首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
During and after two successive incremental cycle ergometer tests (tests A and B), plasma potassium concentration ([K+]p), plasma pH (pHp), plasma partial pressure of carbon dioxide, blood lactate concentration ([Lac-]b) and ventilation (VE) were measured. While there was a good correlation between the increase in [K+]p and VE or pHp, respectively, in test A, in test B a close correlation was found only between the increase in VE and [K+]p (r greater than 0.9 for nearly all single cases; r was 0.84 and 0.89 for all (pooled) cases in tests A and B, respectively; the correlation coefficients between changes in pHp and VE in tests A and B were r = 0.74 and r = 0.28, respectively, and r = 0.89 and r = 0.10 between the changes in [Lac-]b and VE in tests A and B). The close relationship for individuals between VE and [K+]p in tests A and B supported the hypothesis that the extracellular increase in [K+] may contribute to the ventilatory drive during exercise. The comparison of the results of tests A and B further indicated that the relationship between pHp and VE was dependent on the experimental design, and that pHp and VE changes are unlikely to be cause and effect.  相似文献   

2.
It has recently been demonstrated that, compared to normal conditions, ventilation (VE) was increased during exercise after glycogen depletion, in spite of a marked increase in plasma pH (pHP). It was further demonstrated that VE in patients with McArdle's syndrome was reduced when substrate availability was improved. In the present experiments, six endurance trained men performed two successive cyclo-ergometric incremental exercise tests (tests A, B) after normal nutrition (N) and after a fatty meal in conjunction with a sodium bicarbonate (NaHCO3) solution (FSB) or without NaHCO3 (F), and the relationship between VE, plasma potassium concentration ([K+]P), and pHP was checked. Plasma free fatty acid concentration ([FFA]P) was markedly increased in the F and FSB trials (P < 0.001). In FSB pHP was significantly increased, compared to N and F (P < 0.001). In all the B tests, pHP increased during moderate and intense exercise and in FSB, remained alkalotic even during maximal exercise intensity. In contrast, VE and [K+]P changes were almost equal in all the trials and in tests A and B. It was found that exercise-induced changes of VE and [K+]P in the present experiments were not markedly affected by [FFA]P or pHP values and that these changes also occurred independently of changes in pHP or plasma bicarbonate concentration. The often used glycogen depletion strategy may have slightly increased VE but apparently did not overcompensate for a possible decrease in VE due to increased pHP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Effects of sprint training on plasma K+ concentration ([K+]) regulation during intense exercise and on muscle Na+-K+-ATPase were investigated in subjects with Type 1 diabetes mellitus (T1D) under real-life conditions and in nondiabetic subjects (CON). Eight subjects with T1D and seven CON undertook 7 wk of sprint cycling training. Before training, subjects cycled to exhaustion at 130% peak O2 uptake. After training, identical work was performed. Arterialized venous blood was drawn at rest, during exercise, and at recovery and analyzed for plasma glucose, [K+], Na+ concentration ([Na+]), catecholamines, insulin, and glucagon. A vastus lateralis biopsy was obtained before and after training and assayed for Na+-K+-ATPase content ([3H]ouabain binding). Pretraining, Na+-K+-ATPase content and the rise in plasma [K+] ([K+]) during maximal exercise were similar in T1D and CON. However, after 60 min of recovery in T1D, plasma [K+], glucose, and glucagon/insulin were higher and plasma [Na+] was lower than in CON. Training increased Na+-K+-ATPase content and reduced [K+] in both groups (P < 0.05). These variables were correlated in CON (r = -0.65, P < 0.05) but not in T1D. This study showed first that mildly hypoinsulinemic subjects with T1D can safely undertake intense exercise with respect to K+ regulation; however, elevated [K+] will ensue in recovery unless insulin is administered. Second, sprint training improved K+ regulation during intense exercise in both T1D and CON groups; however, the lack of correlation between plasma delta[K+] and Na+-K+-ATPase content in T1D may indicate different relative contributions of K+-regulatory mechanisms.  相似文献   

