首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A 99-amino acid protein having the deduced sequence of the protease from human immunodeficiency virus type 2 (HIV-2) was synthesized by the solid phase method and tested for specificity. The folded peptide catalyzes specific processing of a recombinant 43-kDa GAG precursor protein (F-16) of HIV-1. Although the protease of HIV-2 shares only 48% amino acid identity with that of HIV-1, the HIV-2 enzyme exhibits the same specificity toward the HIV-1 GAG precursor. Fragments of 34, 32, 24, 10, and 9 kDa were generated from F-16 GAG incubated with the protease. N-terminal amino acid sequence analysis of proteolytic fragments indicate that cleavage sites recognized by HIV-2 protease are identical to those of HIV-1 protease. The verified cleavage sites in F-16 GAG appear to be processed independently, as indicated by the formation of the intermediate fragments P32 and P34 in nearly equal ratios. The site nearest the amino terminus is quite conserved between the two viral GAG proteins (...VSQNY-PIVQN...in HIV-1,...KGGNY-PVQHV...in HIV-2). In contrast, the putative second site (...IPFAA-AQQKG...) of HIV-2 GAG shares minimal sequence identity with site 2 of HIV-1 GAG (...SATIM-MQRGN...). These sequence variations in the substrates suggest higher order structural features that may influence recognition by the proteases. Pepstatin A inhibits HIV-2 protease, whereas 1,10-phenanthroline and phenylmethylsulfonylfluoride do not; these results are in agreement with the finding that proteases of HIV and other retroviruses are aspartyl proteases.  相似文献   

2.
The pepsin-like aspartyl proteases consist of a single polypeptide chain with topologically similar amino- and carboxyl-terminal domains, each of which contributes 1 aspartic acid residue to the active site. This structure has been proposed to have evolved by gene duplication and fusion from a dimeric enzyme composed of two identical polypeptide chains, such as the aspartyl protease (PRT) of human immunodeficiency virus type 1 (HIV-1). To determine if a single polypeptide form of the HIV-1 protease would be enzymatically active, two protease coding regions were linked to form a dimeric gene (pFGGP). Expression of this gene in Escherichia coli yielded a protein with the expected molecular mass of 22 kDa. The in vitro kinetic parameters of PRT and FGGP (where FGGP is the single polypeptide form of the HIV-1 protease with 2 glycine residues connecting the two subunits) for three peptide substrates are similar. Construction and analysis of a CheY-GAG-FGGP fusion protein demonstrated that FGGP is capable of precursor processing in vivo. Mutation of one or both of the active site aspartates to either asparagine or glutamate rendered the enzyme inactive, demonstrating that both active site aspartate residues are required for enzymatic activity.  相似文献   

3.
The effect of amino acid variability between human immunodeficiency virus type 1 (HIV-1) clades on structure and the emergence of resistance mutations in HIV-1 protease has become an area of significant interest in recent years. We determined the first crystal structure of the HIV-1 CRF01_AE protease in complex with the p1-p6 substrate to a resolution of 2.8 A. Hydrogen bonding between the flap hinge and the protease core regions shows significant structural rearrangements in CRF01_AE protease compared to the clade B protease structure.  相似文献   

4.
The mutation Ala28 to serine in human immunodeficiency virus, type 1, (HIV-1) protease introduces putative hydrogen bonds to each active-site carboxyl group. These hydrogen bonds are ubiquitous in pepsin-like eukaryotic aspartic proteases. In order to understand the significance of this difference between HIV-1 protease and homologous, eukaryotic aspartic proteases, we solved the three-dimensional structure of A28S mutant HIV-1 protease in complex with a peptidic inhibitor U-89360E. The structure has been determined to 2.0 A resolution with an R factor of 0.194. Comparison of the mutant enzyme structure with that of the wild-type HIV-1 protease bound to the same inhibitor (Hong L, Treharne A, Hartsuck JA, Foundling S, Tang J, 1996, Biochemistry 35:10627-10633) revealed double occupancy for the Ser28 hydroxyl group, which forms a hydrogen bond either to one of the oxygen atoms of the active-site carboxyl or to the carbonyl oxygen of Asp30. We also observed marked changes in orientation of the Asp25 catalytic carboxyl groups, presumably caused by the new hydrogen bonds. These observations suggest that catalytic aspartyl groups of HIV-1 protease have significant conformational flexibility unseen in eukaryotic aspartic proteases. This difference may provide an explanation for some unique catalytic properties of HIV-1 protease.  相似文献   

