首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Glutathione S-transferases (GSTs) of Plasmodium parasites are potential targets for antimalarial drug and vaccine development. We investigated the equilibrium unfolding, functional activity regulation and stability characteristics of the unique GST of Plasmodium vivax (PvGST). Despite high sequence, structural, functional, and evolutionary similarity, the unfolding behavior of PvGST was significantly different from Plasmodium falciparum GST (PfGST). The unfolding pathway of PvGST was non-cooperative with stabilization of an inactive dimeric intermediate. The absence of any compact, folded monomeric intermediate during the unfolding transition suggests that inter-subunit interactions play an important role in stabilizing the protein. Presence of salts effectively inhibited PvGST enzymatic activity by quenching the nucleophilicity of the thiolate anion of GSH. Based on the present findings, together with our previous studies on PfGST, we propose that the regulation of GST enzymatic activity through a dimer-tetramer transition via GSH binding is an exclusive feature of Plasmodium.  相似文献   

2.
Lactate dehydrogenase (LDH) of the malaria parasite, Plasmodium vivax (Pv), serves as a drug target and immunodiagnostic marker. The LDH cDNA generated from total RNA of a clinical isolate of the parasite was cloned into pRSETA plasmid. Recombinant his-tagged PvLDH was over-expressed in E. coli Rosetta2DE3pLysS and purified using Ni2+-NTA resin giving a yield of 25–30 mg/litre bacterial culture. The recombinant protein was enzymatically active and its catalytic efficiency for pyruvate was 5.4 × 108 min?1 M?1, 14.5 fold higher than a low yield preparation reported earlier to obtain PvLDH crystal structure. The enzyme activity was inhibited by gossypol and sodium oxamate. The recombinant PvLDH was reactive in lateral flow immunochromatographic assays detecting pan- and vivax-specific LDH. The soluble recombinant PvLDH purified using heterologous expression system can facilitate the generation of vivax LDH-specific monoclonals and the screening of chemical compound libraries for PvLDH inhibitors.  相似文献   

3.
Malaria is largely a preventable and curable disease. However, a delay or an inappropriate treatment can result in serious adverse outcomes for patient. Rapid, simple and cost-effective diagnostic tests that can be easily adapted and rapidly scaled-up at the field or community levels are needed. In this study, accelerated detection methods for the Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) dihydrofolate reductase–thymidylate synthase were developed based on the loop-mediated isothermal amplification (LAMP) method. The developed methods included the use of species-specific biotinylated primers to amplify LAMP amplicons, which were then hybridized to specific FITC-labeled DNA probes and visualized on a chromatographic lateral flow dipstick (LFD). The total LAMP–LFD assay time was approximately 1.5 h. The LAMP–LFD assays showed similar detection limit to conventional PCR assay when performed on plasmid DNA carrying the malaria dhfr-ts genes. The LAMP–LFD showed 10 folds higher detection limit than PCR when performed on genomic DNA samples from Pf and Pv parasites. The dhfr-ts LAMP–LFD assays also have the advantages of reduced assay time and easy format for interpretation of results.  相似文献   

4.
We report a sensitive, magnetic bead-based colorimetric assay for Plasmodium falciparum lactate dehydrogenase (PfLDH) in which the biomarker is extracted from parasitized whole blood and purified based on antigen binding to antibody-functionalized magnetic particles. Antigen-bound particles are washed, and PfLDH activity is measured on-bead using an optimized colorimetric enzyme reaction (limit of detection [LOD] = 21.1 ± 0.4 parasites/μl). Enhanced analytical sensitivity is achieved by removal of PfLDH from the sample matrix before detection and elimination of nonspecific reductases and species that interfere with the optimal detection wavelength for measuring assay development. The optimized assay represents a simple and effective diagnostic strategy for P. falciparum malaria with time-to-result of 45 min and detection limits similar to those of commercial enzyme-linked immunosorbent assay (ELISA) kits, which can take 4–6 h. This method could be expanded to detect all species of malaria by switching the capture antibody on the magnetic particles to a pan-specific Plasmodium LDH antibody.  相似文献   

5.

