首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The effect of salt stress on glycine betaine-binding activity has been investigated in periplasmic fractions released from Rhizobium meliloti 102F34 by cold osmotic shock. Binding activity was monitored by three techniques: equilibrium dialysis, filter procedure, and detection of 14C ligand-protein binding by direct non-denaturing polyacrylamide gel electrophoresis (PAGE) followed by autoradiography. The three methods demonstrated the existence of a strong glycine betaine-binding activity, but only in periplasmic fractions from cells grown at high osmolarity. The non-denaturing PAGE of such periplasmic shock fluids mixed with [methyl-14C]glycine betaine showed only one radioactive band, indicating the involvement of one glycine betaine-binding protein. To determine the possible implication of this binding protein in glycine betaine uptake, transport activity was measured with cells submitted to cold osmotic shock. No significant decrease of transport activity was noticed. This lack of effect could be explained by the small quantity of periplasmic proteins released as judged by the low activity of phosphodiesterase, a periplasmic marker enzyme, observed in the shock fluid. The specificity of binding was analysed with different potential competitors: other betaines such as gamma-butyrobetaine, proline betaine, pipecolate betaine, trigonelline and homarine, or amino acids like glycine and proline, did not bind to the glycine betaine-binding protein, whereas glycine betaine aldehyde and choline were weak competitors. Optimum pH for binding was around 7.0, but approx. 90% of the glycine betaine-binding activity remained at pH 6.0 or 8.0. The calculated binding affinity (KD) was 2.5 microM. Both glycine betaine-binding activity and affinity were not significantly modified whether or not the binding assays were done at high osmolarity. A 32 kDa osmotically inducible periplasmic protein, identified by SDS-PAGE, apparently corresponds to the glycine betaine-binding protein.  相似文献   

2.
The proU locus of Escherichia coli encodes a high-affinity, binding-protein-dependent transport system (ProU) for the osmoprotectant glycine betaine. We cloned this locus into both low-copy-number lambda vectors and multicopy plasmids and demonstrated that these clones restore osmotically controlled synthesis of the periplasmic glycine betaine binding protein (GBBP) and the transport of glycine betaine in a delta (proU) strain. These clones allowed us to investigate the influence of osmolarity on ProU transport activity independent of the osmotically controlled expression of proU. ProU activity was strongly stimulated by a moderate increase in osmolarity and was partially inhibited by high osmolarity. This activity profile differs from the profile of the osmotically regulated proU expression. The proU locus is organized in an operon and the position of the structural gene (proV) for GBBP is defined using a minicell system. We determined that at least three proteins (in addition to GBBP) are encoded by the proU locus. We also investigated the permeation of glycine betaine across the outer membrane. At low substrate concentration (0.7 microM), permeation of glycine betaine was entirely dependent on the OmpF and OmpC porins.  相似文献   

3.
A major component of the Escherichia coli response to elevated medium osmolarity is the synthesis of a periplasmic protein with an Mr of 31,000. The protein was absent in mutants with lambda placMu insertions in the proU region, a locus involved in transport of the osmoprotectant glycine betaine. This periplasmic protein has now been purified to homogeneity. Antibody directed against the purified periplasmic protein crossreacts with the fusion protein produced as a result of the lambda placMu insertion, indicating that proU is the structural gene specifying the 31-kDa protein. The purified protein binds glycine betaine with high affinity but has no affinity for either proline or choline, clarifying the role of proU in osmoprotectant transport. The amino-terminal sequence of the mature glycine betaine binding protein is Ala-Asp-Leu-Pro-Gly-Lys-Gly-Ile-Thr-Val-Asn-Pro.  相似文献   

4.
Compatible solutes such as glycine betaine and proline betaine are accumulated to exceedingly high intracellular levels by many organisms in response to high osmolarity to offset the loss of cell water. They are excluded from the immediate hydration shell of proteins and thereby stabilize their native structure. Despite their exclusion from protein surfaces, the periplasmic ligand-binding protein ProX from the Escherichia coli ATP-binding cassette transport system ProU binds the compatible solutes glycine betaine and proline betaine with high affinity and specificity. To understand the mechanism of compatible solute binding, we determined the high resolution structure of ProX in complex with its ligands glycine betaine and proline betaine. This crystallographic study revealed that cation-pi interactions between the positive charge of the quaternary amine of the ligands and three tryptophan residues forming a rectangular aromatic box are the key determinants of the high affinity binding of compatible solutes by ProX. The structural analysis was combined with site-directed mutagenesis of the ligand binding pocket to estimate the contributions of the tryptophan residues involved in binding.  相似文献   

