首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helicobacter pylori evade immune responses and achieve persistent colonization in the stomach. However, the mechanism by which H. pylori infections persist is not clear. In this study, we showed that MIR30B is upregulated during H. pylori infection of an AGS cell line and human gastric tissues. Upregulation of MIR30B benefited bacterial replication by compromising the process of autophagy during the H. pylori infection. As a potential mechanistic explanation for this observation, we demonstrate that MIR30B directly targets ATG12 and BECN1, which are important proteins involved in autophagy. These results suggest that compromise of autophagy by MIR30B allows intracellular H. pylori to evade autophagic clearance, thereby contributing to the persistence of H. pylori infections.  相似文献   

2.
Macroautophagy (autophagy herein) is a cellular catabolic mechanism activated in response to stress conditions including starvation, hypoxia and misfolded protein accumulation. Abnormalities in autophagy were associated with pathologies including cancer and neurodegenerative diseases. Hence, elucidation of the signaling pathways controlling autophagy is of utmost importance. Recently we and others described microRNAs (miRNAs) as novel and potent modulators of the autophagic activity. Here, we describe MIR181A (hsa-miR-181a-1) as a new autophagy-regulating miRNA. We showed that overexpression of MIR181A resulted in the attenuation of starvation- and rapamycin-induced autophagy in MCF-7, Huh-7 and K562 cells. Moreover, antagomir-mediated inactivation of endogenous miRNA activity stimulated autophagy. We identified ATG5 as an MIR181A target. Indeed, ATG5 cellular levels were decreased in cells upon MIR181A overexpression and increased following the introduction of antagomirs. More importantly, overexpression of ATG5 from a miRNA-insensitive cDNA construct rescued autophagic activity in the presence of MIR181A. We also showed that the ATG5 3′ UTR contained functional MIR181A responsive sequences sensitive to point mutations. Therefore, MIR181A is a novel and important regulator of autophagy and ATG5 is a rate-limiting miRNA target in this effect.  相似文献   

3.
Both apoptosis ("self-killing") and autophagy ("self-eating") are evolutionarily conserved processes, and their crosstalk influences anticancer drug sensitivity and cell death. However, the underlying mechanism remains unclear. Here, we demonstrated that HMGB1 (high mobility group box 1), normally a nuclear protein, is a crucial regulator of TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10)-induced cancer cell death. Activation of PARP1 (poly [ADP-ribose] polymerase 1) was required for TNFSF10-induced ADP-ribosylation of HMGB1 in cancer cells. Moreover, pharmacological inhibition of PARP1 activity or knockdown of PARP1 gene expression significantly inhibited TNFSF10-induced HMGB1 cytoplasmic translocation and subsequent HMGB1-BECN1 complex formation. Furthermore, suppression of the PARP1-HMGB1 pathway diminished autophagy, increased apoptosis, and enhanced the anticancer activity of TNFSF10 in vitro and in a subcutaneous tumor model. These results indicate that PARP1 acts as a prominent upstream regulator of HMGB1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy, which provides new insight into the mechanism of TNFSF10 resistance.  相似文献   

4.
《Autophagy》2013,9(2):214-224
Both apoptosis ("self-killing") and autophagy ("self-eating") are evolutionarily conserved processes, and their crosstalk influences anticancer drug sensitivity and cell death. However, the underlying mechanism remains unclear. Here, we demonstrated that HMGB1 (high mobility group box 1), normally a nuclear protein, is a crucial regulator of TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10)-induced cancer cell death. Activation of PARP1 (poly [ADP-ribose] polymerase 1) was required for TNFSF10-induced ADP-ribosylation of HMGB1 in cancer cells. Moreover, pharmacological inhibition of PARP1 activity or knockdown of PARP1 gene expression significantly inhibited TNFSF10-induced HMGB1 cytoplasmic translocation and subsequent HMGB1-BECN1 complex formation. Furthermore, suppression of the PARP1-HMGB1 pathway diminished autophagy, increased apoptosis, and enhanced the anticancer activity of TNFSF10 in vitro and in a subcutaneous tumor model. These results indicate that PARP1 acts as a prominent upstream regulator of HMGB1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy, which provides new insight into the mechanism of TNFSF10 resistance.  相似文献   

