首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Community‐level climate change indicators have been proposed to appraise the impact of global warming on community composition. However, non‐climate factors may also critically influence species distribution and biological community assembly. The aim of this paper was to study how fire–vegetation dynamics can modify our ability to predict the impact of climate change on bird communities, as described through a widely‐used climate change indicator: the community thermal index (CTI). Potential changes in bird species assemblage were predicted using the spatially‐explicit species assemblage modelling framework – SESAM – that applies successive filters to constrained predictions of richness and composition obtained by stacking species distribution models that hierarchically integrate climate change and wildfire–vegetation dynamics. We forecasted future values of CTI between current conditions and 2050, across a wide range of fire–vegetation and climate change scenarios. Fire–vegetation dynamics were simulated for Catalonia (Mediterranean basin) using a process‐based model that reproduces the spatial interaction between wildfire, vegetation dynamics and wildfire management under two IPCC climate scenarios. Net increases in CTI caused by the concomitant impact of climate warming and an increasingly severe wildfire regime were predicted. However, the overall increase in the CTI could be partially counterbalanced by forest expansion via land abandonment and efficient wildfire suppression policies. CTI is thus strongly dependent on complex interactions between climate change and fire–vegetation dynamics. The potential impacts on bird communities may be underestimated if an overestimation of richness is predicted but not constrained. Our findings highlight the need to explicitly incorporate these interactions when using indicators to interpret and forecast climate change impact in dynamic ecosystems. In fire‐prone systems, wildfire management and land‐use policies can potentially offset or heighten the effects of climate change on biological communities, offering an opportunity to address the impact of global climate change proactively.  相似文献   

2.
In the Sierra Nevada, distributions of forest tree species are largely controlled by the soil-moisture balance. Changes in temperature or precipitation as a result of increased greenhouse gas concentrations could lead to changes in species distributions. In addition, climatic change could increase the frequency and severity of wildfires. We used a forest gap model developed for Sierra Nevada forests to investigate the potential sensitivity of these forests to climatic change, including a changing fire regime. Fuel moisture influences the fire regime and couples fire to climate. Fires are also affected by fuel loads, which accumulate according to forest structure and composition. These model features were used to investigate the complex interactions between climate, fire, and forest dynamics. Eight hypothetical climate-change scenarios were simulated, including two general circulation model (GCM) predictions of a 2 × CO2 world. The response of forest structure,species composition, and the fire regime to these changes in the climate were examined at four sites across an elevation gradient. Impacts on woody biomass and species composition as a result of climatic change were site specific and depended on the environmental constraints of a site and the environmental tolerances of the tree species simulated. Climatic change altered the fire regime both directly and indirectly. Fire frequency responded directly to climate's influence on fuel moisture, whereas fire extent was affected by changes that occurred in either woody biomass or species composition. The influence of species composition on fuel-bed bulk density was particularly important. Future fires in the Sierra Nevada could be both more frequent and of greater spatial extent if GCM predictions prove true. Received 5 May 1998; accepted 4 November 1998.  相似文献   

3.
Road building can lead to significant deleterious impacts on biodiversity, varying from direct road-kill mortality and direct habitat loss associated with road construction, to more subtle indirect impacts from edge effects and fragmentation. However, little work has been done to evaluate the specific effects of road networks and biodiversity loss beyond the more generalized effects of habitat loss. Here, we compared forest bird species richness and composition in the municipalities of Santarém and Belterra in Pará state, eastern Brazilian Amazon, with a road network metric called ‘roadless volume (RV)’ at the scale of small hydrological catchments (averaging 3721 ha). We found a significant positive relationship between RV and both forest bird richness and the average number of unique species (species represented by a single record) recorded at each site. Forest bird community composition was also significantly affected by RV. Moreover, there was no significant correlation between RV and forest cover, suggesting that road networks may impact biodiversity independently of changes in forest cover. However, variance partitioning analysis indicated that RV has partially independent and therefore additive effects, suggesting that RV and forest cover are best used in a complementary manner to investigate changes in biodiversity. Road impacts on avian species richness and composition independent of habitat loss may result from road-dependent habitat disturbance and fragmentation effects that are not captured by total percentage habitat cover, such as selective logging, fire, hunting, traffic disturbance, edge effects and road-induced fragmentation.  相似文献   