5.
6.
Adaptation to osmotic stress alters the amounts of several specific proteins in the Escherichia coli K-12 envelope. The most striking feature of the response to elevated osmolarity was the strong induction of a periplasmic protein with an Mr of 31,000. This protein was absent in mutants with lambda plac Mu insertions in an osmotically inducible locus mapping near 58 min. The insertions are likely to be in proU, a locus encoding a transport activity for the osmoprotectants glycine betaine and proline. Factors affecting the extent of proU induction were identified by direct examination of periplasmic proteins on sodium dodecyl sulfate gels and by measuring beta-galactosidase activity from proU-lac fusions. Expression was stimulated by increasing additions of salt or sucrose to minimal medium, up to a maximum at 0.5 M NaCl. Exogenous glycine betaine acted as an osmoregulatory signal; its addition to the high-osmolarity medium substantially repressed the expression of the 31,000-dalton periplasmic protein and the proU-lac+ fusions. Elevated osmolarity also caused the appearance of a second periplasmic protein (Mr = 16,000), and severe reduction in the amounts of two others. In the outer membrane, the well-characterized repression of OmpF by high osmolarity was observed and was reversed by glycine betaine. Additional changes in membrane composition were also responsive to glycine betaine regulation.  相似文献   

7.
Lactococcus lactis subsp. lactis ML3 contains high pools of proline or betaine when grown under conditions of high osmotic strength. These pools are created by specific transport systems. A high-affinity uptake system for glycine betaine (betaine) with a Km of 1.5 microM is expressed constitutively. The activity of this system is not stimulated by high osmolarities of the growth or assay medium but varies strongly with the medium pH. A low-affinity proline uptake system (Km, > 5 mM) is expressed at high levels only in chemically defined medium (CDM) with high osmolarity. This transport system is also stimulated by high osmolarity. The expression of this proline uptake system is repressed in rich broth with low or high osmolarity and in CDM with low osmolarity. The accumulated proline can be exchanged for betaine. Proline uptake is also effectively inhibited by betaine (Ki of between 50 and 100 microM). The proline transport system therefore probably also transports betaine. The inhibition of proline transport by betaine results in low proline pools in cells grown in high-osmotic-strength, betaine-containing CDM. The energy and pH dependency and the influence of ionophores on the activity of both transport systems suggest that these systems are not proton motive force driven. At low osmolarities, proline uptake is low but significant. This low proline uptake is also inhibited by betaine, although to a lesser extent than in cells grown in high-osmotic-strength CDM. These data indicate that proline uptake in L. lactis is enzyme mediated and is not dependent on passive diffusion, as was previously believed.  相似文献   

8.
The ProP and ProU transport systems of Escherichia coli mediate the uptake of several osmoprotectants including glycine betaine. Here we report that both ProP and ProU are involved in the transport of the potent osmoprotectant proline betaine. A set of isogenic E. coli strains carrying deletions in either the proP or proU loci was constructed. The growth properties of these mutants in high osmolarity minimal media containing 1 mM proline betaine demonstrated that the osmoprotective effect of this compound was dependent on either an intact ProP or ProU uptake system. Proline betaine competes with glycine betaine for binding to the proU-encoded periplasmic substrate binding protein (ProX) and we estimate a KD of 5.2 μM for proline betaine binding. This value is similar to the binding constant of the ProX protein determined previously for the binding of glycine betaine (KD of 1.4 μM). Our results thus demonstrate that the binding-protein-dependent ProU transport system of E. coli mediates the efficient uptake of the osmoprotectants glycine betaine and proline betaine.  相似文献   

