首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Thirty-two wether lambs of Tan sheep were randomly assigned into four dietary treatment groups (eight per group) for an 8-wk study and then fed a basal diet deficient in Se (0.06 mg/kg) or diets supplemented to provide 0.10 mg/kg Se from sodium selenite, selenized yeast, and selenium-enriched probiotics, respectively. Blood samples were collected at d 0, 28, and 56 of the experiment and tissue samples were collected at experiment termination. Tissue and blood Se concentrations, blood glutathione peroxidase (GSH-Px) activities, and plasma interleukin levels were analyzed. The results showed that the concentrations of Se in the kidney, liver, and muscle increased in all of the supplemented groups (p<0.01) compared with the control group. However, the Se concentrations in the kidney, liver, and muscle in the groups supplemented with Se yeast and Se-enriched probiotics were higher than those in the group supplemented with sodium selenite (p<0.01). The activities of GSH-Px and the concentrations of Se in blood also increased in all of the supplemented groups during the period of supplementation (p<0.01) compared with the control group. The activities of GSH-Px and the concentrations of Se in the whole blood of the lambs fed with selenized yeast and Se-enriched probiotics were higher than those of lambs fed with sodium selenite (p<0.01 or p<0.05). The concentrations of interleukin-1 and interleukin-2 in plasma significantly increased in all of the supplemented groups during the entire period of experiment (p<0.01) compared with the control group, but had no significant differences among all of the supplemented groups. In conclusion, a diet supplemented with Se for finishing lambs was able to increase the concentrations of Se in tissue and blood, activities of GSH-Px in blood, and levels of interleukins in plasma. Organic Se sources (selenized yeast and Se-enriched probiotics) were more effective than the inorganic Se source (sodium selenite) in increasing tissue and blood Se concentrations and blood GSH-Px activities of lambs. However, there were no significant differences in plasma interleukin levels of lambs between organic and inorganic Se sources.  相似文献   

2.
The bioavailability of selenium (Se) from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine (SeMet), and sodium selenite was assessed in Se-deficient Fischer-344 rats. Se as veal, chicken, beef, pork, lamb, flounder, tuna, SeMet, and sodium selenite was added to torula yeast (TY) basal diets to comprise Se-inadequate (0.05 mg Se/kg) diets. Se as sodium selenite was added to a TY basal diet to comprise a Se-adequate (0.10 mg Se/kg), Se-control diet. The experimental diets were fed to weanling Fischer-344 rats that had been subjected to dietary Se depletion for 6 wk. After 9 wk of the dietary Se repletion, relative activity of liver glutathione peroxidase (GSHPx) from the different dietary groups compared with control rats (100%) was: flounder 106%, tuna 101%, pork 86%, sodium selenite 81%, SeMet 80%, beef 80%, chicken 77%, veal 77%, and lamb 58%. Se from flounder was the most efficient at restoring Se concentrations in the liver and skeletal muscle. Se from sodium selenite, SeMet, beef, veal, chicken, pork, lamb, and tuna was not dietarily sufficient to restore liver and muscle Se after 9 wk of recovery following a 6-wk period of Se depletion.  相似文献   

3.
Twenty-one 6 months old female lambs were divided into 7 groups and fed a basal diet containing 0.13 mg Se/kg. The basal diet was further supplemented with 0, 0.1, 0.5 or 1.0 mg Se/kg either as sodium selenite or as selenomethionine, and was fed for 10 weeks. Both feed additives produced an increase in the selenium concentration in the tissues analysed. Significant correlations were found between the concentrations of selenomethionine or sodium selenite added to the feed and the subsequent tissue levels. However, the selenium levels seemed to plateau at approximately 0.5 mg Se/kg of supplemented sodium selenite. The total glutathione peroxidase (GSH-Px) activity of the tissues increased when the selenium supplementation increased from 0 to 0.1 mg/kg for both selenium compounds. With further increase in selenium supplementation the GSH-Px activity in the tissues plateaued except in the blood where the activity continued to rise with increasing selenomethionine supplementation. The selenium dependent GSH-Px activity in the liver rose with increasing selenomethionine supplementation, but approached a plateau when 0.1 mg Se/kg as sodium selenite was added to the feed. The selenium concentration in whole blood responded more rapidly to the selenium supplementation than did GSH-Px activity. The experiment indicates that the optimal selenium concentration in the feed is considerably higher than 0.1 mg Se/kg, and that selenium levels of 1.0 mg/kg in the feed do not result in any risk for the animals or the consumers of the products.  相似文献   