5.
6.
The lysosomal degradation pathway, autophagy, is essential for the maintenance of cellular homeostasis. Recently, autophagy has been demonstrated to be required in the process of adipocyte conversion. However, its role in mature adipocytes under physiological and pathological conditions remains unclear. Here, we report a major function of BECN1 in the regulation of basal autophagy in mature adipocytes. We also show that berberine, a natural plant alkaloid, inhibits basal autophagy in adipocytes and adipose tissue of mice fed a high-fat diet via downregulation of BECN1 expression. We further demonstrate that berberine has a pronounced effect on the stability of Becn1 mRNA through the Mir30 family. These findings explore the potential of BECN1 as a key molecule and a drug target for regulating autophagy in mature adipocytes.  相似文献   

7.
《Autophagy》2013,9(2):275-277
Autophagy is a catabolic process critical to maintaining cellular homeostasis and responding to cytotoxic insult. Autophagy is recognized as “programmed cell survival” in contrast to apoptosis or programmed cell death. Upregulation of autophagy has been observed in many types of cancers and has been demonstrated to both promote and inhibit antitumor drug resistance depending to a large extent on the nature and duration of the treatment-induced metabolic stress as well as the tumor type. Cisplatin, doxorubicin and methotrexate are commonly used anticancer drugs in osteosarcoma, the most common form of childhood and adolescent cancer. Our recent study demonstrated that high mobility group box 1 protein (HMGB1)-mediated autophagy is a significant contributor to drug resistance in osteosarcoma cells. Inhibition of both HMGB1 and autophagy increase the drug sensitivity of osteosarcoma cells in vivo and in vitro. Furthermore, we demonstrated that the ULK1-FIP200 complex is required for the interaction between HMGB1 and BECN1, which then promotes BECN1-PtdIns3KC3 complex formation during autophagy. Thus, these findings provide a novel mechanism of osteosarcoma resistance to therapy facilitated by HMGB1-mediated autophagy and provide a new target for the control of drug-resistant osteosarcoma patients.  相似文献   

8.
Beclin 1, the mammalian orthologue of yeast Atg6, has a central role in autophagy, a process of programmed cell survival, which is increased during periods of cell stress and extinguished during the cell cycle. It interacts with several cofactors (Atg14L, UVRAG, Bif-1, Rubicon, Ambra1, HMGB1, nPIST, VMP1, SLAM, IP(3)R, PINK and survivin) to regulate the lipid kinase Vps-34 protein and promote formation of Beclin 1-Vps34-Vps15 core complexes, thereby inducing autophagy. In contrast, the BH3 domain of Beclin 1 is bound to, and inhibited by Bcl-2 or Bcl-XL. This interaction can be disrupted by phosphorylation of Bcl-2 and Beclin 1, or ubiquitination of Beclin 1. Interestingly, caspase-mediated cleavage of Beclin 1 promotes crosstalk between apoptosis and autophagy. Beclin 1 dysfunction has been implicated in many disorders, including cancer and neurodegeneration. Here, we summarize new findings regarding the organization and function of the Beclin 1 network in cellular homeostasis, focusing on the cross-regulation between apoptosis and autophagy.  相似文献   

9.
The molecular mechanisms that drive the development of cardiac hypertrophy in hypertrophic cardiomyopathy (HCM) remain elusive. Accumulated evidence suggests that microRNAs are essential regulators of cardiac remodelling. We have been suggested that microRNAs could play a role in the process of HCM. To uncover which microRNAs were changed in their expression, microRNA microarrays were performed on heart tissue from HCM patients (n = 7) and from healthy donors (n = 5). Among the 13 microRNAs that were differentially expressed in HCM, miR‐451 was the most down‐regulated. Ectopic overexpression of miR‐451 in neonatal rat cardiomyocytes (NRCM) decreased the cell size, whereas knockdown of endogenous miR‐451 increased the cell surface area. Luciferase reporter assay analyses demonstrated that tuberous sclerosis complex 1 (TSC1) was a direct target of miR‐451. Overexpression of miR‐451 in both HeLa cells and NRCM suppressed the expression of TSC1. Furthermore, TSC1 was significantly up‐regulated in HCM myocardia, which correlated with the decreased levels of miR‐451. As TSC1 is a known positive regulator of autophagy, we examined the role of miR‐451 in the regulation of autophagy. Overexpression of miR‐451 in vitro inhibited the formation of the autophagosome. Conversely, miR‐451 knockdown accelerated autophagosome formation. Consistently, an increased number of autophagosomes was observed in HCM myocardia, accompanied by up‐regulated autophagy markers, and the lipidated form of LC3 and Beclin‐1. Taken together, our findings indicate that miR‐451 regulates cardiac hypertrophy and cardiac autophagy by targeting TSC1. The down‐regulation of miR‐451 may contribute to the development of HCM and may be a potential therapeutic target for this disease.  相似文献   

