首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 The feasibility of inducing graft versus leukemia (GVL) effects with allogeneic T cells in recipients of autologous bone marrow transplantation (BMT) was studied in a murine model (BCL 1) of human B cell leukemia/lymphoma. Allogeneic cell therapy, induced by infusion with peripheral blood lymphocytes, a mixture of allogeneic spleen and lymph node cells and allogeneic activated cell therapy, induced by in vitro recombinant-interleukin-2(rIL-2)-activated allogeneic bone marrow cells in tumor-bearing mice, prevented disease development in adoptive BALB/c recipients. Concomitant in vivo activation of allogeneic lymphocytes with rIL-2 suppressed even more effectively the development of leukemia in secondary adoptive recipients of spleen cells obtained from treated mice. In contrast, in vivo administration of rIL-2 after syngeneic BMT, with or without equal numbers of syngeneic lymphocytes, led to disease development in secondary recipients. Our data suggest that effective cell therapy can be achieved after SBMT by allogeneic but not syngeneic lymphocytes and that anti-leukemic effects induced by allogeneic lymphocytes can be further enhanced by in vitro or in vivo activation of allogeneic effector cells with rIL-2. Therefore, cell therapy by allogeneic lymphocytes following autologous BMT could become an effective method for inducing GVL-like effects on minimal residual disease provided that graft versus host disease can be prevented or adequately controlled. Received: 14 May 1996 / Accepted: 6 August 1996  相似文献   

2.
We examined the influence of donor T lymphocytes on human peripheral blood leukocytes (PBL) engraftment into severe combined immune deficient (SCID) mice. Mice were injected with unfractionated or subset-depleted human PBL, and treated at various times with OKT3, a cytotoxic monoclonal antibody against human CD3(+) T lymphocytes. PBL engraftment, high levels of human Ig, and high incidence of lymphoproliferative disease (lpd) were found in mice transplanted with unfractionated PBL and CD8- or CD14-depleted PBL, and in mice treated with OKT3 at distance from PBL transfer. Animals xenografted with CD3- or CD4-depleted PBL, or treated at transplantation time with OKT3, had very low levels of human Ig and did not develop lpd. PBL engraftment was minimal or absent in these animals, as determined by immunohistochemistry, dot-blot, and RT-PCR analyses. These results demonstrate that the presence of donor CD4(+) T lymphocytes at transplantation time is necessary for observing human PBL engraftment into SCID mice, an essential condition for human Ig production and lpd development.  相似文献   

3.
 A major problem in the treatment of solid tumors is the eradication of established, disseminated metastases. Here we describe an effective treatment for established experimental hepatic metastases of human neuroblastoma in C. B.-17 scid/scid mice. This was accomplished with an antibody-cytokine fusion protein, combining the unique targeting ability of antibodies with the multifunctional activity of cytokines. An anti-(ganglioside GD2) antibody (ch14.18) fusion protein with interleukin-2 (ch14.18-IL2), constructed by fusion of a synthetic sequence coding for human interleukin-2 (IL-2) to the carboxyl end of the Cγ1 gene of ch14.18, was tested for its therapeutic efficacy against xenografted human neuroblastoma in vivo. The ch14.18-IL2 fusion protein markedly inhibited growth of established hepatic metastases in SCID (severe combined immunodeficiency) mice previously reconstituted with human lymphokine-activated killer cells. Animals treated with ch14.18-IL2 showed an absence of macroscopic liver metastasis. In contrast, treatment with combinations of ch14.18 and recombinant IL2 at dose levels equivalent to the fusion protein only reduced the tumor load. Survival times of SCID mice treated with the fusion protein were more than double that of control animals. These results demonstrate that an immunotherapeutic approach using a cytokine targeted by an antibody to tumor sites is highly effective in eradicating the growth of established tumor metastases. Received: 7 November 1995 / Accepted: 15 December 1995  相似文献   

