首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transforming growth factor β (TGF-β) signaling facilitates metastasis in advanced malignancy. While a number of protein-encoding genes are known to be involved in this process, information on the role of microRNAs (miRNAs) in TGF-β-induced cell migration and invasion is still limited. By hybridizing a 515-miRNA oligonucleotide-based microarray library, a total of 28 miRNAs were found to be significantly deregulated in TGF-β-treated normal murine mammary gland (NMuMG) epithelial cells but not Smad4 knockdown NMuMG cells. Among upregulated miRNAs, miR-155 was the most significantly elevated miRNA. TGF-β induces miR-155 expression and promoter activity through Smad4. The knockdown of miR-155 suppressed TGF-β-induced epithelial-mesenchymal transition (EMT) and tight junction dissolution, as well as cell migration and invasion. Further, the ectopic expression of miR-155 reduced RhoA protein and disrupted tight junction formation. Reintroducing RhoA cDNA without the 3′ untranslated region largely reversed the phenotype induced by miR-155 and TGF-β. In addition, elevated levels of miR-155 were frequently detected in invasive breast cancer tissues. These data suggest that miR-155 may play an important role in TGF-β-induced EMT and cell migration and invasion by targeting RhoA and indicate that it is a potential therapeutic target for breast cancer intervention.  相似文献   

2.
3.
4.
Hepatocellular carcinoma (HCC) is one the the most fatal cancers worldwide. The poor prognosis of HCC is mainly due to the developement of distance metastasis. To investigate the mechanism of metastasis in HCC, an orthotopic HCC metastasis animal model was established. Two sets of primary liver tumor cell lines and corresponding lung metastasis cell lines were generated. In vitro functional analysis demonstrated that the metastatic cell line had higher invasion and migration ability when compared with the primary liver tumor cell line. These cell lines were subjected to microRNA (miRNAs) microarray analysis to identify differentially expressed miRNAs which were associated with the developement of metastasis in vivo. Fifteen human miRNAs, including miR-106b, were differentially expressed in 2 metastatic cell lines compared with the primary tumor cell lines. The clinical significance of miR-106b in 99 HCC clinical samples was studied. The results demonstrated that miR-106b was over-expressed in HCC tumor tissue compared with adjacent non-tumor tissue (p = 0.0005), and overexpression of miR-106b was signficantly correlated with higher tumor grade (p = 0.018). Further functional studies demonstrated that miR-106b could promote cell migration and stress fiber formation by over-expressing RhoGTPases, RhoA and RhoC. In vivo functional studies also showed that over-expression of miR-106b promoted HCC metastasis. These effects were related to the activation of the epithelial-mesenchymal transition (EMT) process. Our results suggested that miR-106b expression contributed to HCC metastasis by activating the EMT process promoting cell migration in vitro and metastasis in vivo.  相似文献   

5.

Background

MicroRNA-21 (miR-21) plays an important role in the pathogenesis and progression of liver fibrosis. Here, we determined the serum and hepatic content of miR-21 in patients with liver cirrhosis and rats with dimethylnitrosamine-induced hepatic cirrhosis and examined the effects of miR-21 on SPRY2 and HNF4α in modulating ERK1 signaling in hepatic stellate cells (HSCs) and epithelial-mesenchymal transition (EMT) of hepatocytes.

Methods

Quantitative RT-PCR was used to determine miR-21 and the expression of SPRY2, HNF4α and other genes. Immunoblotting assay was carried out to examine the expression of relevant proteins. Luciferase reporter assay was performed to assess the effects of miR-21 on its predicted target genes SPRY2 and HNF4α. Primary HSCs and hepatocytes were treated with miR-21 mimics/inhibitors or appropriate adenoviral vectors to examine the relation between miR-21 and SPRY2 or HNF4α.

Results

The serum and hepatic content of miR-21 was significantly higher in cirrhotic patients and rats. SPRY2 and HNF4α mRNA levels were markedly lower in the cirrhotic liver. MiR-21 overexpression was associated with enhanced ERK1 signaling and EMT in liver fibrosis. Luciferase assay revealed suppressed SPRY2 and HNF4α expression by miR-21. Ectopic miR-21 stimulated ERK1 signaling in HSCs and induced hepatocyte EMT by targeting SPRY2 or HNF4α. Downregulating miR-21 suppressed ERK1 signaling, inhibited HSC activation, and blocked EMT in TGFβ1-treated hepatocytes.

