首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Restriction endonucleases are deoxyribonucleases which cleave double-stranded DNA into fragments. With only one exception, all restriction endonucleases recognize short, non-methylated DNA sequences. Restriction endonucleases can be divided into two groups based on the position of the cleavage site relative to the recognition sequence. Class I restriction endonucleases cleave double-stranded DNA at positions outside the recognition sequence and generate fragments of random size. The cleavage sites of Class II restriction endonucleases are located, in most cases, within the recognition sequence. Most of the Class II restriction endonucleases recognize 4, 5, or 6 base pair palindromes and generate fragments with either flush ends or staggered ends. DNA fragments with staggered ends contain 3, 4, or 5 nucleotide single-stranded tails called ‘sticky ends’. DNA fragments produced by Class II restriction endonuclease cleavage can be separated on gels according to their molecular weight. The fragments can be isolated from the gel and used for sequence analysis to elucidate genetic information stored in DNA. Further, an isolated fragment can be inserted into a small extrachromosomal DNA, e.g. plasmid, phage or viral DNA, and its replication and expression can be studied in clones of prokaryotic or eukaryotic cells. Restriction endonucleases and cloning technology are powerful modern tools for attacking genetic problems in medicine, agriculture and industrial microbiology.  相似文献   

2.
An approach to the directed genetic recombination in vitro has been devised, which allows for joining, in a predetermined chemical-enzymatic way, a series of DNA segments to give a precisely spliced polynucleotide sequence (DNA Splicing by Directed Ligation, SDL). The approach makes use of amplification, by several polymerase chain reactions (PCR), of the chosen DNA segments. The corresponding primers contain recognition sites of the class IIS restriction endonucleases, yielding protruding ends of unique primary structures. The protruding ends of the segments to be joined together are structurally predetermined to make them mutually complementary. Ligation of the mixture of the segments so synthesized gives the desired sequence in an unambiguous way. The suggested approach has been exemplified by the synthesis of a totally processed (intronless) gene encoding human mature interleukin-1 alpha.  相似文献   

3.
IIB型限制内切酶能够识别并切割特异酶切位点两端特定距离的DNA,形成粘性末端的30 bp左右的等长DNA片段。利用其特性与限制性酶切位点关联测序技术(RAD)相结合发展出2b-RAD简化基因组测序技术,应用于遗传图谱构建、种群遗传结构分析、性状定位以及细菌分型等多种研究领域。构建2b-RAD测序文库之前,需要对基因组中的IIB型限制内切酶位点进行预测与统计分析,制定有效的测序文库构建方案。本文利用Python语言构建分析基因组中IIB型限制内切酶位点的流程,预测并统计6个鳞翅目代表物种基因组含有的8个商业化IIB型限制内切酶的酶切位点,比较了各个基因组与IIB型限制内切酶之间含有的酶切位点总量、重复序列数量以及酶切间隔长度的关系,为在昆虫基因组中进一步试行2b-RAD研究提供了参考。  相似文献   

4.
Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases.  相似文献   

5.
Specificity of restriction endonucleases and methylases--a review   总被引:14,自引:0,他引:14  
C Kessler  H J H?ltke 《Gene》1986,47(1):1-153
The properties and sources of all known restriction endonucleases and methylases are listed. The enzymes are cross-indexed (Table I), classified according to their recognition sequence homologies (Table II), and characterized within Table II by the cleavage and methylation positions, the number of recognition sites on the double-stranded DNA of the bacteriophages lambda, phi X174 and M13mp7, the viruses Ad2 and SV40, the plasmids pBR322 and pBR328, and the microorganisms from which they originate. Other tabulated properties of the restriction endonucleases include relaxed specificities (integrated into Table II), the structure of the generated fragment ends (Table III), and the sensitivity to different kinds of DNA methylation (Table V). In Table IV the conversion of two- and four-base 5'-protruding ends into new recognition sequences is compiled which is obtained by the fill-in reaction with Klenow fragment of the Escherichia coli DNA polymerase I or additional nuclease S1 treatment followed by ligation of the modified fragment termini [P3]. Interconversion of restriction sites generates novel cloning sites without the need of linkers. This should improve the flexibility of genetic engineering experiments. Table VI classifies the restriction methylases according to the nature of the methylated base(s) within their recognition sequences. This table also comprises restriction endonucleases which are known to be inhibited or activated by the modified nucleotides. The detailed sequences of those overlapping restriction sites are also included which become resistant to cleavage after the sequential action of corresponding restriction methylases and endonucleases [N11, M21]. By this approach large DNA fragments can be generated which is helpful in the construction of genomic libraries. The data given in both Tables IV and VI allow the design of novel sequence specificities. These procedures complement the creation of universal cleavage specificities applying class IIS enzymes and bivalent DNA adapter molecules [P17, S82].  相似文献   