Background

Multidrug-resistant Plasmodium vivax (Pv) is widespread in eastern Indonesia, and emerging elsewhere in Asia-Pacific and South America, but is generally regarded as a benign disease. The aim of the study was to review the spectrum of disease associated with malaria due to Pv and P. falciparum (Pf) in patients presenting to a hospital in Timika, southern Papua, Indonesia.

Methods and Findings

Data were prospectively collected from all patients attending the outpatient and inpatient departments of the only hospital in the region using systematic data forms and hospital computerised records. Between January 2004 and December 2007, clinical malaria was present in 16% (60,226/373,450) of hospital outpatients and 32% (12,171/37,800) of inpatients. Among patients admitted with slide-confirmed malaria, 64% of patients had Pf, 24% Pv, and 10.5% mixed infections. The proportion of malarial admissions attributable to Pv rose to 47% (415/887) in children under 1 y of age. Severe disease was present in 2,634 (22%) inpatients with malaria, with the risk greater among Pv (23% [675/2,937]) infections compared to Pf (20% [1,570/7,817]; odds ratio [OR] = 1.19 [95% confidence interval (CI) 1.08–1.32], p = 0.001), and greatest in patients with mixed infections (31% [389/1,273]); overall p < 0.0001. Severe anaemia (haemoglobin < 5 g/dl) was the major complication associated with Pv, accounting for 87% (589/675) of severe disease compared to 73% (1,144/1,570) of severe manifestations with Pf (p < 0.001). Pure Pv infection was also present in 78 patients with respiratory distress and 42 patients with coma. In total 242 (2.0%) patients with malaria died during admission: 2.2% (167/7,722) with Pf, 1.6% (46/2,916) with Pv, and 2.3% (29/1260) with mixed infections (p = 0.126).

Conclusions

In this region with established high-grade chloroquine resistance to both Pv and Pf, Pv is associated with severe and fatal malaria particularly in young children. The epidemiology of P. vivax needs to be re-examined elsewhere where chloroquine resistance is increasing.  相似文献   

6.
The recent World Malaria report shows that progress in malaria elimination has stalled. Current data acquisition by NMCPs depend on passive case detection and clinical reports focused mainly on Plasmodium falciparum (Pf). In recent times, several countries in sub-Saharan Africa have reported cases of Plasmodium vivax (Pv) with a considerable number being Duffy negative. The burden of Pv and Plasmodium ovale (Po) appear to be more than acknowledged. Similarly, the contribution of asymptomatic malaria in transmission is hardly considered by NMCPs in Africa. Inclusion of these as targets in malaria elimination agenda is necessary to achieve elimination goal, as these harbor hypnozoites.The Pan African Vivax and Ovale Network (PAVON) is a new consortium of African Scientists working in Africa on the transmission profile of Pv and Po. The group collaborates with African NMCPs to train in Plasmodium molecular diagnostics, microscopy, and interpretation of molecular data from active surveys to translate into policy. Details of the mission, rational and modus operandi of the group are outlined.  相似文献   