Conclusions

MiR-21 modulates ERK1 signaling and EMT in liver fibrosis by regulating SPRY2 and HNF4α expression. MiR-21 may serve as a potentially biomarker as well as intervention target for hepatic cirrhosis.  相似文献   

6.
7.
Epithelial‐mesenchymal transition (EMT) has been contributed to increase migration and invasion of cancer cells. However, the correlate of Naa10p and IKKα with EMT in oral squamous cell carcinoma (OSCC) is not yet fully understood. In our present study, we found N‐α‐acetyltransferase 10 protein (Naa10p) and IκB kinase α (IKKα) were abnormally abundant in oral squamous cell carcinoma (OSCC). Bioinformatic results indicate that the expression of Naa10p and IKKα is correlated with TGF‐β1/Smad and EMT‐related molecules. The Transwell migration, invasion, qRT‐PCR and Western blot assay indicated that Naa10p repressed OSCC cell migration, invasion and EMT, whereas IKKα promoted TGF‐β1–mediated OSCC cell migration, invasion and EMT. Mechanistically, Naa10p inhibited IKKα activation of Smad3 through the interaction with IKKα directly in OSCC cells after TGF‐β1 stimulation. Notably, knockdown of Naa10p reversed the IKKα‐induced change in the migration, invasion and EMT‐related molecules in OSCC cells after TGF‐β1 stimulation. These findings suggest that Naa10p interacted with IKKα mediates EMT in OSCC cells through TGF‐β1/Smad, a novel pathway for preventing OSCC.  相似文献   

8.
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and is increasing in frequency in the U.S. The major reason for the low postoperative survival rate of HCC is widespread intrahepatic metastasis or invasion, and activation of TGFβ signaling is associated with the invasive phenotype. This study aims at determining the novel function of miR-127 in modulating HCC migration. Overexpression of miR-127 inhibits HCC cell migration, invasion and tumor growth in nude mice. MiR-127 directly represses matrix metalloproteinase 13 (MMP13) 3′UTR activity and protein expression, and diminishes MMP13/TGFβ-induced HCC migration. In turn, TGFβ decreases miR-127 expression by enhancing c-Jun-mediated inhibition of miR-127 promoter activity. In contrast, p53 transactivates miR-127 promoter and induces miR-127 expression, which is antagonized by c-Jun. The inhibition of miR-127 by c-Jun is through TGFβ-mediated ERK and JNK pathways. The lower miR-127 expression shows a negative correlation with the higher MMP13 expression in a subset of human HCC specimens. This is the first report elucidating a feedback regulation between miR-127 and the TGFβ/c-Jun cascade in HCC migration via MMP13 that involves a crosstalk between the oncogene c-Jun and tumor suppressor p53.  相似文献   

9.
Cancer-associated fibroblasts (CAFs) are commonly acquired activated extracellular matrix (ECM)-producing myofibroblasts, a phenotypes with multiple roles in hepatic fibrogenesis and carcinogenesis via crosstalk with cohabitating stromal/cancer cells. Here, we discovered a mechanism whereby CAF-derived cytokines enhance hepatocellular carcinoma (HCC) progression and metastasis by activating the circRNA-miRNA-mRNA axis in tumor cells. CAFs secreted significantly higher levels of CXCL11 than normal fibroblasts (NFs), and CXCL11 also had comparatively higher expressions in HCC tissues, particularly in metastatic tissues, than para-carcinoma tissues. Both CAF-derived and experimentally introduced CXCL11 promoted HCC cell migration. Likewise, CAFs promoted tumor migration in orthotopic models, as shown by an increased number of tumor nodules, whereas CXCL11 silencing triggered a decrease of it. CXCL11 stimulation upregulated circUBAP2 expression, which was significantly higher in HCC tissues than para-carcinoma tissues. Silencing circUBAP2 reversed the effects of CXCL11 on the expression of IL-1β/IL-17 and HCC cell migration. Further downstream, the IFIT1 and IFIT3 levels were significantly upregulated in HCC cells upon CXCL11 stimulation, but downregulated upon circUBAP2 silencing. IFIT1 or IFIT3 silencing reduced the expression of IL-17 and IL-1β, and attenuated the migration capability of HCC cells. Herein, circUBAP2 counteracted miR-4756-mediated inhibition on IFIT1/3 via sponging miR-4756. miR-4756 inhibition reversed the effects induced by circUBAP2 silencing on the IL-17 and IL-1β levels and HCC cell migration. In orthotopic models, miR-4756 inhibition also reversed the effects on metastatic progression induced by silencing circUBAP2.Subject terms: Tumour biomarkers, Cancer  相似文献   

