首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic translation initiation factor 4A (eIF4A) is a DEAD-box protein that participates in translation initiation. As an ATP-dependent RNA helicase, it is thought to resolve secondary structure elements from the 5′-untranslated region of mRNAs to enable ribosome scanning. The RNA-stimulated ATPase and ATP-dependent helicase activities of eIF4A are enhanced by auxiliary proteins, but the underlying mechanisms are still largely unknown. Here, we have dissected the effect of eIF4B and eIF4G on eIF4A RNA-dependent ATPase- and RNA helicase activities and on eIF4A conformation. We show for the first time that yeast eIF4B, like its mammalian counterpart, can stimulate RNA unwinding by eIF4A, although it does not affect the eIF4A conformation. The eIF4G middle domain enhances this stimulatory effect and promotes the formation of a closed eIF4A conformation in the presence of ATP and RNA. The closed state of eIF4A has been inferred but has not been observed experimentally before. eIF4B and eIF4G jointly stimulate ATP hydrolysis and RNA unwinding by eIF4A and favor the formation of the closed eIF4A conformer. Our results reveal distinct functions of eIF4B and eIF4G in synergistically stimulating the eIF4A helicase activity in the mRNA scanning process.  相似文献   

2.
The activity of eIF4A, a key player in translation initiation, is regulated by other translation factors through currently unknown mechanisms. Here, we provide the necessary framework to understand the mechanism of eIF4A's regulation by eIF4G. In solution, eIF4A adopts a defined conformation that is different from the crystal structure. Binding of eIF4G induces a 'half-open' conformation by interactions with both domains, such that the helicase motifs are pre-aligned for activation. A primary interface acts as an anchor for complex formation. We show here that formation of the secondary interface is essential for imposing the 'half-open' conformation on eIF4A, and it is critical for the functional interaction of eIF4G with eIF4A. Via this bipartite interaction, eIF4G guides the transition of eIF4A between the 'half-open' and closed conformations, and stimulates its activity by accelerating the rate-limiting step of phosphate release. Subtle changes induced by eIF4G may be amplified by input signals from other translation factors, leading to an efficient regulation of translation initiation.  相似文献   

3.
Eukaryotic initiation factor (eIF) 4A is a DEAD-box helicase that stimulates translation initiation by unwinding mRNA secondary structure. The accessory proteins eIF4G, eIF4B, and eIF4H enhance the duplex unwinding activity of eIF4A, but the extent to which they modulate eIF4A activity is poorly understood. Here, we use real-time fluorescence assays to determine the kinetic parameters of duplex unwinding and ATP hydrolysis by these initiation factors. To ensure efficient duplex unwinding, eIF4B and eIF4G cooperatively activate the duplex unwinding activity of eIF4A. Our data reveal that eIF4H is much less efficient at stimulating eIF4A unwinding activity than eIF4B, implying that eIF4H is not able to completely substitute for eIF4B in duplex unwinding. By monitoring unwinding and ATPase assays under identical conditions, we demonstrate that eIF4B couples the ATP hydrolysis cycle of eIF4A with strand separation, thereby minimizing nonproductive unwinding events. Using duplex substrates with altered GC contents but similar predicted thermal stabilities, we further show that the rate of formation of productive unwinding complexes is strongly influenced by the local stability per base pair, in addition to the stability of the entire duplex. This finding explains how a change in the GC content of a hairpin is able to influence translation initiation while maintaining the overall predicted thermal stability.  相似文献   

4.
5.
RNA helicases are molecular motors that are involved in virtually all aspects of RNA metabolism. Eukaryotic initiation factor (eIF) 4A is the prototypical member of the DEAD-box family of RNA helicases. It is thought to use energy from ATP hydrolysis to unwind mRNA structure and, in conjunction with other translation factors, it prepares mRNA templates for ribosome recruitment during translation initiation. In screening marine extracts for new eukaryotic translation initiation inhibitors, we identified the natural product hippuristanol. We show here that this compound is a selective and potent inhibitor of eIF4A RNA-binding activity that can be used to distinguish between eIF4A-dependent and -independent modes of translation initiation in vitro and in vivo. We also show that poliovirus replication is delayed when infected cells are exposed to hippuristanol. Our study demonstrates the feasibility of selectively targeting members of the DEAD-box helicase family with small-molecule inhibitors.  相似文献   