4.
In vivo studies concerning the function of human hematopoietic stem cells (HSC) are limited by relatively low levels of engraftment and the failure of the engrafted HSC preparations to differentiate into functional immune cells after systemic application. In the present paper we describe the effect of intrahepatically transplanted CD34+ cells from cord blood into the liver of newborn or adult NOD/SCID mice on organ engraftment and differentiation.Analyzing the short and long term time dependency of human cell recruitment into mouse organs after cell transplantation in the liver of newborn and adult NOD/SCID mice by RT-PCR and FACS analysis, a significantly high engraftment was found after transplantation into liver of newborn NOD/SCID mice compared to adult mice, with the highest level of 35% human cells in bone marrow and 4.9% human cells in spleen at day 70. These human cells showed CD19 B-cell, CD34 and CD38 hematopoietic and CD33 myeloid cell differentiation, but lacked any T-cell differentiation. HSC transplantation into liver of adult NOD/SCID mice resulted in minor recruitment of human cells from mouse liver to other mouse organs. The results indicate the usefulness of the intrahepatic application route into the liver of newborn NOD/SCID mice for the investigation of hematopoietic differentiation potential of CD34+ cord blood stem cell preparations.  相似文献   

5.
Severe combined immunodeficient (SCID) mice engrafted with human peripheral blood leukocytes (hu-PBL-SCID) represent a potentially important small animal model for the study of human immune function. Attempts to generate human primary immune responses to exogenous Ag in the hu-PBL-SCID have had limited success which raises questions about the functional capacity of human lymphocytes in the SCID environment. Here, we demonstrate that the spontaneously secreted human Ig in hu-PBL-SCID includes antibodies with specificity for several different mouse RBC (mRBC) proteins. These antibodies apparently reflect the transfer of peripheral B cells which are responsible for the production of naturally occurring xenoreactive antibodies in the donor. Western blot analysis showed that engraftment of anti-mRBC specificities was random among mice receiving PBL from the same donor sample. In at least one mouse, this engraftment was polyclonal and included human IgM and IgG which recognized at least 12 different mRBC proteins ranging in size from 35 to > 200 kDa. Anti-mRBC specificities were found to vary with time demonstrating a dynamic expression of the human xenoreactive repertoire in hu-PBL-SCID. In contrast to mice engrafted with human PBL, mice engrafted with another source of human B cells, i.e., tumor-infiltrating leukocytes, produced very little or no human anti-mRBC antibody. Ag-driven proliferation of xenoreactive clones may result in a skewing of the engrafted human B cells in hu-PBL-SCID which could account in part for the limited ability of hu-PBL-SCID to respond to exogenous Ag. The long term production of anti-mRBC antibodies and the modulation of the expressed xenoreactive repertoire observed in hu-PBL-SCID represents an opportunity to study the molecular genetics and cell biology of the human humoral immune response to a defined complex Ag.  相似文献   

6.
Several new immunodeficient mouse models for human cell engraftment have recently been introduced that include the Rag2(-/-)γc(-/-), NOD/SCID, NOD/SCIDγc(-/-) and NOD/SCIDβ2m(-/-) strains. Transplantation of these mice with CD34(+) human hematopoietic stem cells leads to prolonged engraftment, multilineage hematopoiesis and the capacity to generate human immune responses against a variety of antigens. However, the various mouse strains used and different methods of engrafting human cells are beginning to illustrate strain specific variations in engraftment levels, duration and longevity of mouse life span. In these proof-of-concept studies we evaluated the Balb/c-Rag1(-/-)γ(-/-) strain for engraftment by human fetal liver derived CD34(+) hematopoietic cells using the same protocol found to be effective for Balb/c-Rag2(-/-)γc(-/-) mice. We demonstrate that these mice can be efficiently engrafted and show multilineage human hematopoiesis with human cells populating different lymphoid organs. Generation of human cells continues beyond a year and production of human immunoglobulins is noted. Infection with HIV-1 leads to chronic viremia with a resultant CD4 T cell loss. To mimic the predominant sexual viral transmission, we challenged humanized Rag1(-/-)γc(-/-) mice with HIV-1 via vaginal route which also resulted in chronic viremia and helper T cell loss. Thus these mice can be further exploited for studying human pathogens that infect the human hematopoietic system in an in vivo setting.  相似文献   