5.
The nonapeptide Val-Ser-Gln-Asn-Tyr-Pro-Ile-Val-Gln has been reported as a model substrate for an aspartyl protease produced by the human immunodeficiency virus (HIV-1). Cleavage of this peptide at the Tyr-Pro linkage to produce tetra- and pentapeptide fragments is the basis of high-performance liquid chromatographic assays to detect HIV-1 protease activity. Confirmation of the cleavage site has been proved by using microbore liquid chromatography coupled to a dynamic fast atom bombardment interface. Comparison with fortified control incubates indicates that an approximate stoichiometric amount of the tetrapeptide was formed from the nonapeptide, confirming that the cleavage of the substrate by HIV-1 protease is both specific and quantitative.  相似文献   

6.
Aspartates 25 and 125, the active site residues of HIV-1 protease, participate functionally in proteolysis by what is believed to be a general acid-general base mechanism. However, the structural role that these residues may play in the formation and maintenance of the neighboring S1/S1' substrate binding pockets remains largely unstudied. Because the active site aspartic acids are essential for catalysis, alteration of these residues to any other naturally occurring amino acid by conventional site-directed mutagenesis renders the protease inactive, and hence impossible to characterize functionally. To investigate whether Asp-25 and Asp-125 may also play a structural role that influences substrate processing, a series of active site protease mutants has been produced in a cell-free protein synthesizing system via readthrough of mRNA nonsense (UAG) codons by chemically misacylated suppressor tRNAs. The suppressor tRNAs were activated with the unnatural aspartic acid analogues erythro-beta-methylaspartic acid, threo-beta-methylaspartic acid, or beta,beta-dimethylaspartic acid. On the basis of the specific activity measurements of the mutants that were produced, the introduction of the beta-methyl moiety was found to alter protease function to varying extents depending upon its orientation. While a beta-methyl group in the erythro orientation was the least deleterious to the specific activity of the protease, a beta-methyl group in the threo orientation, present in the modified proteins containing threo-beta-methylaspartate and beta,beta-dimethylaspartate, resulted in specific activities between 0 and 45% of that of the wild type depending upon the substrate and the substituted active site position. Titration studies of pH versus specific activity and inactivation studies, using an aspartyl protease specific suicide inhibitor, demonstrated that the mutant proteases maintained bell-shaped pH profiles, as well as suicide-inhibitor susceptibilities that are characteristic of aspartyl proteases. A molecular dynamics simulation of the beta-substituted aspartates in position 25 of HIV-1 protease indicated that the threo-beta-methyl moiety may partially obstruct the adjacent S1' binding pocket, and also cause reorganization within the pocket, especially with regard to residues Val-82 and Ile-84. This finding, in conjunction with the biochemical studies, suggests that the active site aspartate residues are in proximity to the S1/S1' binding pocket and may be spatially influenced by the residues presented in these pockets upon substrate binding. It thus seems possible that the catalytic residues cooperatively interact with the residues that constitute the S1/S1' binding pockets and can be repositioned during substrate binding to orient the active site carboxylates with respect to the scissile amide bond, a process that likely affects the facility of proteolysis.  相似文献   