4.
气候变化背景下江西省林火空间预测   总被引:1,自引:1,他引:1  
林火是森林生态系统中重要的干扰因子之一,深刻地影响森林景观结构和功能。在全球气候化背景下,揭示气候变化对林火空间分布格局的影响,可为林火管理和防火资源分配提供科学指导。因此,基于江西省2001—2015年MODIS火影像数据(MCD14ML)和年均气温、年均降水量、植被、地形、人口密度、距道路距离、距居民点距离7个因子数据,利用增强回归树模型:(1)分析林火发生影响因子的相对重要性及其边际效应;(2)将GFDL-CM3和GISS-E2-R气候变化模式中的年均气温和年均降水量作为未来的气象数据,在3个温室气体排放量情景(RCP2.6、RCP4.5、RCP8.5)下,对2050年(2041—2060的平均值)和2070年(2061—2080的平均值)江西省林火分布进行预测,生成林火发生概率图。并采用受试者工作特征(ROC曲线)和混淆矩阵评估模型预测的精度。研究结果表明:(1)年均气温和海拔与江西省林火发生的相关性较强,年均降水量、居民点距离、人口密度、道路距离与林火发生的相关性较弱,但是与林火发生密切相关的如降水、风速等也应重点关注;(2)训练数据(70%)和验证数据(30%)的AUC值(ROC曲线下面积值)均为0.736,混淆矩阵对火点预测的正确率为67.8%,表明模型能够较好地预测研究区林火的发生;(3)在RCP8.5排放情景中林火发生的增幅最明显,其增幅较大的区域由赣南向赣北移动;(4)未来2050年和2070年林火发生与当前气候(2001—2015年)下相比,赣州市、鹰潭市的增幅较为明显,其他区域不明显。江西省各林业管理部门要加强林火高发区及潜在发生区的森林监测和管理,加大防火宣传力度,提升民众的森林防火意识。  相似文献   

5.
Bird species richness is mediated by local, regional, and historical factors, for example, competition, environmental heterogeneity, contemporary, and historical climate. Here, we related bird species richness with phylogenetic relatedness of bird assemblages, plant species richness, topography, contemporary climate, and glacial‐interglacial climate change to investigate the relative importance of these factors. This study was conducted in Inner Mongolia, an arid and semiarid region with diverse vegetation types and strong species richness gradients. The following associated variables were included as follows: phylogenetic relatedness of bird assemblages (Net Relatedness Index, NRI), plant species richness, altitudinal range, contemporary climate (mean annual temperature and precipitation, MAT and MAP), and contemporary‐Last Glacial Maximum (LGM) change in climate (change in MAT and change in MAP). Ordinary least squares linear, simultaneous autoregressive linear, and Random Forest models were used to assess the associations between these variables and bird species richness across this region. We found that bird species richness was correlated negatively with NRI and positively with plant species richness and altitudinal range, with no significant correlations with contemporary climate and glacial–interglacial climate change. The six best combinations of variables ranked by Random Forest models consistently included NRI, plant species richness, and contemporary‐LGM change in MAT. Our results suggest important roles of local ecological factors in shaping the distribution of bird species richness across this semiarid region. Our findings highlight the potential importance of these local ecological factors, for example, environmental heterogeneity, habitat filtering, and biotic interactions, in biodiversity maintenance.  相似文献   