6.
The eukaryotic translation factor 4A (eIF4A) is a member of DEA(D/H)-box RNA helicase family, a diverse group of proteins that couples ATP hydrolysis to RNA binding and duplex separation. eIF4A participates in the initiation of translation by unwinding secondary structure in the 5'-untranslated region of mRNAs and facilitating scanning by the 40 S ribosomal subunit for the initiation codon. eIF4A alone has only weak ATPase and helicase activities, but these are stimulated by eIF4G, eIF4B, and eIF4H. eIF4G has two eIF4A-binding sites, one in the central domain (cp(C3)) and one in the COOH-terminal domain (cp(C2)). In the current work, we demonstrate that these two eIF4G domains have different effects on the RNA-stimulated ATPase activity of eIF4A. cp(C3) stimulates ATP-hydrolytic efficiency by about 40-fold through two mechanisms: lowering K(m)(RNA) by 10-fold and raising k(cat) by 4-fold. cp(C3) also stimulates RNA cross-linking to eIF4A in an ATP-independent manner. Studies with eIF4G and eIF4A variants suggest a model by which cp(C3) alters the conformation of the catalytic site to favor RNA binding. cp(C2) does not stimulate ATPase activity and furthermore increases both K(m)(ATP) (at saturating RNA concentrations) and K(m)(RNA) (at subsaturating ATP concentrations). Both cp(C3) and cp(C2) directly interact with the NH(2)-terminal domain of eIF4A, which possesses conserved ATP- and oligonucleotide-binding motifs, but not with the COOH-terminal domain.  相似文献   

7.
During mitosis, global translation is suppressed, while synthesis of proteins with vital mitotic roles must go on. Prior evidence suggests that the mitotic translation shift involves control of initiation. Yet, no signals specifically targeting translation initiation factors during mitosis have been identified. We used phosphoproteomics to investigate the central translation initiation scaffold and “ribosome adaptor,” eukaryotic initiation factor 4G1 (eIF4G1) in interphase or nocodazole-arrested mitotic cells. This approach and kinase inhibition assays, in vitro phosphorylation with recombinant kinase, and kinase depletion-reconstitution experiments revealed that Ser1232 in eIF4G1 is phosphorylated by cyclin-dependent kinase 1 (Cdk1):cyclin B during mitosis. Ser1232 is located in an unstructured region of the C-terminal portion of eIF4G1 that coordinates assembly of the eIF4G/-4A/-4B helicase complex and binding of the mitogen-activated protein kinase (MAPK) signal-integrating kinase, Mnk. Intense phosphorylation of Ser1232 in mitosis strongly enhanced the interactions of eIF4A with HEAT domain 2 of eIF4G and decreased association of eIF4G/-4A with RNA. Our findings implicate phosphorylation of eIF4G1(Ser1232) by Cdk1:cyclin B and its inhibitory effects on eIF4A helicase activity in the mitotic translation initiation shift.  相似文献   

8.

Background

Eukaryotic initiation factor 4A (eIF4A) plays a key role in the process of protein translation initiation by facilitating the melting of the 5′ proximal secondary structure of eukaryotic mRNA for ribosomal subunit attachment. It was experimentally postulated that the closed conformation of the eIF4A protein bound by the ATP and RNA substrates is coupled to RNA duplex unwinding to promote protein translation initiation, rather than an open conformation in the absence of ATP and RNA substrates. However, the allosteric process of eIF4A from the open to closed state induced by the ATP and RNA substrates are not yet fully understood.

Methodology

In the present work, we constructed a series of diplex and ternary models of the eIF4A protein bound by the ATP and RNA substrates to carry out molecular dynamics simulations, free energy calculations and conformation analysis and explore the allosteric properties of eIF4A.

Results

The results showed that the eIF4A protein completes the conformational transition from the open to closed state via two allosteric processes of ATP binding followed by RNA and vice versa. Based on cooperative allosteric network analysis, the ATP binding to the eIF4A protein mainly caused the relative rotation of two domains, while the RNA binding caused the proximity of two domains via the migration of RNA bases in the presence of ATP. The cooperative binding of ATP and RNA for the eIF4A protein plays a key role in the allosteric transition.  相似文献   