7.
Retroviral aspartyl proteases are homodimeric, whereas eukaryotic aspartyl proteases tend to be large, monomeric enzymes with 2-fold internal symmetry. It has been proposed that contemporary monomeric aspartyl proteases evolved by gene duplication and fusion from a primordial homodimeric enzyme. Recent sequence analyses have suggested that such "fossil" dimeric aspartyl proteases are still encoded in the eukaryotic genome. We present evidence for retention of a dimeric aspartyl protease in eukaryotes. The X-ray crystal structure of a domain of the Saccharomyces cerevisiae protein Ddi1 shows that it is a dimer with a fold similar to that of the retroviral proteases. Furthermore, the double Asp-Thr-Gly-Ala amino acid sequence motif at the active site of HIV protease is found with identical geometry in the Ddi1 structure. However, the putative substrate binding groove is wider in Ddi1 than in the retroviral proteases, suggesting that Ddi1 accommodates bulkier substrates. Ddi1 belongs to a family of proteins known as the ubiquitin receptors, which have in common the ability to bind ubiquitinated substrates and the proteasome. Ubiquitin receptors contain an amino-terminal ubiquitin-like (UBL) domain and a carboxy-terminal ubiquitin-associated (UBA) domain, but Ddi1 is the only representative in which the UBL and UBA domains flank an aspartyl protease-like domain. The remarkable structural similarity between the central domain of Ddi1 and the retroviral proteases, in the global fold and in active-site detail, suggests that Ddi1 functions proteolytically during regulated protein turnover in the cell.  相似文献   

8.
Rapidly developing viral resistance to licensed human immunodeficiency virus type 1 (HIV-1) protease inhibitors is an increasing problem in the treatment of HIV-infected individuals and AIDS patients. A rational design of more effective protease inhibitors and discovery of potential biological substrates for the HIV-1 protease require accurate models for protease cleavage specificity. In this study, several popular bioinformatic machine learning methods, including support vector machines and artificial neural networks, were used to analyze the specificity of the HIV-1 protease. A new, extensive data set (746 peptides that have been experimentally tested for cleavage by the HIV-1 protease) was compiled, and the data were used to construct different classifiers that predicted whether the protease would cleave a given peptide substrate or not. The best predictor was a nonlinear predictor using two physicochemical parameters (hydrophobicity, or alternatively polarity, and size) for the amino acids, indicating that these properties are the key features recognized by the HIV-1 protease. The present in silico study provides new and important insights into the workings of the HIV-1 protease at the molecular level, supporting the recent hypothesis that the protease primarily recognizes a conformation rather than a specific amino acid sequence. Furthermore, we demonstrate that the presence of 1 to 2 lysine residues near the cleavage site of octameric peptide substrates seems to prevent cleavage efficiently, suggesting that this positively charged amino acid plays an important role in hindering the activity of the HIV-1 protease.  相似文献   

9.
A computer model of a noncovalent complex of HIV-1 aspartyl protease with substrate-like inhibitor JG-365 was a priori constructed by using the approaches of theoretical conformational analysis and molecular mechanics. The root mean square deviation of the calculated conformation of the inhibitor from the X-ray diffraction analysis data was 0.87 A. These results enabled the a priori calculation of the structure of noncovalent complex of HIV-1 protease with a hexapeptide fragment of its native specific substrate Ser-Gln-Asn-Tyr-Pro-Ile-Val. The only possible orientation of the cleavable peptide bond in this and the nucleophilic water molecule relative to the catalytically active Asp residues of the enzyme (Asp25 and Asp125) was found that provides for the chemical transformation of the substrate to a tetrahedral intermediate. An action mechanism of enzymes of this class was proposed on the basis of the analysis of calculated distances. We showed that neither steric distortion of the cleavable bond nor the formation of unfavorable contacts in molecules of the enzymes and their substrates accompany the optimum orientation of substrate molecules at the active sites of HIV-1 aspartyl proteases and rhizopuspepsin.  相似文献   