4.
A randomized, blocked 23 factorial experiment was conducted with 48 pigs from sows fed a diet low in selenium and vitamin E. From 3 to 12 weeks of age the piglets were kept in single pens and fed a basic diet consisting mostly of barley, dried skim milk, soybean meal and dried yeast, and containing 55 µg selenium and 3 mg vitamin E per kg. The treatment factors — i.e. feed supplements — were 2 levels of Se (nil, 60 µg/kg), 2 levels of vitamin E (nil, 50 mg/kg), and 2 levels of the feed antioxidant ethoxyquin (nil, 150 mg/kg). Blood samples, collected at termination of the experiment, were examined for glutathione peroxidase activity (GSH-Px) and resistance against erythrocyte lipid peroxidation (ELP) to evaluate Se and vitamin E status, respectively. Analysis of variance showed the GSH-Px activity to be litter-dependent (P < 0.001) and influenced by selenium supplementation (P < 0.001) but not by the other supplements or by interactions between supplements. Resistance against ELP was influenced only by vitamin E supplementation (P < 0.001). GSH-Px and ELP thus seem to be valuable and simple methods for evaluating, respectively, Se status and vitamin E status in growing pigs.  相似文献   

5.
Keshan disease is a cardiomyopathy restricted to the endemic areas of China and seen in residents having an extremely low selenium (Se) status. Prophylactic administration of sodium selenite has been shown to decrease significantly the incidence of acute and subacute cases. The aim of the study was to assess the relative bioavailability of selenite versus organic Se-yeast in a Se-deficient area in China with a randomized double-blind double-dummy design. Healthy children (n=30) between 14 and 16 yr of age were randomized into three equal groups receiving either 200 μg/d selenite Se or 200 μg/d Se-yeast or placebo for 12 wk. Blood was drawn at baseline, 4, 8, and 12 wk and 4 wk postsupplementation. The plasma Se concentration (mean ± SD) was 0.16±0.03 μmol/L at baseline. Selenite and Se-yeast supplementation increased plasma Se to plateau values, 1.0±0.2 and 1.3±0.2 μmol/L, respectively. In red cells, Se-yeast increased the selenium level sixfold and selenite threefold compared to placebo. The relative bioavailability of Se-yeast versus selenite measured as glutathione peroxidase (GSHPx) activity was similar in plasma, red blood cells, and platelets. GSHPx activity reached maximal levels in plasma and platelets of 300% and 200%, respectively, after 8 wk compared to the placebo group, but continued to increase in red cells for 16 wk. Our study showed that although both forms of Se were equally effective in raising GSHPx activity, Se-yeast provided a longer lasting body pool of Se. Se-yeast may be a better alternative to selenite in the prophylaxis of Keshan disease with respect to building up of body stores.  相似文献   

6.
The objective of this study was to compare the efficiency of transfer of selenium (Se) to plasma and milk from inorganic sodium selenite, either free or microencapsulated, and from selenized yeast in dairy cows. The study consisted of an in situ-nylon bags incubation, and in an in vivo experiment to compare the Se status of cows supplemented with either sodium selenite, microencapsulated sodium selenite, or Se yeast. Thirty dairy cows, divided in five groups, were fed the following diets: the control group (CTR) received a total mixed ration supplemented with sodium selenite in order to have 0.3 mg/kg DM of total Se; 0.3M and 0.5M groups received the same control diet supplemented with lipid microencapsulated sodium selenite to provide 0.3 and 0.5 mg/kg DM of total Se, respectively; 0.3Y and 0.5Y groups received selenized yeast to provide 0.3 and 0.5 mg/kg of total Se, respectively. Cows were fed the supplements for 56 days during which milk, blood, and fecal samples were collected weekly to conduct analysis of Se and glutathione peroxidase (GSH-px) activity. Se concentration in the nylon bags was assessed to 72%, 64%, and 40% of the initial value (time 0) after 4, 8, and 24 h of incubation, respectively. In vivo, cows supplemented with 0.3 mg/kg of microencapsulated Se had higher milk Se concentration compared to CTR. The increment was more pronounced at the highest inclusion rate (0.5 mg/kg, 0.5M group). GSH-px activity was not significantly affected by treatments. The results indicate that lipid microencapsulation has the potential to protect nutrients from complete rumen reduction and that Se from microencapsulated selenite is incorporated in milk more efficiently than the free form. Microencapsulated sodium selenite was shown to be comparable to Se-yeast in terms of availability and incorporation in milk when fed at 0.3 mg/kg DM, whereas the inclusion in the diet at 0.5 mg/kg DM resulted in higher plasma and milk concentrations than selenized yeast.  相似文献   