9.
Hybridization to a PCR product derived from conserved betaine choline carnitine transporter (BCCT) sequences led to the identification of a 3.4-kb Sinorhizobium meliloti DNA segment encoding a protein (BetS) that displays significant sequence identities to the choline transporter BetT of Escherichia coli (34%) and to the glycine betaine transporter OpuD of Bacillus subtilis (30%). Although the BetS protein shows a common structure with BCCT systems, it possesses an unusually long hydrophilic C-terminal extension (169 amino acids). After heterologous expression of betS in E. coli mutant strain MKH13, which lacks choline, glycine betaine, and proline transport systems, both glycine betaine and proline betaine uptake were restored, but only in cells grown at high osmolarity or subjected to a sudden osmotic upshock. Competition experiments demonstrated that choline, ectoine, carnitine, and proline were not effective competitors for BetS-mediated betaine transport. Kinetic analysis revealed that BetS has a high affinity for betaines, with K(m)s of 16 +/- 2 microM and 56 +/- 6 microM for glycine betaine and proline betaine, respectively, in cells grown in minimal medium with 0.3 M NaCl. BetS activity appears to be Na(+) driven. In an S. meliloti betS mutant, glycine betaine and proline betaine uptake was reduced by about 60%, suggesting that BetS represents a major component of the overall betaine uptake activities in response to salt stress. beta-Galactosidase activities of a betS-lacZ strain grown in various conditions showed that betS is constitutively expressed. Osmotic upshock experiments performed with wild-type and betS mutant cells, treated or not with chloramphenicol, indicated that BetS-mediated betaine uptake is the consequence of immediate activation of existing proteins by high osmolarity, most likely through posttranslational activation. Growth experiments underscored the crucial role of BetS as an emerging system involved in the rapid acquisition of betaines by S. meliloti subjected to osmotic upshock.  相似文献   

10.
In Enterobacteriaceae, the ProP protein, which takes up proline and glycine betaine, is subject to a post-translational control mechanism that increases its activity at high osmolarity. In order to investigate the osmoregulatory mechanism of the Salmonella enterica ProP, we devised a positive selection for mutations that conferred increased activity on this protein at low osmolarity. The selection involved the isolation of mutations in a proline auxotroph that resulted in increased accumulation of proline via the ProP system in the presence of glycine betaine, which is a competitive inhibitor of proline uptake by this permease. This selection was performed by first-year undergraduates in two semesters of a research-based laboratory course. The students generated sixteen mutations resulting in six different single amino acids substitutions. They determined the effects of the mutations on the growth rates of the cells in media of high and low osmolarity in the presence of low concentrations of proline or glycine betaine. Furthermore, they identified the mutations by DNA sequencing and displayed the mutated amino acids on a putative three-dimensional structure of the protein. This analysis suggested that all six amino acid substitutions are residues in trans-membrane helices that have been proposed to contribute to the formation of the transport pore, and, thus, may affect the substrate binding site of the protein.  相似文献   

11.
The authors have compared the survival in seawater of Salmonella paratyphi B and Pseudomonas aeruginosa cells grown at low or high osmolarity, in the presence of organic osmolytes: glycine betaine, choline, proline, and glutamate. The four substrates enhanced the survival potential of S. paratyphi B while only glycine betaine protected P. aeruginosa. In addition only S. paratyphi B cells were more resistant after a preliminary growth at high osmolarity. Both bacteria were sensitive to osmotic down-shock, sensitization of S. paratyphi B being inversely proportional (p greater than or equal to 0.01) to the osmolarity of the medium used to wash cells. The transit in wastewater, at low osmolarity, can therefore modify the behavior of these pathogens in the marine environment.  相似文献   

12.
In order to adapt to the fluctuations in soil salinity/osmolarity the bacteria of the genusAzospirillum accumulate compatible solutes such as glutamate, proline, glycine betaine, trehalose, etc. Proline seems to play a major role in osmoadaptation. With increase in osmotic stress the dominant osmolyte inA. brasilense shifts from glutamate to proline. Accumulation of proline inA. brasilense occurs by both uptake and synthesis. At higher osmolarityA. brasilense Sp7 accumulates high intracellular concentration of glycine betaine which is taken up via a high affinity glycine betaine transport system. A salinity stress induced, periplasmically located, glycine betaine binding protein (GBBP) of ca. 32 kDa size is involved in glycine betaine uptake inA. brasilense Sp7. Although a similar protein is also present inA. brasilense Cd it does not help in osmoprotection. It is not known ifA. brasilense Cd can also accumulate glycine betaine under salinity stress and if the GBBP-like protein plays any role in glycine betaine uptake. This strain, under salt stress, seems to have inadequate levels of ATP to support growth and glycine betaine uptake simultaneously. ExceptA. halopraeferens, all other species ofAzospirillum lack the ability to convert choline into glycine betaine. Mobilization of thebet ABT genes ofE. coli intoA. brasilense enables it to use choline for osmoprotection. Recently, aproU-like locus fromA. lipoferum showing physical homology to theproU gene region ofE. coli has been cloned. Replacement of this locus, after inactivation by the insertion of kanamycin resistance gene cassette, inA. lipoferum genome results in the recovery of mutants which fail to use glycine betaine as osmoprotectant.  相似文献   