6.
Molecular indexing of human genomic DNA   总被引:1,自引:1,他引:0  
Molecular indexing sorts DNA fragments into subsets for inter-sample comparisons. Type IIS or interrupted palindrome restriction endonucleases, which result in single-stranded ends not including the original recognition sequence of the enzyme, are used to produce the fragments. The ends can then be any sequence but will always be specific for a given fragment. Fragments with particular ends are selected by ligation to a corresponding indexing adapter. We describe iterative indexing, a new process that after an initial round of indexing uses a Type IIS restriction endonuclease to expose additional sequence for further indexing. New plasmids, pINDnn, were produced for novel use as indexing adapters. Together, the plasmids index all 16 possible dinucleotides. Their large size can be increased by dimerisation in vitro and allows the isolation of indexed material by size separation. Fragments produced from human genomic DNA by Type II restriction endonucleases were sorted using six bases in total to a possible enrichment of 1920-fold. By comparison with the public human sequence databases, fidelity of indexing was shown to be high and was tolerant of repetitive sequences. Genome-wide comparisons on a candidate or non-candidate basis are made possible by this approach.  相似文献   

7.
《Gene》1996,168(1):31-35
A method is described for the efficient cloning of any given DNA sequence into any desired location without the limitation of naturally occurring restriction sites. The technique employs the polymerase chain reaction (PCR) combined with the capacity of the type-IIS restriction endonuclease (ENase) Eam1104I to cut outside its recognition sequence. Primers that contain the Eam1104I recognition site (5′-CTCTTC) are used to amplify the DNA fragments being manipulated. Because the ENase is inhibited by site-specific methylation in the recognition sequence, all internal Eam1104I sites present in the DNA can be protected by performing the PCR amplification in the presence of 5-methyl-deoxycytosine (m5dCTP). The primer-encoded Eam1104I sites are not affected by the modified nucleotides (nt) since the newly synthesized strand does not contain any cytosine residues in the recognition sequence. In addition, the ENase's ability to cleave several bases downstream from its recognition site allows the removal of superfluous, terminal sequences from the amplified DNA fragments, resulting in 5′ overhangs that are defined by the nt present within the cleavage site. Thus, the elimination of extraneous nt and the generation of unique, non-palindromic sticky ends permits the formation of seamless junctions in a directional fashion during the subsequent ligation event.  相似文献   

8.
K C Luk  P Dobrzański  W Szybalski 《Gene》1982,17(3):259-262
A series of plasmid vectors containing the multiple cloning site (MCS7) of M13mp7 has been constructed. In one of these vectors a kanamycin-resistance marker has been inserted into the center of the symmetrical MCS7 to yield a restriction-site-mobilizing element (RSM). The drug-resistance marker can be cleaved out of this vector with any of the restriction enzymes that recognize a site of the flanking sequences of the RSM to generate an RSM with either various sticky ends or blunt ends. These fragments can be used for insertion mutagenesis of any target molecule with compatible restriction sites. Insertion mutants are selected by their resistance to kanamycin. When the drug-resistance marker is removed with PstI, a small in-frame insertion can be generated. In addition, two new MCSs having single restriction sites have been formed by altering the symmetrical structure of MCS7. The resulting plasmids pUC8 and pUC9 allow one to clone doubly digested restriction fragments separately with both orientations in respect to the lac promoter. The terminal sequences of any DNA cloned in these plasmids can be characterized using the universal M13 primers.  相似文献   

9.
W E Wright 《BioTechniques》1992,13(5):772-779
A technique called partial-digest sequencing that permits DNA of 4-6 kb in length to be sequenced without subcloning is described. The method exploits the specific cuts introduced by partial digestion with restriction endonucleases that have 4-base recognition sites to produce ordered ladders of PCR-amplified fragments. The staggered ends contain PCR primers and can thus be individually sequenced using conventional methods to yield overlapping sequences covering the entire region. This method should have significant impact on both large and small DNA sequencing projects and find many applications in general manipulations in which ordered sets of deletions need to be produced.  相似文献   