4.
Lung transplant recipients (LTx) exhibit marked peripheral limitations to exercise. We investigated whether skeletal muscle Ca2+ and K+ regulation might be abnormal in eight LTx and eight healthy controls. Peak oxygen consumption and arterialized venous plasma [K+] (where brackets denote concentration) were measured during incremental exercise. Vastus lateralis muscle was biopsied at rest and analyzed for sarcoplasmic reticulum Ca2+ release, Ca2+ uptake, and Ca2+-ATPase activity rates; fiber composition; Na+-K+-ATPase (K+-stimulated 3-O-methylfluorescein phosphatase) activity and content ([3H]ouabain binding sites); as well as for [H+] and H+-buffering capacity. Peak oxygen consumption was 47% less in LTx (P < 0.05). LTx had lower Ca2+ release (34%), Ca2+ uptake (31%), and Ca2+-ATPase activity (25%) than controls (P < 0.05), despite their higher type II fiber proportion (LTx, 75.0 +/- 5.8%; controls, 43.5 +/- 2.1%). Muscle [H+] was elevated in LTx (P < 0.01), but buffering capacity was similar to controls. Muscle 3-O-methylfluorescein phosphatase activity was 31% higher in LTx (P < 0.05), but [3H]ouabain binding content did not differ significantly. However, during exercise, the rise in plasma [K+]-to-work ratio was 2.6-fold greater in LTx (P < 0.05), indicating impaired K+ regulation. Thus grossly subnormal muscle calcium regulation, with impaired potassium regulation, may contribute to poor muscular performance in LTx.  相似文献   

5.
Six renal transplant recipients underwent a series of incremental exercise experiments. Minute ventilation (VE), carbon dioxide production rate (VCO2), and arterial blood chemistry were measured at rest and while subjects exercised on a stationary bicycle. Four of the subjects performed a similar experiment while exercising on a static rowing machine. Within each subject, arterial potassium concentration ([K+]a) was linearly related to VCO2 and VE during exercise. The slope of the relationship between [K+]a and VCO2 was similar in the cycling and rowing experiments. This implies that the absorption of potassium by resting muscle does not significantly limit the arterial hyperkalemia seen during exercise. When VE, VCO2, and [K+]a were measured 1 and 5 min after the end of cycling there was no correlation, whereas VE continued to be closely correlated with VCO2. The relationship demonstrated between change in [K+]a and VCO2 in these experiments is compatible with change of [K+]a acting as a respiratory signal during exercise but not during recovery from exercise in humans.  相似文献   

6.
The purpose of this study was to compare the relationship of ventilation (VE) with pH, arterial concentrations of potassium [( K+]a), bicarbonate [( HCO3-]a), lactate [( la]a), and acid-base parameters which would affect hyperpnoea during exercise and recovery. To assess this relationship, ten healthy male subjects exercised with intensity increasing as a ramp function of 20 W.min-1 until voluntary exhaustion and they were then allowed a 5-min recovery period. Breath-by-breath gas exchange data, [HCO3-]a, pH, [la]a, [K+]a and blood gases were determined during both exercise and recovery. Using a linear regression method, the VE/[K+]a relationship was analysed during both exercise and recovery. Several interesting results were obtained: a significant relationship between [K+]a and VE was observed during recovery as well as during exercise; the VE at any given values of [K+]a was significantly higher during recovery than during exercise and out of those factors affecting exercise hyperpnoea, only [K+]a had a similar time-course to VE during recovery. Changes in [K+]a during recovery were shown to occur significantly faster than VE with an [K+]a time constant of 70.0 s, SD 16.2 as opposed to 105.5 s, SD 10.0 for VE (P less than 0.01). These results provided further evidence that [K+]a might play an important role as a substance which can stimulate exercise hyperpnoea as has been suggested by other workers. The present study also showed that during recovery [K+]a contributed significantly to the control of VE.  相似文献   