7.
 Internal-image anti-idiotype antibodies are expected to enhance anticancer effector mechanisms in vivo. The objective of this study was to establish hybridomas producing anti-idiotype monoclonal antibodies against a human monoclonal antibody (hmAb) 4G12 that reacts strongly with lung squamous cell carcinomas. BALB/c female mice 6 weeks old were immunized with 4G12. Splenocytes were hybridized with P3U1 cells and hybrid cells secreting anti-4G12 hmAb were cloned. Two clones reacted with 4G12 hmAb but not with 3H12 IgM hmAb, human IgM, human serum or fetal calf serum. These two Ab2 antibodies (IgG1κ) 2B12 and 2H1 demonstrated 91.5% and 90.3% inhibition in their reactivity with radiolabelled 4G12 on PC10 cells, indicating that 2B12 and 2H1 antibodies were of the Ab2β type. In criss-cross inhibition assays, the binding of 2B12 or 2H1 to 4G12 was not inhibited by 2H1 or 2B12. Thus 2B12 and 2H1 were thought to recognize the different epitopes on the antigen-binding sites. Antisera against 2B12 and 2H1 demonstrated specific reactivity to PC10 cells. The two Ab2β antibodies, 2B12 and 2H1, express internal images of lung squamous cell carcinoma recognized by the 4G12 antibody and may be useful for cancer immunotherapy. Received: 20 September 1996 / Accepted: 2 January 1997  相似文献   

8.
 First-strand cDNA was prepared from mRNA of Aspergillus niger MRC11624 induced on oat spelts xylan. Using the cDNA as a template, the α-L-arabinofuranosidase gene (abf B) was amplified with the polymerase chain reaction technique. The abf B DNA fragment was inserted between the yeast phosphoglycerate kinase I gene promoter (PGK1 P ) and terminator (PGK1 T ) sequences on a multicopy episomal plasmid. The resulting construct PGK1 P -abf B-PGK1 T was designated ABF2. The ABF2 gene was expressed successfully in Saccharomyces cerevisiae and functional α-L-arabinofuranosidase was secreted from the yeast cells. The ABF2 nucleotide sequence was determined and verified to encode a 449-amino-acid protein (Abf 2) that is 94% identical to the α-L-arabinofuranosidase B of A. niger N400. Maximum α-L-arabinofuranosidase activities of 0.020 U/ml and 1.40 U/ml were obtained with autoselective recombinant S. cerevisiae strains when grown for 48 h in synthetic and complex medium respectively. Received: 29 January 1996/Received revision: 3 May 1996/Accepted: 9 May 1996  相似文献   

9.
Human PBMC engraft in mice homozygous for the severe combined immunodeficiency (Prkdcscid) mutation (Hu-PBL-scid mice). Hu-PBL-NOD-scid mice generate 5- to 10-fold higher levels of human cells than do Hu-PBL-C.B-17-scid mice, and Hu-PBL-NOD-scid beta2-microglobulin-null (NOD-scid-B2mnull) mice support even higher levels of engraftment, particularly CD4+ T cells. The basis for increased engraftment of human PBMC and the functional capabilities of these cells in NOD-scid and NOD-scid-B2mnull mice are unknown. We now report that human cell proliferation in NOD-scid mice increased after in vivo depletion of NK cells. Human cell engraftment depended on CD4+ cells and required CD40-CD154 interaction, but engrafted CD4+ cells rapidly became nonresponsive to anti-CD3 Ab stimulation. Depletion of human CD8+ cells led to increased human CD4+ and CD20+ cell engraftment and increased levels of human Ig. We further document that Hu-PBL-NOD-scid mice are resistant to development of human EBV-related lymphoproliferative disorders. These disorders, however, develop rapidly following depletion of human CD8+ cells and are prevented by re-engraftment of CD8+ T cells. These data demonstrate that 1) murine NK cells regulate human cell engraftment in scid recipients; 2) human CD4+ cells are required for human CD8+ cell engraftment; and 3) once engrafted, human CD8+ cells regulate human CD4+ and CD20+ cell expansion, Ig levels, and outgrowth of EBV-related lymphoproliferative disorders. We propose that the Hu-PBL-NOD-scid model is suitable for the in vivo analysis of immunoregulatory interactions between human CD4+ and CD8+ cells.  相似文献   