7.
An experiment was conducted with 384 1-d-old male and female broiler-chicks. The basal corn-soybean meal diet (.07 ppm Se DM basis) was supplemented with 0, .1, .2, or .3 ppm added Se as either sodium selenite (Na2SeO3) or calcium selenite (CaSeO3), and fed for 1, 3, or 5 wk. There was no effect of Se source or level on feed intake or gain, but males consumed more (P less than .01) feed than females. There was no effect (P greater than .10) of sex or Se source on plasma, liver, or kidney Se concentration. The Se concentration of all tissues increased (P less than .01) with time and increasing dietary Se concentration. Based on multiple regression slope ratios of liver, kidney, and plasma Se concentrations, Se from CaSeO3 was as available (103%) as Se from Na2SeO3.  相似文献   

8.
The bioavailability of selenium (Se) was determined in bacterial strains that reduce selenite to red elemental Se (Seo). A laboratory strain ofBacillus subtilis and a bacterial rod isolated from soil in the vicinity of the Kesterson Reservoir, San Joaquin Valley, CA, (Microbacterium arborescens) were cultured in the presence of 1 mM sodium selenite (Na2SeO3). After harvest, the washed, lyophilizedB. subtilis andM. arborescens samples contained 2.62 and 4.23% total Se, respectively, which was shown to consist, within error, entirely of Seo. These preparations were fed to chicks as supplements to a low-Se, vitamin E-free diet. Three experiments showed that the Se in both bacteria had bioavailabilities of approx 2% that of selenite. A fourth experiment revealed that gray Seo had a bioavailability of 2% of selenite, but that the bioavailability of red Seo depended on the way it was prepared (by reduction of selenite). When glutathione was the reductant, bioavailability resembled that of gray Seo and bacterial Se; when ascorbate was the reductant, bioavailability was twice that level (3–4%). These findings suggest that aerobic bacteria such asB. subtilis andM. arborescens may be useful for the bioremediation of Se-contaminated sites, i.e., by converting selenite to a form of Se with very low bioavailability.  相似文献   

9.
This study was performed to compare the bioavailability of two organic zinc compounds, a zinc glycinate complex and a zinc amino acid chelate with that of zinc sulphate in growing pigs fed a basal diet composed mainly of wheat, barley and soybean meal. The experiment included 96 pigs with an average body weight of 8 kg, allotted to ten groups of nine to ten pigs each. The first group received the basal diet, containing 42 mg of native zinc per kg, without zinc supplementation over a period of five weeks. The other nine groups received the basal diet supplemented with 15, 30 or 50 mg of zinc/kg as zinc sulphate, zinc glycinate or the zinc amino acid chelate. Pigs fed the unsupplemented diet had a lower growth performance (body weight gain, feed conversion ratio) than the other nine groups. Supplementation of 15 mg zinc/kg diet (irrespective of zinc form) was sufficient to yield optimum growth performance. Plasma zinc concentration and activity of alkaline phosphatase were rising with increasing zinc supplementation levels up to a maximum reached at a supplementary level of 30 or 50 mg/kg diet for activity of alkaline phosphatase and plasma zinc concentration, respectively. The response of those parameters to zinc supplementation did, however, not differ between the three zinc compounds considered. The apparent digestibility of zinc from the diet was also not different for the three zinc compounds. In conclusion, these findings show that the bioavailability of the two organic zinc compounds did not differ from that of zinc sulphate in growing pigs fed a diet with wheat, barley and soybean meal as major components.  相似文献   

10.
This study was performed to compare the bioavailability of two organic zinc compounds, a zinc glycinate complex and a zinc amino acid chelate with that of zinc sulphate in growing pigs fed a basal diet composed mainly of wheat, barley and soybean meal. The experiment included 96 pigs with an average body weight of 8 kg, allotted to ten groups of nine to ten pigs each. The first group received the basal diet, containing 42 mg of native zinc per kg, without zinc supplementation over a period of five weeks. The other nine groups received the basal diet supplemented with 15, 30 or 50 mg of zinc/kg as zinc sulphate, zinc glycinate or the zinc amino acid chelate. Pigs fed the unsupplemented diet had a lower growth performance (body weight gain, feed conversion ratio) than the other nine groups. Supplementation of 15 mg zinc/kg diet (irrespective of zinc form) was sufficient to yield optimum growth performance. Plasma zinc concentration and activity of alkaline phosphatase were rising with increasing zinc supplementation levels up toa maximum reached at a supplementary level of 30 or 50 mg/kg diet for activity of alkaline phosphatase and plasma zinc concentration, respectively. The response of those parameters to zinc supplementation did, however, not differ between thethree zinc compounds considered. The apparent digestibility of zinc from the diet was also not different for the three zinc compounds. In conclusion, these findings show that the bioavailability of the two organic zinc compounds did not differ from that of zinc sulphate in growing pigs fed a diet with wheat, barley and soybean meal as major components.  相似文献   