10.
TGF-β promotes cell migration and invasion, an attribute that is linked to the pro-metastasis function of this cytokine in late stage cancers. The LIM 1863 colon carcinoma organoid undergoes epithelial-mesenchymal transition (EMT) in response to TGF-β. This process is markedly accelerated by TNF-α, and we found that the levels of miR-21 and miR-31 were prominently elevated under the synergistic actions of TGF-β/TNF-α. Consistent with this, overexpression of either miR-21 or miR-31 significantly enhanced the effect of TGF-β alone on LIM 1863 morphological changes. More importantly, transwell assays demonstrated the positive effects of both miR-21 and miR-31 in TGF-β regulation of LIM 1863 motility and invasiveness. Elevated levels of miR-21 and miR-31 also enhanced motility and invasiveness of other colon carcinoma cell lines. We present compelling evidence that TIAM1, a guanidine exchange factor of the Rac GTPase, is a direct target of both miR-21 and miR-31. Indeed in LIM 1863 cells, suppression of TIAM1 is required for miR-21/miR-31 to enhance cell migration and invasion. Therefore, we have uncovered miR-21 and miR-31 as downstream effectors of TGF-β in facilitating invasion and metastasis of colon carcinoma cells.  相似文献   

11.
Epidermal growth factor receptor (EGFR) overexpression and activation result in increased proliferation and migration of solid tumors including ovarian cancer. In recent years, mounting evidence indicates that EGFR is a direct and functional target of miR-7. In this study, we found that miR-7 expression was significantly downregulated in highly metastatic epithelial ovarian cancer (EOC) cell lines and metastatic tissues, whereas the expression of, EGFR correlated positively with metastasis in both EOC patients and cell lines. Overexpression of miR-7 markedly suppressed the capacities of cell invasion and migration and resulted in morphological changes from a mesenchymal phenotype to an epithelial-like phenotype in EOC. In addition, overexpression of miR-7 upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, accompanied with EGFR inhibition and AKT/ERK1/2 inactivation. Similar to miR-7 transfection, silencing of EGFR with this siRNA in EOC cells also upregulated CK-18 and β-catenin expression and downregulated Vimentin expression, and decreased phosphorylation of both Akt and ERK1/2, confirming that EGFR is a target of miR-7 in reversing EMT. The pharmacological inhibition of PI3K-AKT and ERK1/2 both significantly enhanced CK-18 and β-catenin expression and suppressed vimentin expression, indicating that AKT and ERK1/2 pathways are required for miR-7 mediating EMT. Finally, the expression of miR-7 and EGFR in primary EOC with matched metastasis tissues was explored. It was showed that miR-7 is inversely correlated with EGFR. Taken together, our results suggested that miR-7 inhibited tumor metastasis and reversed EMT through AKT and ERK1/2 pathway inactivation by reducing EGFR expression in EOC cell lines. Thus, miR-7 might be a potential prognostic marker and therapeutic target for ovarian cancer metastasis intervention.  相似文献   

12.
13.
14.
Purpose: Our previous data indicated that miR-24-3p is involved in the regulation of vascular endothelial cell (EC) proliferation and migration/invasion. However, whether IL-1β affects hypoxic HUVECs by miR-24-3p is still unclear. Therefore, the present study aimed to investigate the role and underlying mechanism of interleukin 1β (IL-1β) in hypoxic HUVECs.Methods: We assessed the mRNA expression levels of miR-24-3p, hypoxia-inducible factor-1α (HIF1A) and NF-κB-activating protein (NKAP) by quantitative real-time polymerase chain reaction (RT-qPCR). ELISA measured the expression level of IL-1β. Cell counting kit-8 (CCK-8) assays evaluated the effect of miR-24-3p or si-NKAP+miR-24 on cell proliferation (with or without IL-1β). Transwell migration and invasion assays were used to examine the effects of miR-24-3p or si-NKAP+miR-24-3p on cell migration and invasion (with or without IL-1β). Luciferase reporter assays were used to identify the target of miR-24-3p.Results: We demonstrated that in acute myocardial infarction (AMI) patient blood samples, the expression of miR-24-3p is down-regulated, the expression of IL-1β or NKAP is up-regulated, and IL-1β or NKAP is negatively correlated with miR-24-3p. Furthermore, IL-1β promotes hypoxic HUVECs proliferation by down-regulating miR-24-3p. In addition, IL-1β also significantly promotes the migration and invasion of hypoxic HUVECs; overexpression of miR-24-3p can partially rescue hypoxic HUVECs migration and invasion. Furthermore, we discovered that NKAP is a novel target of miR-24-3p in hypoxic HUVECs. Moreover, both the overexpression of miR-24-3p and the suppression of NKAP can inhibit the NF-κB/pro-IL-1β signaling pathway. However, IL-1β mediates suppression of miR-24-3p activity, leading to activation of the NKAP/NF-κB pathway. In conclusion, our results reveal a new function of IL-1β in suppressing miR-24-3p up-regulation of the NKAP/NF-κB pathway.  相似文献   