10.
Background: Oridonin (ORI) could inhibit the proliferation and induce apoptosis in various cancer cell lines. However, the mechanism is not fully understood.Methods: Human prostate cancer (HPC) cells were cultured in vitro and cell viability was detected by the CCK-8 assay. The ultrastructure changes were observed under transmission electron microscope (TEM). Chemical staining with acridine orange (AO), MDC or DAPI was used to detect acidic vesicular organelles (AVOs) and alternation of DNA. Expression of LC3 and P21 was detected by Western Blot. Apoptotic rates and cell cycle arrest were detected by FACS.Results: Our study demonstrated that after ORI treatment, the proliferations of human prostate cancer (HPC) cell lines PC-3 and LNCaP were inhibited in a concentration and time-dependent manner. ORI induced cell cycle arrest at the G2/M phase. A large number of autophagosomes with double-membrane structure and acidic vesicular organelles (AVOs) were detected in the cytoplasm of HPC cells treated with ORI for 24 hours. ORI resulted in the conversion of LC3-I to LC3-II and recruitment of LC3-II to the autophagosomal membranes. Autophagy inhibitor 3-methyladenine (3-MA) reduced AVOs formation and inhibited LC3-I to LC3-II conversion. At 48 h, DNA fragmentation, chromatin condensation and disappearance of surface microvilli were detected in ORI-treated cells. ORI induced a significant increase in the number of apoptotic cells (PC-3: 5.4% to 27.0%, LNCaP: 5.3% to 31.0%). Promoting autophagy by nutrient starvation increased cell viability, while inhibition of autophagy by 3-MA promoted cell death. The expression of P21 was increased by ORI, which could be completely reversed by the inhibition of autophagy.Conclusions: Our findings indicated that autophagy occurred before the onset of apoptosis and protected cancer cells in ORI-treated HPC cells. P21 was involved in ORI-induced autophagy and apoptosis. Our results provide an experimental basis for understand the anti-tumor mechanism of ORI as treatment for prostate cancer.  相似文献   

11.
12.
13.
14.
《Autophagy》2013,9(10):1776-1786
The lysosomal degradation pathway, autophagy, is essential for the maintenance of cellular homeostasis. Recently, autophagy has been demonstrated to be required in the process of adipocyte conversion. However, its role in mature adipocytes under physiological and pathological conditions remains unclear. Here, we report a major function of BECN1 in the regulation of basal autophagy in mature adipocytes. We also show that berberine, a natural plant alkaloid, inhibits basal autophagy in adipocytes and adipose tissue of mice fed a high-fat diet via downregulation of BECN1 expression. We further demonstrate that berberine has a pronounced effect on the stability of Becn1 mRNA through the Mir30 family. These findings explore the potential of BECN1 as a key molecule and a drug target for regulating autophagy in mature adipocytes.  相似文献   

15.
Tumours lacking argininosuccinate synthetase-1 (ASS1) are auxotrophic for arginine and sensitive to amino-acid deprivation. Here, we investigated the role of ASS1 as a biomarker of response to the arginine-lowering agent, pegylated arginine deiminase (ADI-PEG20), in lymphoid malignancies. Although ASS1 protein was largely undetectable in normal and malignant lymphoid tissues, frequent hypermethylation of the ASS1 promoter was observed specifically in the latter. A good correlation was observed between ASS1 methylation, low ASS1 mRNA, absence of ASS1 protein expression and sensitivity to ADI-PEG20 in malignant lymphoid cell lines. We confirmed that the demethylating agent 5-Aza-dC reactivated ASS1 expression and rescued lymphoma cell lines from ADI-PEG20 cytotoxicity. ASS1-methylated cell lines exhibited autophagy and caspase-dependent apoptosis following treatment with ADI-PEG20. In addition, the autophagy inhibitor chloroquine triggered an accumulation of light chain 3-II protein and potentiated the apoptotic effect of ADI-PEG20 in malignant lymphoid cells and patient-derived tumour cells. Finally, a patient with an ASS1-methylated cutaneous T-cell lymphoma responded to compassionate-use ADI-PEG20. In summary, ASS1 promoter methylation contributes to arginine auxotrophy and represents a novel biomarker for evaluating the efficacy of arginine deprivation in patients with lymphoma.  相似文献   