7.
We investigated changes in arterial PCO2 (PaCO2) and pulmonary ventilation (VE) in normal, carotid chemoreceptor-denervated, and hilar nerve-denervated ponies during intravenous lactic acid infusion at rest and treadmill exercise at 1.8 mph-5% grade (mild) and 1.8 mph-15% grade (moderate). Lactic acid, (0.5 M) infusion of 0.10, 0.13, and 0.20 ml.min-1.kg-1 at rest and mild and moderate exercise increased arterial [H+] linearly throughout the 10 min of acid infusion. At 10 min of infusion, arterial [H+] had increased approximately 20 nmol/l (0.2 pH units) for each condition and group. Under most conditions, the temporal pattern of PaCO2 during acid infusion was biphasic. At rest and during mild exercise in all groups, and in carotid chemoreceptor-denervated ponies during moderate exercise, PaCO2 increased approximately 2 Torr (P less than 0.05) during the first 2 min of acid infusion. However, in normal ponies during moderate exercise, PaCO2 was not changed from control in the first 2 min of infusion. Between 2 and 10 min of infusion at rest and mild and moderate exercise in all groups, there was a 5-Torr significant decrease in PaCO2, which did not differ (P greater than 0.10) between groups. VE increased between 15-30 s and 2 min of infusion, but VE changed minimally between 2 and 10 min of infusion at rest and exercise in all groups of ponies. We conclude that lactacidosis does increase VE at rest and submaximal exercise in the pony.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Interstitial K+ ([K+]i) was measured in human skeletal muscle by microdialysis during exhaustive leg exercise, with (AL) and without (L) previous intense arm exercise. In addition, the reproducibility of the [K+]i determinations was examined. Possible microdialysis-induced rupture of the sarcolemma was assessed by measurement of carnosine in the dialysate, because carnosine is only expected to be found intracellularly. Changes in [K+]i could be reproduced, when exhaustive leg exercise was performed on two different days, with a between-day difference of approximately 0.5 mM at rest and 1.5 mM at exhaustion. The time to exhaustion was shorter in AL than in L (2.7 +/- 0.3 vs. 4.0 +/- 0.3 min; P < 0.05). Furthermore, [K+]i was higher from 0 to 1.5 min of the intense leg exercise period in AL compared with L (9.2 +/- 0.7 vs. 6.4 +/- 0.9 mM; P < 0.001) and at exhaustion (11.9 +/- 0.5 vs. 10.3 +/- 0.6 mM; P < 0.05). The dialysate content of carnosine was elevated by exercise, but low-intensity exercise resulted in higher dialysate carnosine concentrations than subsequent intense exercise. Furthermore, no relationship was found between carnosine concentrations and [K+]i. Thus the present data suggest that microdialysis can be used to determine muscle [K+]i kinetics during intense exercise, when low-intensity exercise is performed before the intense exercise. The high [K+]i levels reached at exhaustion can be expected to cause fatigue, which is supported by the finding that a faster accumulation of interstitial K+, induced by prior arm exercise, was associated with a reduced time to fatigue.  相似文献   