15.
BackgroundsHepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancer with high metastasis and recurrence rates. Hypoxia-induced miRNAs and HIF-1α are demonstrated to play essential roles in tumor metastasis. Matrine (C15H24N2O), an alkaloid extracted from Sophora flavescens Aiton, has been used as adjuvant therapy for liver cancer in China. The anti-metastasis effects of matrine on HCC and the underlying mechanisms remain poorly understood.PurposeWe aimed to investigate the effects of matrine on metastasis of HCC both in vitro and in vivo, and explored whether miR-199a-5p and HIF-1α are involved in the action of matrine.MethodsMTT method, colony formation, wound healing and matrigel transwell assays were performed to evaluate the effects of matrine on cell proliferation, migration and invasion. Nude mice xenograft model and immunohistochemistry (IHC) assay were employed to investigate the anti-metastatic action of matrine in vivo. Quantitative real-time PCR, western blot and dual luciferase reporter assay were conducted to determine the underlying mechanisms of matrine.ResultsMatrine exerted stronger anti-proliferative action on Bel7402 and SMMC-7721 cells under hypoxia than that in normoxia. Both matrine and miR-199a-5p exhibited significant inhibitory effects on migration, invasion and EMT in Bel7402 and SMMC-7721 cells under hypoxia. Further study showed that miR-199a-5p was downregulated in HCC cell lines, and this microRNA was identified to directly target HIF-1α, resulting in decreased HIF-1α expression. Matrine induced miR-199a-5p expression, decreased HIF-1α expression and inhibited metastasis of Bel7402 and SMMC-7721 cells, while miR-199a-5p knockdown reversed the inhibitory effects of matrine on cell migration, invasion, EMT and HIF-1α expression. In vivo, matrine showed significant anti-metastatic activity in the nude mouse xenograft model. H&E and IHC analysis indicated that lung and liver metastasis nodules were reduced, and the protein expression of HIF-1α and Vimentin were significantly decreased by i.p injection of matrine.ConclusionsMatrine exhibits significant anti-metastatic effect on HCC, which is attributed to enhanced miR-199a-5p expression and subsequently impaired HIF-1α signaling and EMT. These findings suggest that miR-199a-5p is a potential therapeutic target of HCC, and matrine may represent a promising anti-metastatic medication for HCC therapy.  相似文献   

16.
Hepatocellular carcinoma (HCC) is one of the leading lethal malignancies and a hypervascular tumor. Although some long non-coding RNAs (lncRNAs) have been revealed to be involved in HCC. The contributions of lncRNAs to HCC progression and angiogenesis are still largely unknown. In this study, we identified a HCC-related lncRNA, CMB9-22P13.1, which was highly expressed and correlated with advanced stage, vascular invasion, and poor survival in HCC. We named this lncRNA Progression and Angiogenesis Associated RNA in HCC (PAARH). Gain- and loss-of function assays revealed that PAARH facilitated HCC cellular growth, migration, and invasion, repressed HCC cellular apoptosis, and promoted HCC tumor growth and angiogenesis in vivo. PAARH functioned as a competing endogenous RNA to upregulate HOTTIP via sponging miR-6760-5p, miR-6512-3p, miR-1298-5p, miR-6720-5p, miR-4516, and miR-6782-5p. The expression of PAARH was significantly positively associated with HOTTIP in HCC tissues. Functional rescue assays verified that HOTTIP was a critical mediator of the roles of PAARH in modulating HCC cellular growth, apoptosis, migration, and invasion. Furthermore, PAARH was found to physically bind hypoxia inducible factor-1 subunit alpha (HIF-1α), facilitate the recruitment of HIF-1α to VEGF promoter, and activate VEGF expression under hypoxia, which was responsible for the roles of PAARH in promoting angiogenesis. The expression of PAARH was positively associated with VEGF expression and microvessel density in HCC tissues. In conclusion, these findings demonstrated that PAARH promoted HCC progression and angiogenesis via upregulating HOTTIP and activating HIF-1α/VEGF signaling. PAARH represents a potential prognostic biomarker and therapeutic target for HCC.Subject terms: Cancer microenvironment, Oncogenes, Translational research  相似文献   