10.
EB病毒诱发人B细胞淋巴瘤的分子病理特性   总被引:7,自引:0,他引:7  
EB病毒 (EBV ,Epstein Barrvirus)与人类多种肿瘤有关 ,尤其是与鼻咽癌和淋巴瘤的关系密切。为此研究了EB病毒在huPBL SCID嵌合体小鼠体内诱发人B细胞淋巴瘤的分子特性及肿瘤发生机制。从健康成人外周血分离出淋巴细胞 ,将之移植到SCID小鼠腹腔内 ,实验感染EBV ,观察肿瘤的形成 ;采用单向免疫扩散法连续监测小鼠血清中人IgG的含量。分别用PCR方法检测肿瘤组织中是否存在人Alu序列 ,原位杂交检测肿瘤组织中EB病毒小RNA分子EBER 1;免疫组织化学方法检测人白细胞分化抗原 (CD4 5、CD2 0、CD4 5RO、CD3) ,病毒基因(LMP1、EBNA2、BZLF1)的表达 ,以及细胞瘤基因蛋白 (p5 3、C myc、Bcl 2、Bax)在诱发肿瘤中的表达情况。结果发现 ,实验中 34只感染EBV的huPBL SCID小鼠有 2 4只诱发出肿瘤 ,根据病理形态学特征、Alu PCR和免疫标志均证实诱发瘤是人源性B淋巴细胞肿瘤。原位分子杂交显示肿瘤细胞核内存在EBER 1,少数瘤细胞表达EB病毒BZLF1蛋白阳性 ,部分瘤细胞表达LMP1和EBNA2蛋白阳性。连续监测 12只huPBL SCID小鼠血清中人IgG含量 ,发现IgG水平随诱瘤时间延长和肿瘤生长有逐渐增高趋势。免疫组化显示诱发的 2 4例淋巴瘤组织p5 3、C myc、Bcl 2和Bax蛋白表达阳性率分别为 83.33%、10 0 %、95 .83%、91.6 7%。结果  相似文献   

11.
Previously, we have established an in vitro immunization method to induce antigen-specific antibody-producing B cells. In the present study, we have attempted to clarify the mechanisms that regulate antibody production by in vitro immunized peripheral blood mononuclear cells (PBMC). Freshly isolated PBMC did not induce antibody production following in vitro immunization, but expressed the interleukin (IL)-10 gene. On the other hand, PBMC pretreated with l-leucyl-l-leucine methyl ester (LLME) induced antibody production, but did not express the IL-10 gene. IL-10 induced functional impairment of CD4+ Th cells and CD11c+ DC, resulting in the suppression of antibody production by in vitro immunized PBMC.  相似文献   