10.
It is shown here that distamycin A and actinomycin D can protect the recognition sites of endo R.EcoRI, EcoRII, HindII, HindIII, HpaI and HpaII from the attack of these restriction endonucleases. At proper distamycin concentrations only two endo R.EcoRI sites of phage lambda DNA are available for the restriction enzyme--sRI1 and sRI4. This phenomenon results in the appearance of larger DNA fragments comprising several consecutive fragments of endo R.EcoRI complete cleavage. The distamycin fragments isolated from the agarose gels can be subsequently cleaved by endo R.EcoRI with the yield of the fragments of complete digestion. We have compared the effect of distamycin A and actinomycin D on a number of restriction endonucleases having different nucleotide sequences in the recognition sites and established that antibiotic action depends on the nucleotide sequences of the recognition sites and their closest environment  相似文献   

11.
Type IIS restriction endonuclease Eco31I harbors a single HNH active site and cleaves both DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). A two-domain organization of Eco31I was determined by limited proteolysis. Analysis of proteolytic fragments revealed that the N-terminal domain of Eco31I is responsible for the specific DNA binding, while the C-terminal domain contains the HNH nuclease-like active site. Gel-shift and gel-filtration experiments revealed that a monomer of the N-terminal domain of Eco31I is able to bind a single copy of cognate DNA. However, in contrast to other studied type IIS enzymes, the isolated catalytic domain of Eco31I was inactive. Steady-state and transient kinetic analysis of Eco31I reactions was inconsistent with dimerization of Eco31I on DNA. Thus, we propose that Eco31I interacts with individual copies of its recognition sequence in its monomeric form and presumably remains a monomer as it cleaves both strands of double-stranded DNA. The domain organization and reaction mechanism established for Eco31I should be common for a group of evolutionary related type IIS restriction endonucleases Alw26I, BsaI, BsmAI, BsmBI and Esp3I that recognize DNA sequences bearing the common pentanucleotide 5'-GTCTC.  相似文献   

12.
Type IIS restriction endonuclease BtsCI (GGATG 2/0) is a neoschizomer of FokI (GGATG 9/13) and cleaves closer to the recognition sequence. Although M.BtsCI shows 62% amino acid sequence identity to M.FokI, BtsCI and FokI restriction endonucleases do not share significant amino acid sequence similarity. BtsCI belongs to a group of Type IIS restriction endonucleases, BsmI, Mva1269I and BsrI, that carry two different catalytic sites in a single polypeptide. By inactivating one of the catalytic sites through mutagenesis, we have generated nicking variants of BtsCI that specifically nick the bottom-strand or the top-strand of the target site. By treating target DNA sequentially with the appropriate combinations of FokI and BtsCI nicking variants, we are able to generate long overhangs suitable for fluorescent labeling through end-filling or other techniques based on annealing of complementary DNA sequences.  相似文献   

13.
Bacteriophage phi X174 viral strand DNA molecules shorter than genome length found late in the infectious cycle in Escherichia coli were 5' end labeled with 32P. Hybridization of the 32P-labeled molecules to restriction enzyme fragments of phi X replicative form DNA revealed an excess of phi X molecules whose 5' ends mapped in HaeIII fragments Z3 and Z4 in comparison with fragments Z1 and Z2. This suggests that initiation of phi X174 viral strand DNA synthesis may occur at internal sites on the complementary strand. There are several appropriately located sequences that might serve as n' (factor Y) recognition sequences and thereby facilitate discontinuous synthesis of the viral strand.  相似文献   

14.
Waclaw Szybalski 《Gene》1985,40(2-3):169-173
Class IIS restriction endonucleases cleave double-stranded (ds) DNA at precise distances from their recognition sequences. A method is proposed which utilizes this separation between the recognition site and the cut site to allow a class IIS enzyme, e.g., FokI, to cleave practically any predetermined sequence by combining the enzyme with a properly designed oligodeoxynucleotide adapter. Such an adapter is constructed from the constant recognition site domain (a hairpin containing the ds sequence, e.g., GGATG CCTAC for FokI) and a variable, single-stranded (ss) domain complementary to the ss sequence to be cleaved (at 9 and 13 nucleotides on the paired strands from the recognition sequence in the example of FokI). The ss sequence designated to be cleaved could be provided by ss phage DNA (e.g., M13), gapped ds plasmids, or supercoiled ds plasmids that were alkali denatured and rapidly neutralized. Combination of all three components, namely the class IIS enzyme, the ss DNA target sequence, and the complementing adapter, would result in target DNA cleavage at the specific predetermined site. The target ss DNA could be converted to the precisely cleaved ds DNA by DNA polymerase, utilizing the adapter oligodeoxynucleotide as primer. This novel procedure represents the first example of changing enzyme specificity by synthetic design. A practically unlimited assortment of new restriction specificities could be produced. The method should have many specific and general applications when its numerous ramifications are exploited.  相似文献   