9.
10.
Bi X  Ren J  Goss DJ 《Biochemistry》2000,39(19):5758-5765
It has been proposed that, during translational initiation, structures in the 5' untranslated region of mRNA are unwound. eIF4A, a member of the DEAD box family of proteins (those that contain a DEAD amino acid sequence), separately or in conjunction with other eukaryotic initiation factors, utilizes the energy from ATP hydrolysis to unwind these structures. As a step in defining the mechanism of helicase activity in the wheat germ protein synthesis system, we have utilized direct fluorescence measurements, ATPase assays, and helicase assays. The RNA duplex unwinding activity of wheat germ eIF4A is similar to other mammalian systems; however, eIF4F or eIFiso4F is required, probably because of the low binding affinity of wheat germ eIF4A for mRNA. Direct ATP binding measurements showed that eIF4A had a higher binding affinity for ADP than ATP, resulting in a limited hydrolysis and procession along the RNA in the helicase assay. The addition of eIF4B resulted in a change in binding affinity for ATP, increasing it almost 10-fold while the ADP binding affinity was approximately the same. The data presented in this paper suggest that eIF4F or eIFiso4F acts to position the eIF4A and stabilize the interaction with mRNA. ATP produces a conformational change which allows a limited unwinding of the RNA duplex. The binding of eIF4B either prior to or after hydrolysis allows for increased affinity for ATP and for the cycle of conformational changes to proceed, resulting in further unwinding and processive movement along the mRNA.  相似文献   

11.
Eukaryotic initiation factor 4A (eIF4A) is an RNA-dependent ATPase and ATP-dependent RNA helicase that is thought to melt the 5' proximal secondary structure of eukaryotic mRNAs to facilitate attachment of the 40S ribosomal subunit. eIF4A functions in a complex termed eIF4F with two other initiation factors (eIF4E and eIF4G). Two isoforms of eIF4A, eIF4AI and eIF4AII, which are encoded by two different genes, are functionally indistinguishable. A third member of the eIF4A family, eIF4AIII, whose human homolog exhibits 65% amino acid identity to human eIF4AI, has also been cloned from Xenopus and tobacco, but its function in translation has not been characterized. In this study, human eIF4AIII was characterized biochemically. While eIF4AIII, like eIF4AI, exhibits RNA-dependent ATPase activity and ATP-dependent RNA helicase activity, it fails to substitute for eIF4AI in an in vitro-reconstituted 40S ribosome binding assay. Instead, eIF4AIII inhibits translation in a reticulocyte lysate system. In addition, whereas eIF4AI binds independently to the middle and carboxy-terminal fragments of eIF4G, eIF4AIII binds to the middle fragment only. These functional differences between eIF4AI and eIF4AIII suggest that eIF4AIII might play an inhibitory role in translation under physiological conditions.  相似文献   

12.
Eukaryotic initiation factor (eIF) 4A is a DEAD box RNA helicase that works in conjunction with eIF4B, eIF4H, or as a subunit of eIF4F to unwind secondary structure in the 5'-untranslated region of mRNA, which facilitates binding of the mRNA to the 40 S ribosomal subunit. This study demonstrates how the helicase activity of eIF4A is modulated by eIF4B, eIF4H, or as a subunit of eIF4F. Results indicate that a linear relationship exists between the initial rate or amplitude of unwinding and duplex stability for all factor combinations tested. eIF4F, like eIF4A, behaves as a non-processive helicase. Either eIF4B or eIF4H stimulated the initial rate and amplitude of eIF4A-dependent duplex unwinding, and the magnitude of stimulation is dependent on duplex stability. Furthermore, eIF4A (or eIF4F) becomes a slightly processive helicase in the presence of eIF4B or eIF4H. All combinations of factors tested indicate that the rate of duplex unwinding is equivalent in the 5' --> 3' and 3' --> 5' directions. However, the optimal rate of unwinding was dependent on the length of the single-stranded region of the substrate when different combinations of factors were used. The combinations of eIF4A, eIF4A + eIF4B, eIF4A + eIF4H, and eIF4F showed differences in their ability to unwind chemically modified duplexes. A simple model of how eIF4B or eIF4H affects the duplex unwinding mechanism of eIF4A is proposed.  相似文献   

13.
Mir MA  Panganiban AT 《The EMBO journal》2008,27(23):3129-3139
The eIF4F cap-binding complex mediates the initiation of cellular mRNA translation. eIF4F is composed of eIF4E, which binds to the mRNA cap, eIF4G, which indirectly links the mRNA cap with the 43S pre-initiation complex, and eIF4A, which is a helicase necessary for initiation. Viral nucleocapsid proteins (N) function in both genome replication and RNA encapsidation. Surprisingly, we find that hantavirus N has multiple intrinsic activities that mimic and substitute for each of the three peptides of the cap-binding complex thereby enhancing the translation of viral mRNA. N binds with high affinity to the mRNA cap replacing eIF4E. N binds directly to the 43S pre-initiation complex facilitating loading of ribosomes onto capped mRNA functionally replacing eIF4G. Finally, N obviates the requirement for the helicase, eIF4A. The expression of a multifaceted viral protein that functionally supplants the cellular cap-binding complex is a unique strategy for viral mRNA translation initiation. The ability of N to directly mediate translation initiation would ensure the efficient translation of viral mRNA.  相似文献   