10.
Amino acid substitutions in human immunodeficiency virus type 1 (HIV-1) Gag cleavage sites have been identified in HIV-1 isolated from patients with AIDS failing chemotherapy containing protease inhibitors (PIs). However, a number of highly PI-resistant HIV-1 variants lack cleavage site amino acid substitutions. In this study we identified multiple novel amino acid substitutions including L75R, H219Q, V390D/V390A, R409K, and E468K in the Gag protein at non-cleavage sites in common among HIV-1 variants selected against the following four PIs: amprenavir, JE-2147, KNI-272, and UIC-94003. Analyses of replication profiles of various mutant clones including competitive HIV-1 replication assays demonstrated that these mutations were indispensable for HIV-1 replication in the presence of PIs. When some of these mutations were reverted to wild type amino acids, such HIV-1 clones failed to replicate. However, virtually the same Gag cleavage pattern was seen, indicating that the mutations affected Gag protein functions but not their cleavage sensitivity to protease. These data strongly suggest that non-cleavage site amino acid substitutions in the Gag protein recover the reduced replicative fitness of HIV-1 caused by mutations in the viral protease and may open a new avenue for designing PIs that resist the emergence of PI-resistant HIV-1.  相似文献   

11.
Truncation of a peptide substrate in the N-terminus and replacement of its scissile amide bond with a non-cleavable reduced bond results in a potent inhibitor of HIV-1 protease. A series of such inhibitors has been synthesized, and S2-S3' subsites of the protease binding cleft mapped. The S2 pocket requires bulky Boc or PIV groups, large aromatic Phe residues are preferred in P1 and P1' and Glu in P2'. The S3' pocket prefers Phe over small Ala or Val. Introduction of a Glu residue into the P2' position yields a tight-binding inhibitor of HIV-1 protease, Boc-Phe-[CH2-NH]-Phe-Glu-Phe-OMe, with a subnanomolar inhibition constant. The relevant peptide derived from the same amino acid sequence binds to the protease with a Ki of 110 nM, thus still demonstrating a good fit of the amino acid residues into the protease binding pockets and also the importance of the flexibility of P1-P1' linkage for proper binding. A new type of peptide bond mimetic, N-hydroxylamine -CH2-N(OH)-, has been synthesized. Binding of hydroxylamino inhibitor of HIV-1 protease is further improved with respect to reduced-bond inhibitor.  相似文献   

12.
The activity of the avian myeloblastosis virus (AMV) or the human immunodeficiency virus type 1 (HIV-1) protease on peptide substrates which represent cleavage sites found in the gag and gag-pol polyproteins of Rous sarcoma virus (RSV) and HIV-1 has been analyzed. Each protease efficiently processed cleavage site substrates found in their cognate polyprotein precursors. Additionally, in some instances heterologous activity was detected. The catalytic efficiency of the RSV protease on cognate substrates varied by as much as 30-fold. The least efficiently processed substrate, p2-p10, represents the cleavage site between the RSV p2 and p10 proteins. This peptide was inhibitory to the AMV as well as the HIV-1 and HIV-2 protease cleavage of other substrate peptides with Ki values in the 5-20 microM range. Molecular modeling of the RSV protease with the p2-p10 peptide docked in the substrate binding pocket and analysis of a series of single-amino acid-substituted p2-p10 peptide analogues suggested that this peptide is inhibitory because of the potential of a serine residue in the P1' position to interact with one of the catalytic aspartic acid residues. To open the binding pocket and allow rotational freedom for the serine in P1', there is a further requirement for either a glycine or a polar residue in P2' and/or a large amino acid residue in P3'. The amino acid residues in P1-P4 provide interactions for tight binding of the peptide in the substrate binding pocket.  相似文献   

13.
A series of inhibitors containing all possible isomers of 4-amino-3-hydroxy-5-phenylpentanoic acid was synthesized and tested for inhibition of HIV-1 protease. Incorporation of the (3S,4S) isomer of the t-butyloxycarbonyl protected amino acid into the sequence Glu-Phe resulted in a potent inhibitor of HIV-1 protease (Ki = 63 nM). This inhibitor is at least 47-times more potent than the inhibitors containing other isomers of 4-amino-3-hydroxy-5-phenylpentanoic acid, indicating that the (3S,4S) isomer is the preferred isomer for binding to HIV-1 protease.  相似文献   