6.
Frequent Amazonian fires over the last decade have raised the alarm about the fate of the Earth's most biodiverse forest. The increased fire frequency has been attributed to altered hydrological cycles. However, observations over the past few decades have demonstrated hydrological changes that may have opposing impacts on fire, including higher basin‐wide precipitation and increased drought frequency and severity. Here, we use multiple satellite observations and climate reanalysis datasets to demonstrate compelling evidence of increased fire susceptibility in response to climate regime shifts across Amazonia. We show that accumulated forest loss since 2000 warmed and dried the lower atmosphere, which reduced moisture recycling and resulted in increased drought extent and severity, and subsequent fire. Extremely dry and wet events accompanied with hot days have been more frequent in Amazonia due to climate shift and forest loss. Simultaneously, intensified water vapor transport from the tropical Pacific and Atlantic increased high‐altitude atmospheric humidity and heavy rainfall events, but those events did not alleviate severe and long‐lasting droughts. Amazonia fire risk is most significant in the southeastern region where tropical savannas undergo long seasonally dry periods. We also find that fires have been expanding through the wet–dry transition season and northward to savanna–forest transition and tropical seasonal forest regions in response to increased forest loss at the “Arc of Deforestation.” Tropical forests, which have adapted to historically moist conditions, are less resilient and easily tip into an alternative state. Our results imply forest conservation and fire protection options to reduce the stress from positive feedback between forest loss, climate change, and fire.  相似文献   

7.
The incidence and severity of forest fires are linked to the interaction between climate, fuel and topography. Increased warming and drying in the future is expected to have a significant impact on the risk of forest fire occurrence. An increase in fire risk is linked to the synchronous relationship between climate and fuel moisture conditions. A warmer, drier climate will lead to drier forest fuels that will in turn increase the chance of successful fire ignition and propagation. This interaction will increase the severity of fire weather, which, in turn, will increase the risk of extreme fire behaviour. A warmer climate will also extend fire season length, which will increase the likelihood of fires occurring over a greater proportion of the year. In this study of the North Okanagan area of British Columbia, Canada, the impacts of climate change of fire potential were evaluated using the Canadian Forest Fire Danger Rating System and multiple climate scenario analysis. Utilizing this approach, a 30% increase in fire season length was modelled to occur by 2070. In addition, statistically significant increases in fire severity and fire behaviour were also modelled. Fire weather severity was predicted to increase by 95% during the summer months by 2070 while fire behaviour was predicted to shift from surface fire‐intermittent crown fire regimes to a predominantly intermittent‐full crown fire regime by 2070 onwards. An increase in fire season length, fire weather severity and fire behaviour will increase the costs of fire suppression and the risk of property and resource loss while limiting human‐use within vulnerable forest landscapes. An increase in fire weather severity and fire behaviour over a greater proportion of the season will increase the risks faced by ecosystems and biodiversity to climatic change and increase the costs and difficulty of achieving sustainable forest management.  相似文献   

8.
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.  相似文献   

9.
林业活动和森林片断化对甲虫多样性的影响及保护对策   总被引:7,自引:3,他引:4  
森林片断化是造成生物多样性丧失的主要原因之一,而林业活动是导致森林片断化的重要因素,同时也在森林恢复中起重要作用。本文从小尺度、局域尺度以及生物地理尺度(大尺度)3个生态尺度分析林业活动和森林片断化对甲虫多样性的影响。在小尺度下,林业活动能够通过改变森林生境或微生境的类型和特性而影响甲虫物种分布。在局域尺度下,林业活动(尤其是森林砍伐)往往能提高许多甲虫类群(如步甲)的物种丰富度(α多样性),这主要与来自周围环境物种扩散以及保留了若干耐受新环境能力较强的森林物种有关;然而,对森林生境依赖性很强的特有种受到了森林片断化的负面影响,面临局域种群灭绝的危险。在生物地理尺度下,林业活动(伐木或森林恢复)使森林生境单一化、异质性降低,从而导致对森林生境变化敏感的物种种群数量降低甚至灭绝。基于以上结果,可以归纳出3个基本原则用于指导林业管理,既能保证林业经济收益,又能维持森林生物多样性。首先,保留大面积的原始森林作为特有种的栖息环境基地,为这些物种在将来森林恢复后重新定居提供资源;其次,由于保护区内原始森林面积有限,且所代表的生境类型有限,所以发展依据自然干扰模式的新伐木方法十分必要;最后,依据自然规律(如火灾)进行森林恢复和天然演替,避免森林的单一化,丰富森林生境类型。  相似文献   