16.
MicroRNAs (MiRs) are short noncoding RNAs that can regulate gene expression. It has been reported that miR-21 suppresses apoptosis in activated T cells, but the molecular mechanism remains undefined. Tumor suppressor Tipe2 (or tumor necrosis factor-α-induced protein 8 (TNFAIP8)-like 2 (TNFAIP8L2)) is a newly identified anti-inflammatory protein of the TNFAIP8 family that is essential for maintaining immune homeostasis. We report here that miR-21 is a direct target of nuclear factor-κB and could regulate Tipe2 expression in a Tipe2 coding region-dependent manner. In activated T cells and macrophages, Tipe2 expression was markedly downregulated, whereas miR-21 expression was upregulated. Importantly, Tipe2-deficient T cells were significantly less sensitive to apoptosis. Conversely, overexpression of Tipe2 in EL-4 T cells increased their susceptibility to activation-induced apoptosis. Therefore, Tipe2 provides a molecular bridge between miR-21 and cell apoptosis; miR-21 suppresses apoptosis in activated T cells at least in part through directly targeting tumor suppressor gene Tipe2.  相似文献   

17.
18.
《Autophagy》2013,9(12):1833-1834
The exploration into the roles of autophagy in tumorigenesis, either as tumor suppressor or tumor promoter, has led to a great increase in the knowledge of cancer development, progression and treatment. However, there is currently no consensus on how to manipulate autophagy to improve antitumor effects. In this study, we investigated the role of autophagy in established liver cancer cells in response to hypoxia. Hypoxia not only is the most pervasive microenvironmental stress in solid tumors but is also a canonical stimulus for autophagy. The involvement of dysregulated microRNAs in hypoxia-induced autophagy and their therapeutic potential in advanced liver cancer were examined.  相似文献   

19.
《Autophagy》2013,9(1):70-79
Hypoxia activates autophagy, an evolutionarily conserved cellular catabolic process. Dysfunction in the autophagy pathway has been implicated in an increasing number of human diseases, including cancer. Hypoxia induces upregulation of a specific set of microRNAs (miRNAs) in a variety of cell types. Here, we describe hypoxia-induced MIR155 as a potent inducer of autophagy. Enforced expression of MIR155 increases autophagic activity in human nasopharyngeal cancer and cervical cancer cells. Knocking down endogenous MIR155 inhibits hypoxia-induced autophagy. We demonstrated that MIR155 targets multiple players in MTOR signaling, including RHEB, RICTOR, and RPS6KB2. MIR155 suppresses target-gene expression by directly interacting with their 3′ untranslated regions (UTRs), mutations of the binding sites abolish their MIR155 responsiveness. Furthermore, by downregulating MTOR signaling, MIR155 also attenuates cell proliferation and induces G1/S cell cycle arrest. Collectively, these data present a new role for MIR155 as a key regulator of autophagy via dysregulation of MTOR pathway.  相似文献   

20.
As an important type of somatic cell, granulosa cells play a major role in deciding the fate of follicles. Therefore, analyses of granulosa cell apoptosis and follicular atresia have become hotspots of animal research. Autophagy is a cellular catabolic mechanism that protects cells from stress conditions, including starvation, hypoxia, and accumulation of misfolded proteins. However, the relationship between autophagy and apoptosis in granulosa cells is not well known. Here, we demonstrate that let-7g regulates the mouse granulosa cell autophagy signaling pathway by inhibiting insulin-like growth factor 1 receptor expression and affecting the phosphorylation of protein kinase B/mammalian target of rapamycin. Small interference-mediated knockdown of insulin-like growth factor 1 receptor significantly promoted autophagy signaling of mouse granulosa cells. In contrast, overexpression of insulin-like growth factor 1 receptor in mouse granulosa cells attenuated autophagy activity in the presence of let-7g. In addition, overexpression of let-7g increased the apoptosis rate, as indicated by an increased number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells. Finally, 3-methyladenine as well as the lysosomal enzyme inhibitor chloroquine partially blocked apoptosis. In summary, this study demonstrates that let-7g regulates autophagy in mouse granulosa cells by targeting insulin-like growth factor 1 receptor and downregulating protein kinase B/mammalian target of rapamycin signaling, and that mouse granulosa cell autophagy induced by let-7g participates in apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号