15.
A simple and efficient method was developed for directional cloning of PCR products without any restriction enzyme digestion of the amplified sequence. Two pairs of primers were designed in which parts of two restriction enzyme recognition sequences were integrated, and the primers were used for two parallel PCRs. The PCR products were mixed, heat denatured and re-annealed to generate hybridized DNA fragments bearing sticky ends compatible with restriction enzymes. This method is particularly useful when it is necessary to use a restriction enzyme but there is an additional internal restriction site within the amplified sequence, or when there are problems caused by end sensitivity of restriction enzymes.  相似文献   

16.
Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.  相似文献   

17.
A general strategy is described for using the cleavage site of restriction enzymes in vectors for cloning regardless of how many sites the given enzymes have in the vector. The application of this method allows one to open any vector at its cloning site with protruding ends which can be compatible with almost every commercially available Class II restriction enzyme. By employing this method, the laborious construction of new vectors can be simplified considerably. This general strategy is based on the known ability of Class IIS restriction enzymes to cut any sequence located outside of their recognition site; the introduction of a linker containing recognition site(s) for Class IIS restriction enzyme(s), not present originally in the vector, gives rise to the possibility of opening the vector so as to produce overhangs of arbitrary sequence. In particular, when a symmetrical short sequence representing the protruding end of any Class II enzyme is situated at the cutting position of the Class IIS enzyme, cleavage with the Class IIS enzyme exposes the hitherto hidden, "unique" cloning site. This technique is demonstrated by cloning the cDNA of the multidrug resistance protein to an expression vector.  相似文献   

18.
19.
A comparative study of the stabilisation of DNA sticky ends by divalent cations was carried out by atomic force microscopy (AFM), electron microscopy and agarose gel electrophoresis. At room temperature, molecules bearing such extremities are immediately oligomerised or circularised by addition of Mg2+or Ca2+. This phenomenon, more clearly detected by AFM, requires the presence of uranyl salt, which stabilises the structures induced by Mg2+or Ca2+. DNA fragments were obtained by restriction enzymes producing sticky ends of 2 or 4 nucleotides (nt) in length with different guanine plus cytosine (GC) contents. The stability of the pairing is high when ends of 4 nt display a 100% GC-content. In that case, 95% of DNA fragments are maintained circular by the divalent cations, although 2 nt GC-sticky ends are sufficient for a stable pairing. DNA fragments with one blunt end and the other sticky appear as dimers in the presence of Mg2+. Dimerisation was analysed by varying the lengths and concentrations of DNA fragments, the base composition of the sticky ends, and also the temperature. Our observation provides a new powerful tool for construction of inverted dimers, and circularisation, ligation analysis or short bases sequence interaction studies.  相似文献   

20.
Our laboratory has reported a self-assembled 3-D crystal based on a DNA tensegrity triangle. The tensegrity triangle is a rigid DNA motif with three-fold rotational symmetry consisting of three helices whose axes are directed along three linearly independent directions (1). The triangles form a crystalline lattice stabilized via sticky ends (2). The length of the sticky ends reported previously was two nucleotides (nt) GA:TC. Although diffracting to 4 Å resolution at the APS-ID19 beam line, they diffract only to 4.9 Å at the NSLS-X25 beam line. In the current study, we have analysed the effect of sticky end length and sequence on crystal formation and the resolution of the X-ray diffraction pattern on NSLS-X25. Tensegrity triangle motifs having 1-, 2-, and 3-nt sticky ends have all formed crystals. X-ray diffraction data from the same beam line revealed that the crystal resolution was somewhat better for the 2-nt sticky end having an AA:TT base pair (4.75 Å) than GA:CT and CC:GG (8.0 Å). Moreover, the 1-nt sticky end (C:G) yielded a diffraction pattern whose resolution (3.5 Å) compared favorably with all the three 2-nt sticky end systems. However, the triangle motif having a 1-nt sticky end with an A:T base pair did not yield any crystals. For motifs with 3-nt sticky ends, the sequence GAG:CTC produced small crystals (10–20?μm), while larger crystals (150?μm) were obtained with the sequences TAG:ATC and TAT:ATA. Our results indicate that not only do the lengths and sequences of the sticky ends define the interactions between motifs, but they also have an impact on the resulting resolution. We expect redesigned assemblies to form 3-D crystals with better resolution that can aid in the scaffolding of biological macromolecules for crystallographic structure determination. Applications in many areas of DNA nanotechnology are expected to benefit from a complete analysis of the effects of sticky end length, sequence, and free energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号