate reductase (NR) activity was followed in root and nodule from Glycine max (L.) Merr. (Cv. Tracy) inoculated with Rhizobium japonicum . Initially, a plus NO3- in vivo assay was used. When chlorate-resistant mutants were used as inoculum, nodule NR activity was reduced by about 90%. indicating that the bacteroid accounts for much of the normal nodule's NR. With plants 3 to 15 weeks of age nodule NR activity (g fresh weight)-1 was highest in young plants and root activity highest in old plants. Root and nodule total NR activity increased with plant age and were often not greatly different. Root NR activity correlated with plant NO3- supply and increased from 0.8 to 11.4 μmol plant-1 h-1 as NO3- was increased from 0 to 3 m M . In contrast, nodule NR activity was high in plants grown without NO3- and did not appear to increase as nitrate supply to the plant was increased. Nodule activity was 6 to 14 μmol NO2- plant-1 h-1. Use of a minus NO3- in vivo assay had little affect on root NR activity, but greatly reduced nodule activity. Root tissue was found to have 5 to 38 times more NO3- than nodule tissue. It is concluded that low nitrate levels within the nodule limit NR activity and that it is improbable that the nodule is a major site of plant nitrate reduction.  相似文献   

16.
Impact of gaseous nitrogen deposition on plant functioning   总被引:5,自引:0,他引:5  
Dry deposition of NH3 and NOx (NO and NO2) can affect plant metabolism at the cellular and whole-plant level. Gaseous pollutants enter the plant mainly through the stomata, and once in the apoplast NH3 dissolves to form NH4+, whereas NO2 dissolves to form NO3 and NO2. The latter compound can also be formed after exposure to NO. There is evidence that NH3-N and NOx-N can be reversibly stored in the apoplast. Temporary storage might affect processes such as absorption rate, assimilation and re-emission. Once formed, NO3 and NO2 can be reduced, and NH4+ can be assimilated via the normal enzymatic pathways, nitrate reductase (NR), nitrite reductase and the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle. Fumigation with low concentrations of atmospheric NH3 increases in vitro glutamine synthetase activity, but whether this involves both or only one of the GS isoforms is still an open question. There seems to be no correlation between fumigation with low concentrations of NH3 and in vitro GDH activity. The contribution of atmospheric NH3 and NO2 deposition to the N budget of the whole plant has been calculated for various atmospheric pollutant concentrations and relative growth rates ( RGRs ). It is concluded that at current ambient atmospheric N concentrations the direct impact of gaseous N uptake by foliage on plant growth is generally small.  相似文献   

17.
Influx, efflux and translocation of K+(86Rb) were studied in the roots of sunflower seedlings ( Helianthus annuus L. cv. Uniflorus) treated with 0–4.0 m M NO3 during a 9 day growth period or a 24 h pretreatment period. Roots treated with high levels of NO3 absorbed and translocated more K+(86Rb) than seedlings treated with low levels of NO3. The content of K+ in the shoots was, however, higher in seedlings treated with low levels of NO3, indicating a low rate of retranslocation of K+ in those plants. K+(86Rb) efflux was highest into the low-NO3 solutions. All effects on K+(86Rb)-fluxes were more obvious in high-K plants than in low-K plants. The results are discussed in relation to the Dijkshoorn-Ben Zioni hypothesis for K++ NO3-uptake and translocation in plants.  相似文献   

18.
Abstract A consortium was enriched from a humisol incubated with 3.6 kPa CH4 and NH4+. This consortium oxidized NH4+ to NO2 and NO3 (NO3/NO2 ratio about 20) with smaller amounts of N2O. This oxidation stopped in the stationary phase after depletion of CH4. CH3OH or CO2 did not support oxidation. Growth and resting cell experiments suggested that nitrification was associated with methanotrophic activity and that chemoautotrophic nitrifiers were absent.  相似文献   

19.
The activity of glutamine synthetase (GS) in mustard ( Sinapis alba L.) and Scots pine ( Pinus sylvestris L.) seedlings was used as an index to evaluate the capacity to cope with excessive ammonium supply. In these 2 species GS activity was differently affected by the application of nitrogen compounds (NH4+ or NO3). Mustard seedlings older than 5 days showed a considerable increase in GS activity after NH4+ or NO3 application. This response was independent of the energy flux, but GS activity in general was positively affected by light. Endogenous NH4+ did not accumulate greatly after nitrogen supply. In contrast, seedlings of Scots pine accumulated NH4+ in cotyledons and roots and showed no stimulation of GS activity after the application of ammonium. In addition, root growth was drastically reduced. Thus, the pine seedlings seem to have insufficient capacity to assimilate exogenously supplied ammonium. NO3, however, did not lead to any harmful effects.  相似文献   

20.
Effects of nitrate, chloride and chlorate ions upon nitrate and chlorate uptake by roots of maize ( Zea mays L., cv. B73) seedlings were examined. Net nitrate uptake, 36ClO3 influx and 36Cl influx (the latter two in a background of 0.5 m M KNO3) displayed similar pH profiles with optima at pH 5.5 and below. External, non-labeled chloride had little effect on the accumulation of 36ClO3 (both in 5 h and 20 min uptake assays), while nitrate and chlorate had almost identical, marked inhibitory effects. Nitrate pretreatment caused an apparent induction of both 36ClO3 and 15NO3 uptake activities. After 5 h of treatment in nitrate, the uptake activities of chloride- and chlorate-pretreated plants increased to that of nitrate-pretreated plants. During 6 h exposure to chlorate, 36ClO3 uptake activity of nitrate-pretreated plants decreased to that of chlorate- and chloride-pretreated plants. The results support the existence of a shared nitrate/chlorate transport system in maize roots which is not inhibited by external chloride, and which is induced by nitrate, but not by chlorate or chloride. The suggestion is made that selection of chlorate-resistant mutants of maize can identify nitrate uptake as well as nitrate reductase mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号