14.
The primary structures of rabbit and rat prealbumin have been determined. The amino acid sequence of rabbit prealbumin was determined by analyses of peptides obtained by trypsin and Staphylococcus aureus protease digestions. The rat prealbumin sequence was deduced by analyses of tryptic peptides as well as by nucleotide sequencing of cDNA clones. Both amino acid sequences contain 127 amino acid residues, the same as human prealbumin. Pairwise comparisons show that the three sequences are more than 80% identical. All three prealbumins were found to display significant sequence homology with human thyroxine-binding globulin. A comparison of the primary structures of the prealbumins with the tertiary structure of human prealbumin shows that amino acid replacements are preferentially located at the surface of the molecule and in the loops connecting the beta-strands. The locations of the replacements are discussed as regards the different molecular interactions in which prealbumin is involved.  相似文献   

15.
A variety of amino acid substitutions in the protease and Gag proteins have been reported to contribute to the development of human immunodeficiency virus type 1 (HIV-1) resistance to protease inhibitors. In the present study, full-length molecular infectious HIV-1 clones were generated by using HIV-1 variants isolated from heavily drug-experienced and therapy-failed AIDS patients. Of six full-length infectious clones generated, four were found to have unique insertions (TGNS, SQVN, AQQA, SRPE, APP, and/or PTAPPA) near the p17/p24 and p1/p6 Gag cleavage sites, in addition to the known resistance-related multiple amino acid substitutions within the protease. The addition of such Gag inserts mostly compromised the replication of wild-type HIV-1, whereas the primary multidrug-resistant HIV infectious clones containing inserts replicated significantly better than those modified to lack the inserts. Western blot analyses revealed that the processing of Gag proteins by wild-type protease was impaired by the presence of the inserts, whereas that by mutant protease was substantially improved. The present study represents the first report clearly demonstrating that the inserts seen in the proximity of the Gag cleavage sites in highly multi-PI resistant HIV-1 variants restore the otherwise compromised enzymatic activity of mutant protease, enabling the multi-PI-resistant HIV-1 variants to remain replication competent.  相似文献   

16.
Highly purified, recombinant preparations of the virally encoded proteases from human immunodeficiency viruses (HIV) 1 and 2 have been compared relative to 1) their specificities toward non-viral protein and synthetic peptide substrates, and 2) their inhibition by several P1-P1' pseudodipeptidyl-modified substrate analogs. Hydrolysis of the Leu-Leu and Leu-Ala bonds in the Pseudomonas exotoxin derivative, Lys-PE40, is qualitatively the same for HIV-2 protease as published earlier for the HIV-1 enzyme (Tomasselli, A. G., Hui, J. O., Sawyer, T. K., Staples, D. J., FitzGerald, D. J., Chaudhary, V. K., Pastan, I., and Heinrikson, R. L. (1990) J. Biol. Chem. 265, 408-413). However, the rates of cleavage at these two sites are reversed for the HIV-2 protease which prefers the Leu-Ala bond. The kinetics of hydrolysis of this protein substrate by both enzymes are mirrored by those obtained from cleavage of model peptides. Hydrolysis by the two proteases of other synthetic peptides modeled after processing sites in HIV-1 and HIV-2 gag polyproteins and selected analogs thereof demonstrated differences, as well as similarities, in selectivity. For example, while the two proteases were nearly identical in their rates of cleavage of the Tyr-Pro bond in the HIV-1 gag fragment, Val-Ser-Gln-Asn-Tyr-Pro-Ile-Val, the HIV-1 protease showed a 64-fold enhancement over the HIV-2 enzyme in hydrolysis of a Tyr-Val bond in the same template. Accordingly, the HIV-2 protease appears to have a different specificity than the HIV-1 enzyme; it is better able to hydrolyze substrates with small amino acids in P1 and P1', but is variable in its rate of hydrolysis of peptides with bulky substituents in these positions. In addition to these comparisons of the two proteases with respect to substrate specificity, we present inhibitor structure-activity data for the HIV-2 protease. Relative to P1-P1' statine or Phe psi [CH2N]Pro-modified pseudopeptidyl inhibitors, compounds having Xaa psi[CH(OH)CH2]Yaa inserts were found to show significantly higher affinities to both enzymes, generally binding from 10 to 100 times stronger to HIV-1 protease than to the HIV-2 enzyme. Molecular modeling comparisons based upon the sequence homology of the two enzymes and x-ray crystal structures of HIV-1 protease suggest that most of the nonconservative amino acid replacements occur in regions well outside the catalytic cleft, while only subtle structural differences exist within the active site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
This report examines structural changes in a highly mutated, clinical multidrug-resistant HIV-1 protease, and the crystal structure has been solved to 1.3 A resolution in the absence of any inhibitor. This protease variant contains codon mutations at positions 10, 36, 46, 54, 62, 63, 71, 82, 84, and 90 that confer resistance to protease inhibitors. Major differences between the wild-type and the variant include a structural change initiated by the M36V mutation and amplified by additional mutations in the flaps of the protease, resulting in a "wide-open" structure that represents an opening that is 8 A wider than the "open" structure of the wild-type protease. A second structural change is triggered by the L90M mutation that results in reshaping the 23-32 segment. A third key structural change of the protease is due to the mutations from longer to shorter amino acid side chains at positions 82 and 84.  相似文献   