7.
The global spread of sulfadoxine (Sdx, S) and pyrimethamine (Pyr, P) resistance is attributed to increasing number of mutations in DHPS and DHFR enzymes encoded by malaria parasites. The association between drug resistance mutations and SP efficacy is complex. Here we provide an overview of the geographical spread of SP resistance mutations in Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) encoded dhps and dhfr genes. In addition, we have collated the mutation data and mapped it on to the three-dimensional structures of DHPS and DHFR which have become available. Data from genomic databases and 286 studies were collated to provide a comprehensive landscape of mutational data from 2005 to 2019. Our analyses show that the Pyr-resistant double mutations are widespread in Pf/PvDHFR (P. falciparum ~61% in Asia and the Middle East, and in the Indian sub-continent; in P. vivax ~33% globally) with triple mutations prevailing in Africa (~66%) and South America (~33%). For PfDHPS, triple mutations dominate South America (~44%), Asia and the Middle East (~34%) and the Indian sub-continent (~27%), while single mutations are widespread in Africa (~45%). Contrary to the status for P. falciparum, Sdx-resistant single point mutations in PvDHPS dominate globally. Alarmingly, highly resistant quintuple and sextuple mutations are rising in Africa (PfDHFR-DHPS) and Asia (Pf/PvDHFR-DHPS). Structural analyses of DHFR and DHPS proteins in complexes with substrates/drugs have revealed that resistance mutations map proximal to Sdx and Pyr binding sites. Thus new studies can focus on discovery of novel inhibitors that target the non-substrate binding grooves in these two validated malaria parasite drug targets.  相似文献   

8.
Plasmodium lactate dehydrogenase (pLDH), owing to unique structural and kinetic properties, is a well known target for antimalarial compounds. To explore a new approach for high level soluble expression of Plasmodium falciparum lactate dehydrogenase (PfLDH) in E. coli, PfLDH encoding sequence was cloned into pQE-30 Xa vector. When transformed E. coli SG13009 cells were induced at 37 °C with 0.5 mM isopropyl β-d-thiogalactoside (IPTG) concentration, the protein was found to be exclusively associated with inclusion bodies. By reducing cell growth temperature to 15 °C and IPTG concentration to 0.25 mM, it was possible to get approximately 82% of expressed protein in soluble form. Recombinant PfLDH (rPfLDH) was purified to homogeneity yielding 18 mg of protein/litre culture. rPfLDH was found to be biologically active with specific activity of 453.8 μmol/min/mg. The enzyme exhibited characteristic reduced substrate inhibition and enhanced kcat [(3.2 ± 0.02) × 104] with 3-acetylpyridine adenine dinucleotide (APAD+). The procedure described in this study may provide a reliable and simple method for production of large quantities of soluble and biologically active PfLDH.  相似文献   

9.
Widespread drug resistance calls for the urgent development of new antimalarials that target novel steps in the life cycle of Plasmodium falciparum and Plasmodium vivax. The essential subtilisin-like serine protease SUB1 of Plasmodium merozoites plays a dual role in egress from and invasion into host erythrocytes. It belongs to a new generation of attractive drug targets against which specific potent inhibitors are actively searched. We characterize here the P. vivax SUB1 enzyme and show that it displays a typical auto-processing pattern and apical localization in P. vivax merozoites. To search for small PvSUB1 inhibitors, we took advantage of the similarity of SUB1 with bacterial subtilisins and generated P. vivax SUB1 three-dimensional models. The structure-based virtual screening of a large commercial chemical compounds library identified 306 virtual best hits, of which 37 were experimentally confirmed inhibitors and 5 had Ki values of <50 μm for PvSUB1. Interestingly, they belong to different chemical families. The most promising competitive inhibitor of PvSUB1 (compound 2) was equally active on PfSUB1 and displayed anti-P. falciparum and Plasmodium berghei activity in vitro and in vivo, respectively. Compound 2 inhibited the endogenous PfSUB1 as illustrated by the inhibited maturation of its natural substrate PfSERA5 and inhibited parasite egress and subsequent erythrocyte invasion. These data indicate that the strategy of in silico screening of three-dimensional models to select for virtual inhibitors combined with stringent biological validation successfully identified several inhibitors of the PvSUB1 enzyme. The most promising hit proved to be a potent cross-inhibitor of PlasmodiumSUB1, laying the groundwork for the development of a globally active small compound antimalarial.  相似文献   