9.
To determine the origins of the arteriovenous [H+] difference of muscle during contractions, arterial and muscle venous blood sample pairs were taken before and after 0.5, 5.0, and 30.0 min of 4/s isometric twitches of the gastrocnemius-plantaris muscle group of anesthetized dogs. These samples were analyzed for PO2, PCO2, and pH, the concentrations of O2, CO2, K+, Na+, La-, and Cl- in whole blood, and La-, K+, Na+, and Cl- in plasma. Whole blood was hemolyzed and analyzed for PO2, PCO2, and pH. Net O2 uptake, CO2 output, L, K+, Na+, and Cl- were calculated in addition to net output of non-CO2 acid (HA) and strong ion difference ([SID]) and common ion [SID] ([K+] + [Na+] - [Cl-] - [La-]). From these data we partitioned the origins of the arteriovenous [H+] difference via the common PCO2-pH diagram and via a [H+]-PCO2 diagram and determined whether true plasma arteriovenous [H+] differences reflect plasma and cell arteriovenous [H+] differences. The arteriovenous [H+] differences of plasma and hemolyzed blood were the same, showing that true plasma does reflect plasma and cells. K+ showed a small significant but transient output. Na+ was not significant, whereas Cl- showed a significant transient uptake. Lactate output and HA, calculated for dog blood acid-base, showed transient outputs and were the same. At 5.0 min when the arteriovenous difference was largest, CO2 alone would have increased [H+] 15.9 nmol/l whereas desaturation of Hb would have decreased [H+] 4.2 nmol/l and lactate could have raised [H+] 1.0 nmol/l.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Six healthy men performed sustained static handgrip exercise for 2 min at 40% maximal voluntary contraction followed by a 6-min recovery period. Heart rate (fc), arterial blood pressures, and forearm blood flow were measured during rest, exercise, and recovery. Potassium ([K+]) and lactate concentrations in blood from a deep forearm vein were analysed at rest and during recovery. Mean arterial pressure (MAP) and fc declined immediately after exercise and had returned to control levels about 2 min into recovery. The time course of the changes in MAP observed during recovery closely paralleled the changes in [K+] (r = 0.800, P < 0.01), whereas the lactate concentration remained elevated throughout the recovery period. The close relationship between MAP and [K+] was also confirmed by experiments in which a 3-min arterial occlusion period was applied during recovery to the exercised arm by an upper arm cuff. The arterial occlusion affected MAP while fc recovered at almost the same rate as in the control experiment. Muscle biopsies were taken from the brachioradialis muscle and analysed for fibre composition and capillary supply. The MAP at the end of static contraction and the [K+] appearing in the effluent blood immediately after contraction were positively correlated to the relative content of fast twitch (% FT) fibres (r = 0.886 for MAP vs % FT fibres, P < 0.05 and r = 0.878 for [K+] vs % FT fibres, P < 0.05). Capillary to fibre ratio showed an inverse correlation to % FT fibres (r = -0.979, P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
To determine the factors responsible for changes in [H+] during and after sprint exercise in the racing greyhound, Stewart's quantitative acid-base analysis was applied to arterial blood plasma samples taken at rest, at 8-s intervals during exercise, and at various intervals up to 30 min after a 402-m spring (approximately 30 s) on the track. [Na+], [K+], [Cl-], [total Ca], [lactate], [albumin], [Pi], PCO2, and pH were measured, and the [H+] was calculated from Stewart's equations. This short sprint caused all measured variables to change significantly. Maximal changes were strong ion difference decreased from 36.7 meq/l at rest to 16.1 meq/l; [albumin] increased from 3.1 g/dl at rest to 3.7 g/dl; PCO2, after decreasing from 39.6 Torr at rest to 27.9 Torr immediately prerace, increased during exercise to 42.8 Torr and then again decreased to near 20 Torr during most of recovery; and [H+] rose from 36.6 neq/l at rest to a peak of 76.6 neq/l. The [H+] calculated using Stewart's analysis was not significantly different from that directly measured. In addition to the increase in lactate and the change in PCO2, changes in [albumin], [Na+], and [Cl-] also influenced [H+] during and after sprint exercise in the running greyhound.  相似文献   

12.
The relationship of femoral venous [K+], [H+], osmolality (OSM), PO2, and [inorganic phosphate] ([Pi]) with heart rate (HR), ventilation (VE), and calculated leg blood flow (Q) were investigated during bicycle exercise in endurance trained (TR) and untrained (UT) test subjects. At a given VO2 the increases of [K+], OSM, [Pi] and the decrease of PO2 were significantly lower in TR than in UT. In the same proportion the increases of HR, VE, and Q were diminished. Thus in TR and UT identical and highly significantly correlated regression lines of [K+], [H+], OSM, [Pi] and PO2 with HR, VE, and Q were obtained. These constituents changed in the same proportion as the relative VO2 in TR and UT. No relationships with [Na+], [Ca++], and [ Mg++] were found. By means of a multiple regression analysis the partial influence of K+, H+, OSM, PO2, and Pi upon the total change of HR, VE and Q was estimated to compare with data from infusion experiments. The findings were discussed in view of the hypothesis that these candidates may provide linkage between metabolic events, circulatory, and ventilatory adjustments during work.  相似文献   