12.
T cell homeostasis is a physiological function of the immune system that maintains a balance in the numbers and ratios of T cells at the periphery. A self-MHC/self-peptide ligand can induce weak (covert) signals via the TCR, thus providing an extended lifespan for naive T cells. A similar mechanism is responsible for the restoration of immune homeostasis in severe lymphopenic conditions such as those following irradiation or chemotherapy, or upon transfer of lymphocytes to nu/nu or SCID mice. To date, the genetic backgrounds of donor and recipient SCID mice were unmatched in all autoimmune arthritis transfer experiments, and the recovery of lymphoid cells in the host has not been followed. In this study, we present the adoptive transfer of proteoglycan (PG)-induced arthritis using unseparated and T or B cell-depleted lymphocytes from arthritic BALB/c donors to genetically matched syngeneic SCID recipient mice. We demonstrate that selectively recovered lymphoid subsets determine the clinical and immunological status of the recipient. We found that when T cells were depleted (>98% depleted), B cells did not produce PG-specific anti-mouse (auto) Abs unless SCID mice received a second Ag (PG) injection, which promoted the recovery of Ag-specific CD4(+) Th1 cells. Reciprocally, as a result of B cell recovery, high levels of serum anti-PG Abs were found in SCID mice that received B cell-depleted (>99% depleted) T lymphocytes. Our results indicate a selective and highly effective cooperation between CD4(+) T cells and B lymphocytes that is required for the restoration of pathological homeostasis and development of autoimmune arthritis in SCID mice.  相似文献   

13.
Summary The severe combined immunodeficient (SCID) mouse, lacking functional T and B lymphocytes, has been considered by many groups to be a prime candidate for the reconstitution of a human immune system in a laboratory animal. In addition, this immuno-deficient animal would appear to have excellent potential as a host for transplanted human cancers, thus providing an exceptional opportunity for the study of interactions between the human immune system and human cancer in a laboratory animal. However, because this animal model is very recent, few studies have been reported documenting the capability of these mice to accept human cancers, and whether or not the residual immune cells in these mice (e.g. natural killer, NK, cells; macrophages) possess antitumor activities toward human cancers. Thus, the purpose of this study was (a) to determine whether or not a human breast carcinoma cell line (MCF-7) can be successfully transplanted to SCID mice, (b) to determine whether or not chronic treatment of SCID mice with a potent lymphokine (recombinant interleukin-2, rIL-2) could alter MCF-7 carcinoma growth, and (c) to assess whether or not rIL-2-activated NK cells (LAK cells) are important modulators of growth of MCF-7 cells in SCID mice. To fulfill these objectives, female SCID mice were implanted s.c. with MCF-7 cells (5 × 106 cells/mouse) at 6 weeks of age. Six weeks later, some of the mice were injected i.p. twice weekly with rIL-2 (1 × 104 U mouse–1 injection–1). Results clearly show that MCF-7 cells can grow progressively in SCID mice; 100% of the SCID mice implanted with MCF-7 cells developed palpable measurable tumors within 5–6 weeks after tumor cell inoculation. In addition, MCF-7 tumor growth was significantly (P <0.01) suppressed by rIL-2 treatment. rIL-2 treatment was non-toxic and no effect of treatment on body weight gains was observed. For non-tumor-bearing SCID mice, splenocytes treated in vitro with rIL-2 (lymphokine-activated killer, LAK, cells) or splenocytes derived from rIL-2-treated SCID mice (LAK cells) had significant (P <0.01) cytolytic activity toward MCF-7 carcinoma cells in vitro. In contrast, splenocytes (LAK cells) derived from tumor(MCF-7)-bearing rIL-2-treated SCID mice lacked cytolytic activities toward MCF-7 cells in vitro. No significant concentration of LAK cells in MCF-7 human breast carcinomas was observed nor did rIL-2 treatment significantly alter growth of MCF-7 cells in vitro. Thus, while rIL-2 treatment significantly suppressed growth of MCF-7 breast carcinomas in SCID mice, the mechanism of this growth suppression, albeit clearly not involving T and B lymphocytes, does not appear to be mediated via a direct cytolytic activity of LAK cells toward the carcinoma cells. However, rIL-2-activated SCID mouse splenocytes (LAK cells) do possess the capability of significant cytolytic activity toward MCF-7 human breast carcinoma cells. Thus, treatment of SCID mice with a potent lymphokine (rIL-2) induces a significant antitumor host response, a response that does not involve T and B lymphocytes and appears not to involve NK/LAK cells. This host response must be considered in future studies designed to investigate the interactions of reconstituted human immune systems and human cancers within this highly promising immuno deficient experimental animal model.  相似文献   