10.
A simple electrochemical biosensor was developed for the detection of the mitochondrial NADH dehydrogenase 6 gene (MT-ND6) and its enzymatic digestion by BamHI enzyme. This biosensor was fabricated by modification of a glassy carbon electrode with gold nanoparticles (AuNPs/GCE) and a probe oligonucleotide (ssDNA/AuNPs/GCE). The probe, which is a thiolated segment of the MT-ND6 gene, was deposited by self-assembling immobilization on AuNPs/GCE. Two indicators including methylene blue (MB) and neutral red (NR) were used as the electroactive indicators and the electrochemical response of the modified electrode was measured by differential pulse voltammetry. The proposed biosensor can detect the complementary sequences of the MT-ND6 gene. Also the modified electrode was used for the detection of an enzymatic digestion process by BamHI enzyme. The electrochemical biosensor can detect the MT-ND6 gene and its enzymatic digestion in polymerase chain reaction (PCR)-amplified DNA extracted from human blood. Also the biosensor was used directly for detection of the MT-ND6 gene in all of the human genome.  相似文献   

11.

Background  

Purine nucleoside phosphorylase (PNP) is central to purine salvage mechanisms in Plasmodium parasites, the causative agents of malaria. Most human malaria results from infection either by Plasmodium falciparum (Pf), the deadliest form of the parasite, or by the widespread Plasmodium vivax (Pv). Whereas the PNP enzyme from Pf has previously been studied in detail, despite the prevalence of Pv little is known about many of the key metabolic enzymes from this parasite, including PvPNP.  相似文献   

12.
A highly sensitive electrochemical DNA biosensor made of polyaniline (PANI) and gold nanoparticles (AuNPs) nanocomposite (AuNPs@PANI) has been used for the detection of trace concentration of Ag+. In the presence of Ag+, with the interaction of cytosine–Ag+–cytosine (C–Ag+–C), cytosine-rich DNA sequence immobilized onto the surface of AuNPs@PANI has a self-hybridization and then forms a duplex-like structure. The whole detection procedure of Ag+ based on the developed biosensor was evaluated by electrochemical impedance spectroscopy. On semi-logarithmic plots of the log Ag+ concentration versus peak current, the results show that the prepared biosensor can detect silver ions at a wide linear range of 0.01–100 nM (R = 0.9828) with a detection limit of 10 pM (signal/noise = 3). Moreover, the fabricated sensor exhibits good selectivity and repeatability. The detection of Ag+ was determined by Ag+ self-induced conformational change of DNA scaffold that involved only one oligonucleotide, showing its convenience and availability.  相似文献   

13.
Lead ion (Pb2+) accumulation in nature can affect the environment and human health severely. Thus, rapid and sensitive detection is of great importance. One-step detection of Pb2+ at attomole levels was realized by using dynamic light scattering (DLS) technique coupled with unmodified gold nanoparticles (AuNPs). Pb2+-dependent DNAzyme was double-stranded and could not adsorb on the surface of AuNPs, while the substrate strand could be cleaved into ssDNA fragments on addition of Pb2+. The ssDNA fragments could adsorb on the surface of AuNPs and prevent them from aggregating in the presence of NaCl. Therefore, the disperse state of AuNPs changed on addition of Pb2+ in the presence of DNAzyme and NaCl, which was estimated with an average hydrodynamic diameter by using DLS. Under optimum conditions, the average diameter of the solution decreased linearly with the concentration of Pb2+ over the range from 10 to 300 pM, with a detection limit of 6.2 pM. Moreover, satisfactory results were obtained when the proposed method was applied in the detection of Pb2+ in water samples.  相似文献   