14.
15.
Recent studies demonstrated that wheat germ poly(A)-binding protein (PABP) interacted with translation eukaryotic initiation factor (eIF)-iso4G and eIF4B, and these interactions increased the poly(A) binding activity of PABP (Le, H., Tanguay, R. L., Balasta, M. L., Wei, C. C., Browning, K. S., Metz, A. M., Goss, D. J., and Gallie, D. R. (1997) J. Biol. Chem. 272, 16247-16255) and the cap binding activity of eIF-iso4F (Wei, C. C., Balasta, M. L., Ren, J., and Goss, D. J. (1998) Biochemistry 37, 1910-1916). We report here that the interaction between PABP and eIF-iso4G has a substantial effect on the ATPase activity and RNA helicase activity of (eIF4A + eIF4B + eIF-iso4F) complex. ATPase kinetic assays show, in the presence of poly(U), PABP can increase the parameter (k(cat)/K(m)) by 3.5-fold with a 2-fold decrease of K(m) for the (eIF4A + eIF-iso4F) complex. In the presence of globin messenger RNA, the ATPase activity of the complex (eIF4A + eIF-iso4F) was increased 2-fold by the presence of PABP. RNA helicase assays demonstrated that the presence of PABP enhanced the RNA duplex unwinding activity of the initiation factor complex. These results suggest that, in terms of the scanning model of translation initiation, PABP may enhance the mRNA scanning rate of the complex formed by eIF4A, eIF4B, and eIF4F or eIF-(iso)4F and increase the rate of translation.  相似文献   

16.
The mammalian translation initiation factor 4A (eIF4A) is a prototype member of the DEAD-box RNA helicase family that couples ATPase activity to RNA binding and unwinding. In the crystal form, eIF4A has a distended "dumbbell" structure consisting of two domains, which probably undergo a conformational change, on binding ATP, to form a compact, functional structure via the juxtaposition of the two domains. Moreover, additional conformational changes between two domains may be involved in the ATPase and helicase activity of eIF4A. The molecular basis of these conformational changes, however, is not understood. Here, we generated RNA aptamers with high affinity for eIF4A by in vitro RNA selection-amplification. On binding, the RNAs inhibit ATP hydrolysis. One class of RNAs contains members that exhibit dissociation constant of 27 nM for eIF4A and severely inhibit cap-dependent in vitro translation. The binding affinity was increased on Arg substitution in the conserved motif Ia of eIF4A, which probably improves a predicted arginine network to bind RNA substrates. Selected RNAs, however, failed to bind either domain of eIF4A that had been split at the linker site. These findings suggest that the selected RNAs interact cooperatively with both domains of eIF4A, either in the dumbbell or the compact form, and entrap it into a dead-end conformation, probably by blocking the conformational change of eIF4A. The selected RNAs, therefore, represent a new class of specific inhibitors that are suitable for the analysis of eukaryotic initiation, and which pose a potential therapeutic against malignancies that are caused by aberrant translational control.  相似文献   

17.
Ribonucleoprotein complexes (RNP) remodeling by DEAD-box proteins is required at all stages of cellular RNA metabolism. These proteins are composed of a core helicase domain lacking sequence specificity; flanking protein sequences or accessory proteins target and affect the core's activity. Here we examined the interaction of eukaryotic initiation factor 4AI (eIF4AI), the founding member of the DEAD-box family, with two accessory factors, eIF4B and eIF4H. We find that eIF4AI forms a stable complex with RNA in the presence of AMPPNP and that eIF4B or eIF4H can add to this complex, also dependent on AMPPNP. For both accessory factors, the minimal stable complex with eIF4AI appears to have 1:1 protein stoichiometry. However, because eIF4B and eIF4H share a common binding site on eIF4AI, their interactions are mutually exclusive. The eIF4AI:eIF4B and eIF4AI:eIF4H complexes have the same RNase resistant footprint as does eIF4AI alone (9–10 nucleotides [nt]). In contrast, in a selective RNA binding experiment, eIF4AI in complex with either eIF4B or eIF4H preferentially bound RNAs much longer than those bound by eIF4AI alone (30–33 versus 17 nt, respectively). The differences between the RNase resistant footprints and the preferred RNA binding site sizes are discussed, and a model is proposed in which eIF4B and eIF4H contribute to RNA affinity of the complex through weak interactions not detectable in structural assays. Our findings mirror and expand on recent biochemical and structural data regarding the interaction of eIF4AI's close relative eIF4AIII with its accessory protein MLN51.  相似文献   