14.
Summary High levels of cytotoxic activity against the natural killer (NK) cell-sensitive target K562 and the NK-resistant target UCLA-SO-M14 (M14) can be generated in vitro either by mixed lymphocyte culture (MLC) or by culture of lymphocytes in interleukin 2 (IL2) (lymphokine activated killer (LAK) cells). The purpose of this study was to identify similarities and differences between MLC-LAK and IL2-LAK cells and allospecific cytotoxic T cells. Induction of cytotoxicity against K562 and M14 in both culture systems was inhibited by antibodies specific either for IL2 or the Tac IL2 receptor. Like NK effector cells, the precursors for the MLC-LAK cells were low density large lymphocytes. However these precursors differed from the large granular lymphocytes that mediated NK cytolysis in sensitivity to the toxic lysosomotropic agent L-leucine methyl ester (LME). The resistance of the MLC-LAK precursors to LME indicated that the precursors included large agranular lymphocytes. Although interferon-gamma (IFN-gamma) is produced in MLC and in IL2 containing cultures, it is not required for induction of either type of cytotoxic activity. Neutralization of IFN-gamma in MLC-and IL2-containing cultures with specific antibodies had no effect on the induction of cytotoxic activities. Both allospecific cytotoxic T lymphocyte (CTL) and LAK activities were enhanced by IL2 and IFN-gamma at the effector cell stage. However, the mechanism of cytolysis was different in the two systems. NK- and MLC-induced LAK activities were independent of CD3-T cell receptor complex while CTL activity was blocked by monoclonal antibodies specific for the CD3 antigen. These results suggest that NK and the in vitro induced LAK cytotoxicities are a family of related functions that differ from CTL. Furthermore, MLC-induced and IL2-induced cytotoxicities against K562 and M14 appear to be identical.This work was supported by NIH grant CA34442  相似文献   

15.
The effects of anti-asialo GM-1 antibody (AAGM) treatment on the engraftment of human T-cell leukemia virus type I (HTLV-I)-infected human T cells in severe combined immunodeficiency (SCID) mice were studied. The frequency of tumor formation in an HTLV-I-transformed human T-cell line, MT-2 cells, at the site of inoculation was significantly higher in AAGM-treated than untreated mice (P<0.05): 16/18 (89%) and 16/26 (62%), respectively. The promotive effect of AAGM treatment on tumor development was marked in the early stage (less than 3 weeks), suggesting that the immediate reaction of natural killers to the inoculated cells may be important for the prevention of tumor development. The surface phenotypes and clonality of the tumor cells were the same as the MT-2 cells inoculated. Inoculation of peripheral blood mononuclear cells (PBMC) from one of the 4 adult T-cell leukemia/lymphoma (ATL) patients resulted in the development of tumors in AAGM-treated SCID mice. However, the surface phenotypes of the cells from these tumors were a mixture of B cells and T cells, suggesting that these tumors consisted of Epstein-Barr virus-transformed B cells and HTLV-I-transformed T cells. In addition, HTLV-I was detected by polymerase chain reaction in various organs of the mice inoculated with PBMC from the ATL patient and the asymptomatic carrier examined. These results suggest that elimination of natural killer function by AAGM treatment is important, although such treatment is not always necessary for the engraftment of HTLV-I-infected cells in SCID mice.  相似文献   