10.
Forest fires are a significant and natural element of the circumboreal forest. Fire activity is strongly linked to weather, and increased fire activity due to climate change is anticipated or arguably has already occurred. Recent studies suggest a doubling of area burned along with a 50% increase in fire occurrence in parts of the circumboreal by the end of this century. Fire management agencies' ability to cope with these increases in fire activity is limited, as these organizations operate with a narrow margin between success and failure; a disproportionate number of fires may escape initial attack under a warmer climate, resulting in an increase in area burned that will be much greater than the corresponding increase in fire weather severity. There may be only a decade or two before increased fire activity means fire management agencies cannot maintain their current levels of effectiveness.  相似文献   

11.
Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent decades, however, tropical forest fires occur more frequently and at larger spatial scales than they used to. We studied forest structure, tree species diversity, tree species composition, and aboveground biomass during the first 7 years since fire in unburned, once burned and twice burned forest of eastern Borneo to determine the rate of recovery of these forests. We paid special attention to changes in the tree species composition during burned forest regeneration because we expect the long-term recovery of aboveground biomass and ecosystem functions in burned forests to largely depend on the successful regeneration of the pre-fire, heavy-wood, species composition. We found that forest structure (canopy openness, leaf area index, herb cover, and stem density) is strongly affected by fire but shows quick recovery. However, species composition shows no or limited recovery and aboveground biomass, which is greatly reduced by fire, continues to be low or decline up to 7 years after fire. Consequently, large amounts of the C released to the atmosphere by fire will not be recaptured by the burned forest ecosystem in the near future. We also observed that repeated fire, with an inter-fire interval of 15 years, does not necessarily lead to a huge deterioration in the regeneration potential of tropical forest. We conclude that burned forests are valuable and should be conserved and that long-term monitoring programs in secondary forests are necessary to determine their recovery rates, especially in relation to aboveground biomass accumulation.  相似文献   

12.
The archipelago-like coastal forest of East Africa is one of the highest priority ecosystems for biodiversity conservation worldwide. Here we investigate patterns of species richness and biogeographic distribution among birds, mammals and reptiles of these forests, using distribution data obtained from recently published reviews and information collated by the WWF Eastern Africa Coastal Forest Ecoregion Programme. Birds and mammals species were divided into forest specialists and generalists, and forest specialist reptiles into ‘coastal’ and ‘forest’ endemics. The species richness of birds and generalist mammals increased with area, and is probably a result of area-dependent extinction. Only in birds, however, species richness increased with decreasing isolation, suggesting possible isolation-dependent colonization. Forest diversity, associated to altitudinal range, is important for specialist birds and mammals, whose species richness increased with wider altitudinal range. The number of relict coastal endemic and forest endemic reptiles was higher in forests with wider altitudinal ranges and on relatively higher altitude, respectively. Such forests have probably provided a suitable (and perhaps stable) environment for these species through time, thus increasing their persistence. Parsimony analysis of distributions (PAD) and cluster analyses showed geographical distance and general ecological similarity among forests as a determinant factor in bird distribution patterns, with compositional similarity decreasing with increasing inter-forest distance. Compositional similarity patterns of mammals among the forests did not show a strong geographical correspondence or a significant correlation with inter-forest distance, and those of reptiles were not resolved, with very low similarity levels among forest faunas. Our results suggest that the relative importance (and causal relationship) of forest attributes affecting the distribution of the East African coastal forest vertebrate fauna varies depending on life history traits such as dispersal ability and forest specialization. The groupings in PAD are partly congruent with some of the previous classifications of areas of endemism for this region, supporting the ‘naturalness’ of these regions.  相似文献   