13.
The foodborne pathogenStaphylococcus aureus is distinguished by its ability to grow within environments of extremely high osmolarity (e.g., foods with low water activity values). In the present study, we examined the accumulation of intracellular organic solutes withinS. aureus strain ATCC 12600 when cells were grown in a complex medium containing high concentrations of NaCl. Consistent with previous reports [Measures JC (1975) Nature 257:398–400; Koujima I, et al. (1978) Appl Environ Microbiol 35:467–470; and Anderson CB, Witter LD (1982) Appl Environ Microbiol 43:1501–1503], intracellular proline was found to accumulate to high concentrations. However, NMR spectroscopy of cell extracts revealed glycine betaine to be the predominant intracellular organic solute accumulated within cells grown at high osmolarity. In additional experiments, we examined the growth rate ofS. aureus in a defined medium of high osmolarity and found it to be stimulated significantly by the presence of either exogenous proline or glycine betaine. Highest growth rates were obtained when the defined medium was supplemented with glycine betaine.  相似文献   

14.
The ProP and ProU transport systems of Escherichia coli mediate the uptake of several osmoprotectants including glycine betaine. Here we report that both ProP and ProU are involved in the transport of the potent osmoprotectant proline betaine. A set of isogenic E. coli strains carrying deletions in either the proP or proU loci was constructed. The growth properties of these mutants in high osmolarity minimal media containing 1 mM proline betaine demonstrated that the osmoprotective effect of this compound was dependent on either an intact ProP or ProU uptake system. Proline betaine competes with glycine betaine for binding to the proU-encoded periplasmic substrate binding protein (ProX) and we estimate a KD of 5.2 M for proline betaine binding. This value is similar to the binding constant of the ProX protein determined previously for the binding of glycine betaine (KD of 1.4 M). Our results thus demonstrate that the binding-protein-dependent ProU transport system of E. coli mediates the efficient uptake of the osmoprotectants glycine betaine and proline betaine.  相似文献   

15.
Exogenous proline betaine (N,N-dimethylproline or stachydrine) highly stimulated the growth rate of Rhizobium meliloti, in media of inhibitory concentration of NaCl whereas proline was ineffective. High levels of proline betaine uptake occurred in cells grown in media of elevated osmotic strength; on the contrary, only low activity was found in cells grown in minimal medium. The apparent K m was 10 M with a maximal transport rate of 25 nmol min-1 mg-1 of protein in 0.3 M NaCl-grown cells. The concentrative transport was totally abolished by KCN (2 mM), 2,4-dinitrophenol (2 mM), and carbonyl cyanide-m-chlorophenyl hydrazone (CCCP 10 M) but was insensitive to arsenate (5 mM). Glycine betaine was a very potent inhibitor of proline betaine uptake while proline was not. Proline betaine transport was not reduced in osmotically shocked cells and no proline betaine binding activity was detected in the crude periplasmic shock fluid. In the absence of salt stress, Rhizobium meliloti actively catabolized proline betaine but this catabolism was blocked by increasing the osmotic strength of the medium. The osmolarity in the growth medium regulates the use of proline betaine either as a carbon and nitrogen source or as an osmoprotectant.Abbreviations LAS lactate-aspartate-salts - MSY mannitol-salts-yeast - CCCP carbonyl cyanide-m-chlorophenyl hydrazone - DCCD dicyclohexylcarbodiimide - KCN potassium cyanide - Hepes 4-(2-hydroxyethyl)-1-piperzine-ethanesulphonic acid  相似文献   

16.
Staphylococcus aureus accumulates proline and glycine betaine when cells are grown at low water activity. In the present study, we have identified a high-affinity glycine betaine transport system in this bacterium. Optimal activity for this transport system was measured in the presence of high NaCl concentrations, but transport activity was not stimulated by high concentrations of other solutes.  相似文献   