14.
This study utilized the radio frequency (RF) technology to develop a multilayered polymeric DNA sensor with the help of gold and magnetic nanoparticles. The flexible polymeric materials, poly (p-xylylene) (Parylene) and polyethylene naphtholate (PEN), were used as substrates to replace the conventional rigid substrates such as glass and silicon wafers. The multilayered polymeric RF biosensor, including the two polymer layers and two copper transmission structure layers, was developed to reduce the total sensor size and further enhance the sensitivity of the biochip in the RF DNA detection. Thioglycolic acid (TGA) was used on the surface of the proposed biochip to form a thiolate-modified sensing surface for DNA hybridization. Gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs) were used to immobilize on the surface of the biosensor to enhance overall detection sensitivity. In addition to gold nanoparticles, the magnetic nanoparticles has been demonstrated the applicability for RF DNA detection. The performance of the proposed biosensor was evaluated by the shift of the center frequency of the RF biosensor because the electromagnetic characteristic of the biosensors can be altered by the immobilized multilayer nanoparticles on the biosensor. The experimental results show that the detection limit of the DNA concentration can reach as low as 10 pM, and the largest shift of the center frequency with triple-layer AuNPs and MNPs can approach 0.9 and 0.7 GHz, respectively. Such the achievement implies that the developed biosensor can offer an alternative inexpensive, disposable, and highly sensitive option for application in biomedicine diagnostic systems because the price and size of each biochip can be effectively reduced by using fully polymeric materials and multilayer-detecting structures.  相似文献   

15.
16.
There is still a need for sensitive and reproducible immunoassays for quantitative detection of malarial antigens in preclinical and clinical phases of vaccine development and in epidemiology and surveillance studies, particularly in the vector host. Here we report the results of sensitivity and reproducibility studies for a research-grade, quantitative enhanced chemiluminescent-based slot blot assay (ECL-SB) for detection of both recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP) and native PfCSP from Oocysts (Pf Oocyst) developing in the midguts of Anopheles stephensi mosquitoes. The ECL-SB detects as little as 1.25 pg of rPfCSP (linear range of quantitation 2.5–20 pg; R2 = 0.9505). We also find the earliest detectable expression of native PfCSP in Pf Oocyst by ECL-SB occurs on day 7 post feeding with infected blood meal. The ECL-SB was able to detect approximately as few as 0.5 day 8 Pf Oocysts (linear quantitation range 1–4, R2 = 0.9795) and determined that one Pf Oocyst expressed approximately 2.0 pg (0.5–3 pg) of native PfCSP, suggesting a similar range of detection for recombinant and native forms of Pf CSP. The ECL-SB is highly reproducible; the Coefficient of Variation (CV) for inter-assay variability for rPf CSP and native PfCSP were 1.74% and 1.32%, respectively. The CVs for intra-assay variability performed on three days for rPf CSP were 2.41%, 0.82% and 2% and for native Pf CSP 1.52%, 0.57%, and 1.86%, respectively. In addition, the ECL-SB was comparable to microscopy in determining the P. falciparum prevalence in mosquito populations that distinctly contained either high and low midgut Pf Oocyst burden. In whole mosquito samples, estimations of positivity for P. falciparum in the high and low burden groups were 83.3% and 23.3% by ECL-SB and 85.7% and 27.6% by microscopy. Based on its performance characteristics, ECL-SB could be valuable in vaccine development and to measure the parasite prevalence in mosquitoes and transmission-blocking interventions in endemic areas.  相似文献   

17.
Gold nanoparticles (AuNPs) with an average diameter of 5nm were assembled on the surface of silver chloride@polyaniline (PANI) core-shell nanocomposites (AgCl@PANI). Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) suggested that AuNPs were incorporated on AgCl@PANI through coordination bonds instead of electrostatic interaction. The resulting AuNPs-AgCl@PANI hybrid material exhibited good electroactivity at a neutral pH environment. An amperometric glucose biosensor was developed by adsorption of glucose oxidase (GOx) on an AuNPs-AgCl@PANI modified glassy carbon (GC) electrode. AuNPs-AgCl@PANI could provide a biocompatible surface for high enzyme loading. Due to size effect, the AuNPs in the hybrid material could act as a good catalyst for both oxidation and reduction of H(2)O(2). As the measurement of glucose was based on the electrochemical detection of H(2)O(2) generated by enzyme-catalyzed-oxidation of glucose, the biosensor exhibited a super highly sensitive response to the analyte with a detection limit of 4 pM. Moreover, the biosensor showed good reproducibility and operation stability. The effects of some factors, such as temperature and pH value, were also studied.  相似文献   