18.
mRNA translation in eukaryotic cells involves a set of proteins termed translation initiation factors (eIFs), several of which are involved in the binding of ribosomes to mRNA. These include eIF4G, a modular scaffolding protein, and eIF4A, an RNA helicase, of which two closely related forms are known in mammals, eIF4A(I) and eIF4A(II). In mammals, eIF4G possesses two independent sites for binding eIF4A, whereas in other eukaryotes (e.g. yeast) only one site appears to be present, thus raising the issue of the stoichiometry of eIF4G.eIF4A complexes in different eukaryotes. We show that in human embryonic kidney cells eIF4G is associated with eIF4A(I) or eIF4A(II) but not with both simultaneously, suggesting a stoichiometry of 1:1 rather than 1:2. To confirm this, eIF4A(I) or eIF4A(II) was expressed in a tagged form in these cells, and complexes with eIF4G were again isolated. Complexes containing tagged eIF4A(I) or eIF4A(II) contained no endogenous eIF4A, supporting the notion that eIF4G binds only one molecule of eIF4A. Each binding site in eIF4G can bind either eIF4A(I) or eIF4A(II). The data imply that the second binding site in mammalian eIF4A does not bind an additional eIF4A molecule and that initiation factor complexes in different eukaryotes contain one eIF4A per eIF4G.  相似文献   

19.
Eukaryotic translation initiation factor 4E (eIF4E) is a key factor involved in different aspects of mRNA metabolism. Drosophila melanogaster genome encodes eight eIF4E isoforms, and the canonical isoform eIF4E-1 is a ubiquitous protein that plays a key role in mRNA translation. eIF4E-3 is specifically expressed in testis and controls translation during spermatogenesis. In eukaryotic cells, translational control and mRNA decay is highly regulated in different cytoplasmic ribonucleoprotein foci, which include the processing bodies (PBs). In this study, we show that Drosophila eIF4E-1 and eIF4E-3 occur in PBs along the DEAD-box RNA helicase Me31B. We show that Me31B interacts with eIF4E-1 and eIF4E-3 by means of yeast two-hybrid system, FRET in D. melanogaster S2 cells and coimmunoprecipitation in testis. Truncation and point mutations of Me31B proteins show two eIF4E-binding sites located in different protein domains. Residues Y401-L407 (at the carboxy-terminus) are essential for interaction with eIF4E-1, whereas residues F63-L70 (at the amino-terminus) are critical for interaction with eIF4E-3. The residue W117 in eIF4E-1 and the homolog position F103 in eIF4E-3 are necessary for Me31B-eIF4E interaction suggesting that the change of tryptophan to phenylalanine provides specificity. Me31B represents a novel type of eIF4E-interacting protein with dual and specific interaction domains that might be recognized by different eIF4E isoforms in different tissues, adding complexity to the control of gene expression in eukaryotes.  相似文献   

20.
Eukaryotic initiation factor (eIF) 4A unwinds secondary and tertiary structures in the 5'-untranslated region of mRNA, permitting translation initiation. Programmed cell death 4 (Pdcd4) is a novel transformation suppressor and eIF4A-binding partner that inhibits eIF4A helicase activity and translation. To elucidate the regions of eIF4A that are functionally significant in binding to Pdcd4, we generated point mutations of eIF4A. Two-hybrid analysis revealed that five eIF4A mutants completely lost binding to Pdcd4 while four eIF4A mutants retained wild-type levels of binding. The residues that, when mutated, inactivated Pdcd4 binding specified ATP binding, ATP hydrolysis, or RNA binding. With the exception of the Q-motif mutant eIF4AP56L, the eIF4A mutants inactivated for Pdcd4 binding were inactivated for binding to eIF4G (GM, GC, or both) and for enhancing translation. Several eIF4A mutants showing wild-type level binding to Pdcd4 were also inactivated for binding to eIF4G and for enhancing translation. Thus, significant dissociation of eIF4A's Pdcd4- and eIF4G-binding regions appears to occur. Because three of the four eIF4A mutants that retained Pdcd4 binding also suppressed translation activity in a dominant-negative manner, the structure that defines the Pdcd4-binding domain of eIF4A may be necessary but is insufficient for translation. A structural homology model of eIF4A shows regions important for binding to Pdcd4 and/or eIF4G lying on the perimeters of the hinge area of eIF4A. A competition experiment revealed that Pdcd4 competes with C-terminal eIF4G for binding to eIF4A. In summary, the Pdcd4-binding domains on eIF4A impact both binding to eIF4G and translation initiation in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号