13.
The major objective was to determine in ponies whether factors in addition to changes in blood PCO2 contribute to changes in plasma [H+] during submaximal exercise. Measurements were made to establish in vivo plasma [H+] at rest and during submaximal exercise, and CO2 titration of blood was completed for both in vitro and acute in vivo conditions. In 19 ponies arterial plasma [H+] was decreased from rest 4.5 neq/l (P less than 0.05) during the 7th min of treadmill running at 6 mph, 5% grade (P less than 0.5). A 5.6-Torr exercise hypocapnia accounted for approximately 2.9 neq/l of this reduced [H+]. The non-PCO2 component of this alkalosis was approximately neq/l, and it was due presumably to a 1.7-meq/l increase from rest in the plasma strong ion difference (SID). Despite the arterial hypocapnia, mixed venous PCO2 was 2.7 Torr above rest during steady-state exercise. Nevertheless, mixed venous plasma [H+] was 1.2 neq/l above rest during exercise, which was presumably due to the increase in SID. Also studied was the effect of submaximal exercise on whole blood CO2 content (CCO2). In vitro, at a given PCO2 there was minimal difference in CCO2 between rest and exercise blood, but plasma [HCO3-] was greater for exercise blood than for rest blood. In vivo, during steady-state exercise, arterial plasma blood. In vivo, during steady-state exercise, arterial plasma [HCO3-] was unchanged or slightly elevated from rest, but CaCO2 was 4 vol% below rest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The purposes of this review were twofold: to apply modern physicochemical principles to explain changes in acid-base regulation and the control of ventilation in human pregnancy; and to demonstrate the value of pregnancy as a model for the study of endocrine effects on physiological control systems. Application of P.A. Stewart's approach (P.A. Stewart. Can. J. Physiol. Pharmacol. 61: 1444-1461, 1983) shows that lower values of plasma hydrogen ion concentration ([H+]) observed at rest and in association with exercise in pregnancy are the result of lower values for carbon dioxide tension (Pco2) and total weak acid ([A(tot)]). This effect is partly offset by a lower strong ion difference ([SID]). The ability to predict plasma [H+] at rest and following strenuous exercise in pregnancy (J.G. Kemp, F.A. Greer, and L.A. Wolfe. J. Appl. Physiol. 83: 644-651, 1997) supports the validity of Stewart's approach. Jennings and associates (D.B. Jennings. Can. J. Physiol. Pharmacol. 72: 1499-1512, 1994) have further demonstrated in animal models the involvement of plasma osmolality and circulating levels of angiotensin II (ANG II) and arginine vasopressin (AVP) in the chemical control of ventilation. We hypothesize that pregnancy-induced increases in respiratory sensitivity to carbon dioxide are the combined result of reduced plasma osmolality, reduced cerebrospinal fluid [SID], and augmented circulating levels of progesterone, ANG II, and AVP.  相似文献   

15.
We determined how rapidly serum potassium concentration ([K+]) increased, its magnitude, and how quickly it decreased during and after a 3.5-min exercise bout at maximal speed capability in eight Hereford steers, before and after physical conditioning. Serum [K+] values rose rapidly after the start of exercise and declined rapidly to within 7% of preexercise values 5 min after exercise ceased. Before physical conditioning, serum [K+] increased from an average of 4.19 meq/l at rest to 6.71 meq/l at the highest treadmill speed the animals could sustain (1.8-2.4 m/s at a 3 degrees incline). After physical conditioning, the serum [K+] increase at comparable treadmill speeds was approximately 5% lower than before conditioning (average of 6.37 meq/l); however, the animals could now exercise from 0.6 to 0.8 m/s faster than before conditioning, and their maximal serum [K+] rose to an average of 7.47 meq/l, a 10% increase over preconditioned maximal values. We conclude that higher speeds and accompanying increases in serum [K+] attained by conditioned animals may place them at greater risk of cardiotoxicity than before conditioning.  相似文献   