17.
Epithelial-to-mesenchymal transition (EMT) has an important role in invasion and metastasis of hepatocellular carcinoma (HCC). To explore the regulatory mechanism of atypical protein kinase C ι (aPKCι) signaling pathways to HCC development, and find an agent for targeted therapy for HCC, immortalized murine hepatocytes were employed to establish an EMT cell model of HCC, MMH-RT cells. Our study showed that EMT took place in MMH-R cells under the effect of transforming growth factor-β1 (TGF-β1) overexpressing aPKCι. Furthermore, we showed that the aPKCι blocking agent aurothiomalate (ATM) inhibited EMT and decreased invasion of hepatocytes. Moreover, ATM selectively inhibited proliferation of mesenchymal cells and HepG2 cells and induced apoptosis. However, ATM increased proliferation of epithelial cells and had little effect on apoptosis and invasion of epithelial cells. In conclusion, our result suggested that aPKCι could be an important bio-marker of tumor EMT, and used as an indicator of invasion and malignancy. ATM might be a promising agent for targeted treatment of HCC.  相似文献   

18.
19.
Ras homolog family member A (RhoA) and Rho-associated coiled coil-containing protein kinases 1 and 2 (ROCK1 and 2) are key regulators of focal adhesion, actomyosin contraction and cell motility. RhoA/ROCK signaling has emerged as an attractive target for the development of new cancer therapeutics. Whether RhoA/ROCK is involved in regulating the formation of tumor cell vasculogenic mimicry (VM) is largely unknown. To confirm this hypothesis, we performed in vitro experiments using hepatocellular carcinoma (HCC) cell lines. Firstly, we demonstrated that HCC cells with higher active RhoA/ROCK expression were prone to form VM channels, as compared with RhoA/ROCK low-expressing cells. Furthermore, Y27632 (a specific inhibitor of ROCK) rather than exoenzyme C3 (a specific inhibitor of RhoA) effectively inhibited the formation of tubular network structures in a dose-dependent manner. To elucidate the possible mechanism of ROCK on VM formation, real-time qPCR, western blot and immunofluorescence were used to detect changes of the key VM-related factors, including VE-cadherin, erythropoietin-producing hepatocellular carcinoma-A2 (EphA2), phosphoinositide 3-kinase (PI3K), matrix metalloproteinase (MMP)14, MMP2, MMP9 and laminin 5γ2-chain (LAMC2), and epithelial-mesenchymal-transition (EMT) markers: E-cadherin and Vimentin. The results showed that all the expression profiles were attenuated by blockage of ROCK. In addition, in vitro cell migration and invasion assays showed that Y27632 inhibited the migration and invasion capacity of HCC cell lines in a dose-dependent manner markedly. These data indicate that ROCK is an important mediator in the formation of tumor cell VM, and suggest that ROCK inhibition may prove useful in the treatment of VM in HCC.  相似文献   

20.

Background

The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer progression and may promote resistance to therapy. An analysis of patients (n = 71) profiled with both gene expression and a global microRNA assessment (∼415 miRs) identified miR-147 as highly anti-correlated with an EMT gene expression signature score and postulated to reverse EMT (MET).

Methods and Findings

miR-147 was transfected into colon cancer cells (HCT116, SW480) as well as lung cancer cells (A-549). The cells were assessed for morphological changes, and evaluated for effects on invasion, motility, and the expression of key EMT markers. Resistance to chemotherapy was evaluated by treating cells with gefitinib, an EGFR inhibitor. The downstream genes regulated by miR-147 were assayed using the Affymetrix GeneChip U133 Plus2.0 platform. miR-147 was identified to: 1. cause MET primarily by increasing the expression of CDH1 and decreasing that of ZEB1; 2. inhibit the invasion and motility of cells; 3. cause G1 arrest by up-regulating p27 and down-regulating cyclin D1. miR-147 also dramatically reversed the native drug resistance of the colon cancer cell line HCT116 to gefitinib. miR-147 significantly repressed Akt phosphorylation, and knockdown of Akt with siRNA induced MET. The morphologic effects of miR-147 on cells appear to be attenuated by TGF-B1, promoting a plastic and reversible transition between MET and EMT.

Conclusion

miR-147 induced cancer cells to undergo MET and induced cell cycle arrest, suggesting a potential tumor suppressor role. miR-147 strikingly increased the sensitivity to EGFR inhibitor, gefitinib in cell with native resistance. We conclude that miR-147 might have therapeutic potential given its ability to inhibit proliferation, induce MET, as well as reverse drug sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号