17.
Osmoregulation was examined in members of the Enterobacteriaceae. Exogenous glycine betaine at a concentration as low as 1 mM was found to stimulate the growth rate of Escherichia coli, Salmonella typhimurium, and Klebsiella pneumoniae in media of inhibitory osmotic strength. The stimulation was shown to be independent of any specific solutes, electrolytes, or nonelectrolytes. Therefore, the stimulatory effect of glycine betaine was a consequence of high osmotic potential. This effect was found to be far greater than the proline effect previously observed in S. typhimurium. Whereas nitrogen fixation by K. pneumoniae is completely inhibited under conditions of osmotic stress, nitrogenase activity could be partially restored by the addition of exogenous glycine betaine to the culture medium. Furthermore, glycine betaine in combination with proline, especially proline produced internally at a high level because of regulatory mutations affecting proline biosynthesis, strongly stimulated nitrogen fixation activity during osmotic stress. Glycine betaine was accumulated by the cells, and the amount taken up was correlated with the osmolarity of the medium. These findings are discussed in relation to the possible mechanisms by which glycine betaine might cause enhanced osmotolerance.  相似文献   

18.
Among the Rhizobiaceae, Bradyrhizobium japonicum strain USDA110 appears to be extremely salt sensitive, and the presence of glycine betaine cannot restore its growth in medium with an increased osmolarity (E. Boncompagni, M. Osteras, M. C. Poggi, and D. Le Rudulier, Appl. Environ. Microbiol. 65:2072-2077, 1999). In order to improve the salt tolerance of B. japonicum, cells were transformed with the betS gene of Sinorhizobium meliloti. This gene encodes a major glycine betaine/proline betaine transporter from the betaine choline carnitine transporter family and is required for early osmotic adjustment. Whereas betaine transport was absent in the USDA110 strain, such transformation induced glycine betaine and proline betaine uptake in an osmotically dependent manner. Salt-treated transformed cells accumulated large amounts of glycine betaine, which was not catabolized. However, the accumulation was reversed through rapid efflux during osmotic downshock. An increased tolerance of transformant cells to a moderate NaCl concentration (80 mM) was also observed in the presence of glycine betaine or proline betaine, whereas the growth of the wild-type strain was totally abolished at 80 mM NaCl. Surprisingly, the deleterious effect due to a higher salt concentration (100 mM) could not be overcome by glycine betaine, despite a significant accumulation of this compound. Cell viability was not significantly affected in the presence of 100 mM NaCl, whereas 75% cell death occurred at 150 mM NaCl. The absence of a potential gene encoding Na(+)/H(+) antiporters in B. japonicum could explain its very high Na(+) sensitivity.  相似文献   

19.
Summary Osmoregulation of Brevibacterium lactofermentum was examined. Exogenous glycine betaine was found to stimulate the growth rate of the bacterium in media of inhibitory osmotic strength. The stimulation was independent of any specific solute, electrolyte, or non-electrolyte. The bacterium did not utilize glycine betaine as a sole carbon source or nitrogen source, or degrade it even in complete medium. The changes in intracellular proline and glycine betaine concentrations were measured in media of different osmolarity. Brevibacterium lactofermentum grown in media without glycine betaine did not accumulate it, but synthesized several hyndred millimoles of proline inside the cells. On the other hand, when glycine betaine was added to the growth media, it accumulated in the cell instead of proline. These data indicate that glycine betaine is an osmoprotective compound for B. lactofermentum. Offprint requests to: Yoshio Kawahara  相似文献   

20.
The standard method of producing recombinant proteins such as immunotoxins (rITs) in large quantities is to transform gram-negative bacteria and subsequently recover the desired protein from inclusion bodies by intensive de- and renaturing procedures. The major disadvantage of this technique is the low yield of active protein. Here we report the development of a novel strategy for the expression of functional rIT directed to the periplasmic space of Escherichia coli. rITs were recovered by freeze-thawing of pellets from shaking cultures of bacteria grown under osmotic stress (4% NaCl plus 0.5 M sorbitol) in the presence of compatible solutes. Compatible solutes, such as glycine betaine and hydroxyectoine, are low-molecular-weight osmolytes that occur naturally in halophilic bacteria and are known to protect proteins at high salt concentrations. Adding 10 mM glycine betaine for the cultivation of E. coli under osmotic stress not only allowed the bacteria to grow under these otherwise inhibitory conditions but also produced a periplasmic microenvironment for the generation of high concentrations of correctly folded rITs. Protein purified by combinations of metal ion affinity and size exclusion chromatography was substantially stabilized in the presence of 1 M hydroxyecotine after several rounds of freeze-thawing, even at very low protein concentrations. The binding properties and cytotoxic potency of the rITs were confirmed by competitive experiments. This novel compatible-solute-guided expression and purification strategy might also be applicable for high-yield periplasmic production of recombinant proteins in different expression systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号