13.
Environmental correlates of avian diversity in lowland Panama rain forests   总被引:1,自引:0,他引:1  
Aim The composition of communities is known to be influenced by biogeographical history, but also by local environmental conditions. Yet few studies have evaluated the relative importance of the direct and indirect effects of multiple factors on species diversity in rich Neotropical forests. Our study aims to assess drivers of change in local bird species richness in lowland tropical rain forests. Location Thirty‐two physiographic subregions along the corridor of the Panama Canal, Panama. Methods We mapped the distributions of all forest‐dwelling bird species and quantified the environmental characteristics of all subregions, including mean annual rainfall, topographic complexity, elevational variability, forest age and forest area. Plant species richness, believed to be correlated with structural complexity, was estimated by interpolation through kriging for subregions where data were unavailable. Results The study region has a strong rainfall gradient across a short distance (65 km), which is also accompanied by steep gradients in plant and bird species diversity. Path analysis showed that precipitation strongly affected plant species diversity, which in turn affected avian diversity. Forest age and topography affected bird diversity independently of plant diversity. Forest area and its proportion occurring in the largest two fragments of each subregion (habitat configuration) were also positive correlates of bird species richness. Main conclusions Our results suggest that plant species richness, known to be influenced in part by biogeographical history and geology, also affects bird species assemblages locally. We provide support for the hypothesis that bird species richness increases with structural complexity of the habitat. Our analysis of the distributions of the region's most disturbance‐sensitive bird species showed that subregions with more rainfall, more complex topography and older forests harboured not only richer communities but also more sensitive species; while subregions with the opposite characteristics usually lacked large fractions of the regional forest bird community and hosted only common, widely distributed species. Results also emphasize the importance of preserving forest diversity from habitat loss and fragmentation, and confirm that larger, continuous forest tracts are necessary to maintain the rich avian diversity in the region.  相似文献   

14.
Aim To describe variation in forest bird communities with altitude and latitude. Location Eastern Madagascar. Methods Extraction of data from forest bird inventories conducted in eastern Madagascar. Results There is a strong decline in species richness with altitude, above about 1300 m. Below this altitude, species richness is about constant or declines slightly. Seventy-eight percent of species occurring regularly in forest are absent from at least one of low, mid-altitude or high altitude forest. Of eighty-seven species occurring regularly in forest, only four or possibly five have latitudinally limited distributions, over a latitudinal range of over 1200 km. Three or possibly four are limited to the northern two-thirds, and one appears to be at least much more common in the southern half. Main conclusions Eastern Malagasy rain forest birds show previously unanalysed variation in altitudinal distribution. There is much less latitudinal variation. Species currently considered threatened are concentrated in the lowland and high-altitude zones. This may be at least partly due to lack of survey effort giving the impression that these species are rare, but lowland forests at least are under great human pressure. Bird conservation initiatives would probably have most effect if targeted at lowland east Malagasy rain forest.  相似文献   

15.
Since prehistoric times, natural and man made fires have been important factors of natural disturbance in many forest ecosystems, like those on the southern slopes of the Alps. Their effect on scarce, endangered or stenotopic species and on the diversity of invertebrate species assemblages which depend on a mosaic of successional habitat stages, is controversially discussed. In southern Switzerland, in a region affected by regular winter fires, we investigated the effect of the fire frequency on a large spectrum of taxonomic groups. We focussed on total biodiversity, taxonomic groups specific to certain habitat types, and on scarce and endangered species. Overall species richness was significantly higher in plots with repeated fires than in the unburnt control sites. Plots with only one fire in the last 30 yr harboured intermediate species numbers. Fire frequency had a significantly positive effect on species richness of the guilds of interior forest species and forest edge specialists. Species of open landscape, open forests and interior forests were not influenced by fire frequency. A positive effect of fire on species richness was observed for ground beetles (Carabidae), hoverflies (Syrphidae), bees and wasps (Hymenoptera aculeata, without Formicidae), and spiders (Araneae). True bugs (Heteroptera), lacewings (Neuroptera) and the saproxylic beetle families Cerambycidae, Buprestidae and Lucanidae showed positive trends, but no statistically significant effects of fire on species numbers or/and abundances. Negative effects of fire on species numbers or/and abundances were found only for isopods and weevils (Curculionidae). A compromise for forest management is suggested, which considers the risk of damage by fire to people and goods, while avoiding the risk of damage to biodiversity by imitating the effects of sporadic fires and providing a mosaic forest with open gaps of different successional stages.  相似文献   