18.
19.
A proteinaceous protease inhibitor was isolated from the culture broth of Streptomyces lividans 66 by a series of purification steps (salting out by ammonium sulfate, ion-exchange chromatography on DEAE-cellulose, hydrophobic chromatography on Phenyl-Sepharose, and gel-filtration on Sephacryl S-200), and was named S. lividans protease inhibitor (SLPI). The purified SLPI existed in a dimeric form consisting of two identical subunits, each of which was composed of 107 amino acids. SLPI exhibited strong inhibitory activity toward subtilisin BPN'. These features were similar to those of protein protease inhibitors produced by other Streptomyces (SSI family inhibitor). In addition, SLPI was capable of inhibiting trypsin with an inhibitor constant (Ki) of about 10(-9) M. The primary structure of SLPI and location of two disulfide bridges were homologous to those of the other serine protease inhibitors of Streptomyces. The reactive site of SLPI was found to be Arg67-Glu68 from the sequence analysis of cleaved SLPI which was produced by acidification of subtilisin-SLPI complex. An Arg residue at the P1 site was consistent with the trypsin-inhibitory property of SLPI. Sequence comparison with other members of the SSI family revealed that amino acid replacements in SLPI were mainly localized on the surface of the SLPI molecule, and many of the amino acid residues in beta-sheets and hydrophobic core were well conserved.  相似文献   

20.
Evaluation of homology modeling of HIV protease   总被引:3,自引:0,他引:3  
I T Weber 《Proteins》1990,7(2):172-184
The model of human immunodeficiency virus (HIV-1) protease which was based on the crystal structure of Rous sarcoma virus (RSV) protease has been compared to the recently determined crystal structure of chemically synthesized HIV-1 protease. The overall difference between the model and crystal structure was 1.4 A root mean square (rms) deviation for 86 superimposed C alpha atoms. The position of the flexible flap differs in the model and six residues at the amino terminus were incorrectly placed. With these exceptions, all atoms of the model and crystal structure agree to 2.1 A rms deviation. The conformation of some surface bends in the model agrees less well with the crystal structure. Identical amino acids in RSV and HIV proteases were modeled more reliably than different types of amino acids. The amino acids which form the substrate binding site were modeled most accurately to 1.2 A rms deviation for all atoms compared to the crystal structure. This suggests that functionally significant regions of related proteins can be modeled with high accuracy. The model gave correct predictions for residues making interactions with the substrate, and therefore could be used to design inhibitors. The model based on the RSV protease structure is more similar to the experimental structure than are previous models based on the structures of non-viral aspartic proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号