16.
We analyzed the changes in water content and electrolyte concentrations in the vascular space during graded exercise of short duration. Six male volunteers exercised on a cycle ergometer at 20 degrees C (relative humidity = 30%) as exercise intensity was increased stepwise until voluntary exhaustion. Blood samples were collected at exercise intensities of 29, 56, 70, and 95% of maximum aerobic power (VO2max). A curvilinear relationship between exercise intensity and Na+ concentration in plasma ([Na+]p) was observed. [Na+]p significantly increased at 70% VO2max and at 95% VO2max was approximately 8 meq/kgH2O higher than control. The change in lactate concentration in plasma ([Lac-]p) was closely correlated with the change in [Na+]p (delta[Na+]p = 0.687 delta[Lac-]p + 1.79, r = 0.99). The change in [Lac-]p was also inversely correlated with the change in HCO3- concentration in plasma (delta[HCO3-]p = -0.761 delta[Lac-]p + 0.22, r = -1.00). At an exercise intensity of 95% VO2max, 60% of the increase in plasma osmolality (Posmol) was accounted for by an increase in [Na+]p. These results suggest that lactic acid released into the vascular space from active skeletal muscles reacts with [HCO3-]p to produce CO2 gas and Lac-. The data raise the intriguing notion that increase in [Na+]p during exercise may be caused by elevated Lac-.  相似文献   

17.
Nine subjects (VO2max 65 +/- 2 ml.kg-1.min-1, mean +/- SEM) were studied on two occasions following ingestion of 500 ml solution containing either sodium citrate (C, 0.300 g.kg-1 body mass) or a sodium chloride placebo (P, 0.045 g.kg-1 body mass). Exercise began 60 min later and consisted of cycle ergometer exercise performed continuously for 20 min each at power outputs corresponding to 33% and 66% VO2max, followed by exercise to exhaustion at 95% VO2max. Pre-exercise arterialized-venous [H+] was lower in C (36.2 +/- 0.5 nmol.l-1; pH 7.44) than P (39.4 +/- 0.4 nmol.l-1; pH 7.40); the plasma [H+] remained lower and [HCO3-] remained higher in C than P throughout exercise and recovery. Exercise time to exhaustion at 95% VO2max was similar in C (310 +/- 69 s) and P (313 +/- 74 s). Cardiorespiratory variables (ventilation, VO2, VCO2, heart rate) measured during exercise were similar in the two conditions. The plasma [citrate] was higher in C at rest (C, 195 +/- 19 mumol.l-1; P, 81 +/- 7 mumol.l-1) and throughout exercise and recovery. The plasma [lactate] and [free fatty acid] were not affected by citrate loading but the plasma [glycerol] was lower during exercise in C than P. In conclusion, sodium citrate ingestion had an alkalinizing effect in the plasma but did not improve endurance time during exercise at 95% VO2max. Furthermore, citrate loading may have prevented the stimulation of lipolysis normally observed with exercise and prevented the stimulation of glycolysis in muscle normally observed in bicarbonate-induced alkalosis.  相似文献   