16.
Current methods of assessing climate-induced shifts of species distributions rarely account for species interactions and usually ignore potential differences in response times of interacting taxa to climate change. Here, we used species-richness data from 1005 breeding bird and 1417 woody plant species in Kenya and employed model-averaged coefficients from regression models and median climatic forecasts assembled across 15 climate-change scenarios to predict bird species richness under climate change. Forecasts assuming an instantaneous response of woody plants and birds to climate change suggested increases in future bird species richness across most of Kenya whereas forecasts assuming strongly lagged woody plant responses to climate change indicated a reversed trend, i.e. reduced bird species richness. Uncertainties in predictions of future bird species richness were geographically structured, mainly owing to uncertainties in projected precipitation changes. We conclude that assessments of future species responses to climate change are very sensitive to current uncertainties in regional climate-change projections, and to the inclusion or not of time-lagged interacting taxa. We expect even stronger effects for more specialized plant–animal associations. Given the slow response time of woody plant distributions to climate change, current estimates of future biodiversity of many animal taxa may be both biased and too optimistic.  相似文献   

17.
There is increasing consensus that the global climate will continue to warm over the next century. The biodiversity-rich Amazon forest is a region of growing concern because many global climate model (GCM) scenarios of climate change forecast reduced precipitation and, in some cases, coupled vegetation models predict dieback of the forest. To date, fires have generally been spatially co-located with road networks and associated human land use because almost all fires in this region are anthropogenic in origin. Climate change, if severe enough, could alter this situation, potentially changing the fire regime to one of increased fire frequency and severity for vast portions of the Amazon forest. High moisture contents and dense canopies have historically made Amazonian forests extremely resistant to fire spread. Climate will affect the fire situation in the Amazon directly, through changes in temperature and precipitation, and indirectly, through climate-forced changes in vegetation composition and structure. The frequency of drought will be a prime determinant of both how often forest fires occur and how extensive they become. Fire risk management needs to take into account landscape configuration, land cover types and forest disturbance history as well as climate and weather. Maintaining large blocks of unsettled forest is critical for managing landscape level fire in the Amazon. The Amazon has resisted previous climate changes and should adapt to future climates as well if landscapes can be managed to maintain natural fire regimes in the majority of forest remnants.  相似文献   

18.
Aim Spatial and temporal variation in fire regime parameters and forest structure were assessed. Location A 2630‐ha area of mid‐ and upper montane forest in Lassen Volcanic National Park (LVNP). Methods Two hypotheses were tested concerned with fire‐vegetation relationships in southern Cascades forests: (1) fire regime parameters (return interval, season of burn, fire size, rotation period) vary by forest dominant, elevation and slope aspect; and (2) fire exclusion since 1905 has caused forest structural and compositional changes in both mid‐ and upper montane forests. The implications of the study for national park management are also discussed. Results Fire regime parameters varied by forest compositional group and elevation in LVNP. Median composite and point fire return intervals were shorter in low elevation Jeffrey pine (Pinus jeffreyi) (JP) (4–6 years, 16 years) and Jeffrey pine–white fir (Abies concolor) (JP‐WF) (5–10 years, 22 years) and longer in high elevation red fir (Abies magnifica)— western white pine (Pinus monticola) (RF‐WWP) forests (9–27 years, 70 years). Median fire return intervals were also shorter on east‐facing (6–9 years, 16.3 years) and longer on south‐ (11 years, 32.5 years) and west‐facing slopes (22–28 years, 54‐years) in all forests and in each forest composition group. Spatial patterns in fire rotation length were the same as those for fire return intervals. More growing season fires also occurred in JP (33.1%) and JP‐WF (17.5%) than in RF‐WWP (1.1%) forests. A dramatic decline in fire frequency occurred in all forests after 1905. Conclusions Changes in forest structure and composition occurred in both mid‐ and upper montane forests due to twentieth‐century fire exclusion. Forest density increased in JP and JP‐WF forests and white fir increased in JP‐WF forests and is now replacing Jeffrey pine. Forest density only increased in some RF‐WWP stands, but not others. Resource managers restoring fire to these now denser forests need to burn larger areas if fire is going to play its pre‐settlement role in montane forest dynamics.  相似文献   