18.
Artemisinin-ferrocene conjugates incorporating a 1,2-disubstituted ferrocene analogous to that embedded in ferroquine but attached via a piperazine linker to C10 of the artemisinin were prepared from the piperazine artemisinin derivative, and activities were evaluated against asexual blood stages of chloroquine (CQ) sensitive NF54 and CQ resistant K1 and W2 strains of Plasmodium falciparum (Pf). The most active was the morpholino derivative 5 with IC50 of 0.86?nM against Pf K1 and 1.4?nM against Pf W2. The resistance indices were superior to those of current clinical artemisinins. Notably, the compounds were active against Pf NF54 early and late blood stage gametocytes – these exerted >86% inhibition at 1?µM against both stages; they are thus appreciably more active than methylene blue (~57% inhibition at 1?µM) against late stage gametocytes. The data portends transmission blocking activity. Cytotoxicity was determined against human embryonic kidney cells (Hek293), while human malignant melanoma cells (A375) were used to assess their antitumor activity.  相似文献   

19.
The shikimate pathway in Plasmodium falciparum provides several targets for designing novel antiparasitic agents for the treatment of malaria. Chorismate synthase (CS) is a key enzyme in the shikimate pathway which catalyzes the seventh and final step of the pathway. P. falciparum chorismate synthase (PfCS) is unique in terms of enzymatic behavior, cellular localization and in having two additional amino acid inserts compared to any other CS. The structure of PfCS along with cofactor FMN was predicted by homology modeling using crystal structure of Helicobacter pylori chorismate synthase (HpCS). The quality of the model was validated using structure analysis servers and molecular dynamics. Dimeric form of PfCS was generated and the FMN binding mechanism involving movement of loop near active site has been proposed. Active site pocket has been identified and substrate 5-enolpyruvylshikimate 3-phosphate (EPSP) along with screened potent inhibitors has been docked. The study resulted in identification of putative inhibitors of PfCS with binding efficiency in nanomolar range. The selected putative inhibitors could lead to the development of anti-malarial drugs.  相似文献   

20.
Malaria parasites utilize Methylerythritol phosphate (MEP) pathway for synthesis of isoprenoid precursors which are essential for maturation and survival of parasites during erythrocytic and gametocytic stages. The absence of MEP pathway in the human host establishes MEP pathway enzymes as a repertoire of essential drug targets. The fourth enzyme, 4-diphosphocytidyl-2C-methyl-d-erythritol kinase (IspE) has been proved essential in pathogenic bacteria, however; it has not yet been studied in any Plasmodium species. This study was undertaken to investigate genetic polymorphism and concomitant structural implications of the Plasmodium vivax IspE (PvIspE) by employing sequencing, modeling and bioinformatics approach. We report that PvIspE gene displayed six non-synonymous mutations which were restricted to non-conserved regions within the gene from seven topographically distinct malaria-endemic regions of India. Phylogenetic studies reflected that PvIspE occupies unique status within Plasmodia genus and reflects that Plasmodium vivax IspE gene has a distant and non-conserved relation with human ortholog Mevalonate Kinase (MAVK). Structural modeling analysis revealed that all PvIspE Indian isolates have critically conserved canonical galacto-homoserine-mevalonate-phosphomevalonate kinase (GHMP) domain within the active site lying in a deep cleft sandwiched between ATP and CDPME-binding domains. The active core region was highly conserved among all clinical isolates, may be due to >60% β-pleated rigid architecture. The mapped structural analysis revealed the critically conserved active site of PvIspE, both sequence, and spacially among all Indian isolates; showing no significant changes in the active site. Our study strengthens the candidature of Plasmodium vivax IspE enzyme as a future target for novel antimalarials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号