18.
Five healthy males performed four 30-s bouts of maximal isokinetic cycling with 4 min rest between each bout. Arterial and femoral venous blood was sampled during and for 90 min following exercise. During exercise, arterial erythrocyte [K+] increased from 117.0 +/- 6.6 mequiv./L at rest to 124.2 +/- 5.9 mequiv./L after the second exercise bout. Arterial erythrocyte [K+] returned to the resting values during the first 5 min of recovery. No significant change was observed in femoral venous erythrocyte [K+]. Arterial erythrocyte lactate concentration ([Lac-]) increased during exercise from 0.2 +/- 0.1 mequiv./L peaking at 9.5 +/- 1.5 mequiv./L at 5 min of recovery, after which the values returned to control. Femoral venous erythrocyte [Lac-] changed in a similar fashion. Arterial erythrocyte [Cl-] rose during exercise to 76 +/- 3 mequiv./L and returned to resting values (70 +/- 2 mequiv./L) by 25 min recovery. During exercise there was a net flux of Cl- into the erythrocyte. We conclude that erythrocytes are a sink for K+ ions leaving working muscles. Furthermore, erythrocytes function to transport Lac- from working muscle and reduce plasma acidosis by uptake of Cl-. The erythrocyte uptake of K+, Lac-, and Cl- helps to maintain a concentration difference between plasma and muscle, facilitating diffusion of Lac- and K+ from the interstitial space into femoral venous plasma.  相似文献   

19.
The roles of ion fluxes in skeletal muscle fatigue   总被引:3,自引:0,他引:3  
Intense muscle contractions result in large changes in the intracellular concentrations of electrolytes. The purpose of this study was to examine the contributions of changes in intracellular strong ions to calculated changes in steady-state membrane potential (Em) and muscle intracellular H+ concentration ([H+]i). A physicochemical model is used to examine the origin of the changes in [H+]i during intense muscle contraction. The study used the isolated perfused rat hindlimb intermittently stimulated to contract at high intensity for 5 min. This resulted in significant K+ depletion of both slow (soleus) and fast (white gastrocnemius, WG) muscle fibers and a release of K+ and lactate (Lac-) into venous perfusate. The major contributor to a 12- to 14-mV depolarization of Em in soleus and WG was the decrease in intracellular K+ concentration ([K+]i). The major independent contributors to [H+]i are changes in the concentrations of strong and weak ions and in CO2. Significant decreases in the strong ion difference [( SID]i) in both soleus and WG contributed substantially to the increase in [H+]i during stimulation. In WG the model showed that the decrease in [SID]i accounted for 35% of the increase in [H+]i (133-312 nequiv/L; pHi = 6.88-6.51) at the end of stimulation. Of the main contributors to decreased [SID]i, increased [Lac-]i and decreased [K+]i contributed 40 and 60%, respectively, to increased [H+]i, whereas a decrease in [PCr2-]i contributed to reduced [H+]i. It is concluded that decreased muscle [K+]i during intense contractions is the single most important contributor to reduced Em and increased [H+]i. Depletion of PCr2- simultaneous to the changes in [Lac-]i and [K+]i prevents larger increases in [H+]i and helps maintain the intracellular acid-base state.  相似文献   

20.
Effects of the K+ concentration in the bathing fluid ([K+]l) on the intracellular K+, Na+ and Cl- concentrations ([K+]i [Na+]i and [Cl-]i) as well as on the electrical potential were studied in rat duodenum. Changes in the mucosal K+ concentration ([K+]m), bringing the sum of Na+ and K+ concentrations to 147.2 mM constant, had little effect on the transmural potential difference (PDt), but did induce marked changes in the mucosal membrane potential (Vm). As [K+]m increased, Vm was depolarized gradually and obeyed the Nernst equation for a potassium electrode in the range of [K+]m greater than approx. 60 mM. Experiments of ion analyses were carried out on strips of duodenum to determine the effect of changing the external K+ concentrations on [K+] i, [Na+]i and [Cl-]i. An increase in [K+]o resulted in increases in [K+]i and [Cl-]i and a decrease in [Na+]i, [K+]i approaching its maximum at [K+]o greater than 70 mM. Such changes in [K+]i and [Na+]i seem to correlate quantitatively with the changes in [K+]o and [Na+]o. The values of the ratio of permeability coefficients, Pna+/PK+ were estimated using the Vm values and intracellular ion concentrations measured in these experiments. The results suggested that there appeared a rather abrupt increase in the PNa+/PK+ ratio from 0 to approx. 0.1, as [K+]m decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号