19.
To combat global warming and biodiversity loss, we require effective forest restoration that encourages recovery of species diversity and ecosystem function to deliver essential ecosystem services, such as biomass accumulation. Further, understanding how and where to undertake restoration to achieve carbon sequestration and biodiversity conservation would provide an opportunity to finance ecosystem restoration under carbon markets. We surveyed 30 native mixed‐species plantings in subtropical forests and woodlands in Australia and used structural equation modeling to determine vegetation, soil, and climate variables most likely driving aboveground biomass accrual and bird richness and investigate the relationships between plant diversity, aboveground biomass accrual, and bird diversity. We focussed on woodland and forest‐dependent birds, and functional groups at risk of decline (insectivorous, understorey‐nesting, and small‐bodied birds). We found that mean moisture availability strongly limits aboveground biomass accrual and bird richness in restoration plantings, indicating potential synergies in choosing sites for carbon and biodiversity purposes. Counter to theory, woody plant richness was a poor direct predictor of aboveground biomass accrual, but was indirectly related via significant, positive effects of stand density. We also found no direct relationship between aboveground biomass accrual and bird richness, likely because of the strong effects of moisture availability on both variables. Instead, moisture availability and patch size strongly and positively influenced the richness of woodland and forest‐dependent birds. For understorey‐nesting birds, however, shrub cover and patch size predicted richness. Stand age or area of native vegetation surrounding the patch did not influence bird richness. Our results suggest that in subtropical biomes, planting larger patches to higher densities, ideally using a diversity of trees and shrubs (characteristics of ecological plantings) in more mesic locations will enhance the provision of carbon and biodiversity cobenefits. Further, ecological plantings will aid the rapid recovery of woodland and forest bird richness, with comparable aboveground biomass accrual to less diverse forestry plantations.  相似文献   

20.
Indicator species groups are often used as surrogates for overall biodiversity in conservation planning because inventories of multiple taxa are rare, especially in the tropics where most biodiversity is found. At coarse spatial scales most studies show congruence in the distribution of species richness and of endemic and threatened species of different species groups. At finer spatial scale levels however, cross-taxon congruence patterns are much more ambiguous. In this study we investigated cross-taxon patterns in the distribution of species richness of trees, birds and bats across four tropical forest types in a ca. 100 × 35 km area in the Northern Sierra Madre region of Luzon Island, Philippines. A non-parametric species richness estimator (Chao1) was used to compensate for differential sample sizes, sample strategies and completeness of species richness assessments. We found positive but weak congruence in the distribution of all and endemic tree and bird and tree and bat species richness across the four forest types; strong positive congruence in the distribution of all and endemic bat and bird species richness and low or negative congruence in the distribution of globally threatened species between trees, birds and bats. We also found weak cross-taxon congruence in the complementarity of pairs of forest types in species richness between trees and birds and birds and bats but strong congruence in complementarity of forest pairs between trees and bats. This study provides further evidence that congruence in the distribution of different species groups is often ambiguous at fine to moderate spatial scales. Low or ambiguous cross-taxon congruence complicates the use of indicator species and species groups as a surrogate for biodiversity in general for local systematic conservation planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号