16.
The mechanisms behind the increased incidence of marrow graft failure in recipients that receive allogeneic marrow depleted of T cells were studied. Recipient mice were lethally irradiated and challenged with bone marrow cells (BMC) from C.B-17 +/+ (+/+) donors. Radioisotope 125IUdR incorporation was assessed 5 to 7 days after transfer to determine the extent of engraftment. Some groups received BMC in which the T cells were removed by treatment with antibody and C. In addition, some groups received BMC from T cell-deficient C.B-17 scid/scid (SCID) mice to determine the postulated need for donor T cells in hematopoiesis and engraftment. In a model system that distinguishes between possible host NK cell and radioresistant T cell-mediated rejection of marrow allografts, it was determined that the absence of donor T cells in a marrow graft does not affect engraftment in syngeneic recipients. However, both host NK cell and radioresistant T cell rejection was markedly enhanced when SCID BMC or BMC from C.B-17 +/+ donors that had T cells removed by antibody and complement were infused into irradiated allogeneic recipients. Furthermore, the addition of alloreactive thymocytes as a source of T cells could abrogate this increased susceptibility of the BMC to host rejection mechanisms. As determined by histology and 59Fe uptake, the addition of thymocytes resulted in enhanced erythropoiesis. These results suggest that the increased incidence of marrow graft failure when BMC depleted of T cells are used is a result of active rejection by host effector cells and that the adverse effect of marrow T cell depletion can be reversed by the addition of thymocytes.  相似文献   

17.
Abstract

The use of SCID (severe combined immunodeficient) mice in medical research and biotechnology has increased tremendously in recent years. This review outlines the major characteristics of these animals and the impediments that they pose to the engraftment of human cells and tissues. The development of our SCID mice pretreatment protocol (anti-asialo GM1 antisera and radiation) is described, and the results of xenotransplantation studies of human cells and tissues in these pretreated animals are outlined. Wherever possible, data from transplantation studies (of human tissues and cells) in pretreated and nonpretreated animals are compared. The potential of our pretreated SCID mice for medical research and biotechnology is discussed.  相似文献   

18.
Summary A 0.2 M mixture of L-leucine and L-lysine, a pair of amino acids which Machlis (1969) had shown could attract the zoospores of Allomyces in much lower concentrations, was found to immobilize zoospores by stopping flagellar motion. While the age of the spores does not affect the response to the amino acid mixture, the time for 100% immobilization does increase with increasing numbers of spores. Viability of the spores is not altered by treatment with the mixture of L-leucine and L-lysine and subsequent germling development is highly synchronized.Several other amino acid mixtures had a similar effect upon the Allomyces' flagellum. Indeed, L-lysine by itself seems to be the most effective compound tested. Immobilization of flagella in other fungi, algae, and one protozoan was also caused by treatment with L-leucine and L-lysine. Nothing is known of the mechanism of action of this amino acid treatment.  相似文献   

19.
 In order to study the host immune response to tumours, previous knowledge of the cellular composition of regional draining lymph nodes is necessary. Enlarged regional lymph nodes are a common finding in colon and gastric adenocarcinomas. We have studied the cellular composition of normal non-reactive and of regional draining lymph nodes of colon and gastric adenocarcinomas. In normal non-reactive lymph nodes, T lymphocytes (CD2+, CD7+) constituted the largest fraction of the lymphoreticular cells. These lymphocytes were mainly CD4+, and there were more cells expressing the CD45RA isoform of the CD45 antigen than CD45RO. Reactive lymph nodes presented a decreased proportion of CD4+ CD45RA+ cells and an increased number of B cells. Although most of the T cells in the reactive nodes were CD4+ CD45RO+, their proportion was similar to that found in normal non-reactive nodes. We studied the presence of the molecules CD28 and CD80 involved in the processes of interaction and activation of T and B lymphocytes. The CD28 molecule was found in all the T lymphocytes, while the CD80 molecule was weakly expressed on the B lymphocyte membrane. Received: 4 January 1996 / Accepted: 28 May 1996  相似文献   

20.
Mutants of Bacillus subtilis constitutive for L-leucine dehydrogenase synthesis were selected. Using these mutants we could determine two functional roles for the L-leucine dehydrogenase. This enzyme liberates ammonium ions from branched chain amino acids when supplied as the sole nitrogen source. Another function is to synthesize from L-isoleucine, L-leucine, and L-valine the branched chain -keto acids which are precursors of branched chain fatty acid biosynthesis. These results together with the inducibility of the enzyme suggest that the L-leucine dehydrogenase has primarily a catabolic rather than an anabolic function in the metabolism of Bacillus subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号