11.
The bioavailabilities of selenium (Se) from Se-rich fish species and Se-rich wheat were compared in a study involving 32 healthy volunteers. Initial serum Se values were 109±16 μg/L (mean±SD). For 6 wk, one group (n=11) included Se-rich bread in their diet, bringing daily average intake of Se up to 135±25 μg/d. Another group (n=11) consumed Se-rich fish daily (average Se intake: 115±31 μg/d), whereas the control group (n=10) ate their normal diet, providing 77±25 μg Se/d. Serum Se increased by 17% (P<0.01), and platelet Se increased by 30% (P<0.01) in the wheat group. Although platelet Se decreased by 11% in the fish group, no changes in serum and platelet Se in the fish or control group reached statistical significance. Glutathione peroxidase (EC 1.11.1.9; GSH-Px) activity in serum and platelets did not change during the study, nor did platelet mercury (Hg) content. Since the dietary intake of Hg, arsenium (As), and fatty acids could not satisfactorily explain the lack of response in the fish group, the results are indicative of low bioavailability of fish Se in humans. At present, wheat Se seems to be the most important factor contributing to the body stores of Se in this study population. Dr. Norheim died on January 9, 1991.  相似文献   

12.
Antioxidant enzymes and vitamins provide a defence against the damage of cells by reactive oxygen species in living systems. The effect of Cu, Se and vitamin E deficiencies on the antioxidant enzyme activities and lipid peroxide levels of chicken erythrocytes were investigated during 6 weeks of a depletion diet. CuZnSOD activity and the plasma Cu level of the Cu-deficient group which was fed a diet containing 0.2 mg Cu x kg(-1) were reduced to 62 and 71% respectively. GSH-Px activity of the Se-deficient group was decreased by 46% but by 21% in the Cu-deficient group. CAT activity values of Se- and Cu-deficient groups were increased by 28 and 10% respectively. The maximum increase of LPO levels in erythrocyte membranes was observed as 32% for the Se+E-deficient group. The LPO level of the Cu-deficient group which had decreased CuZnSOD and GSH-Px activity, was also observed to be significantly increased when compared with the controls (p < 0.05).  相似文献   

13.
Simesen  M. G.  Nielsen  H. E.  Danielsen  V.  Gissel-Nielsen  G.  Hjarde  W.  Leth  T.  Basse  A. 《Acta veterinaria Scandinavica》1979,20(2):276-288
The effect of selenium (Se) and vitamin E (Vit. E) on reproductive performance, growth and health was studied in pigs. Two levels of Se were used, 0.03 and 0.06 nag per kg feed. The major component of the experimental diets was barley originating from soil which had formerly produced crops with a very low content of Se. Prior to seeding, the area was divided into 2 plots, 1 of which was treated with Se in the form of sodium selenite, 100 g Se per ha. The use of Se enriched fertilizer was an effective way of increasing the Se concentration of the grain. Thus the concentration of Se in the barley produced on the treated area was 5 times higher than in barley from the untreated one. Vit. E was added at a level of 30 i.u. per kg feed, and the concentrations were approx. 15 and 45 i.u. in the basal and experimental diets, respectively. The higher level of Se or Vit. E was not significantly associated with milk yield of the sow, litter size, birth weight or haemoglobin levels. However, there was a tendency to an increase in milk yield of the sows following additions of Se plus Vit. E, and litter size was slightly higher from sows which had received an addition of Vit. E. The concentration of Se and Vit. E was much higher in colostrum than in sow milk, and additions of dietary Se and Vit. E were associated with marked increases in the concentrations of these compounds in both colostrum and sow milk. There was a moderately improving effect of a high Se concentration in feed on growth rate and feed utilization. Low dietary levels of Se and Vit. E were followed by increased mortality rate in piglets; iron toxicity in connection with iron treatment was observed in piglets on low dietary Vit. E. Symptoms characteristic of PSE were not observed in the Se and Vit. E deficient pigs.  相似文献   

14.
The effects of an arsenic-rich fish diet and selenium (Se) supplementation on blood arsenic (As), Se, and thyroid hormones were studied in 32 women divided into four equal groups. Groups 1 and 4 received 400 μg Se-methionine daily, group 2 received 400 μg selenite daily, and group 3 received placebo tablets for 15 wk. In addition, groups 1–3 increased their fish intake, eating at least three fish dinners weekly. Mean blood Se concentrations (initially 1.68 ± 0.24 μmol/L) increased twofold in the Se-methionine groups (p < 0.0001) and by 32% in the selenite group (p < 0.01). Group means of blood As concentrations increased by 63% (p < 0.01), 50% (p < 0.01), 106% (p < 0.01), and 29% (p < 0.05) in the four groups, respectively. Analyzed As intake from duplicate portions of consumed fish correlated with final blood As concentrations (r=0.85, p < 0.001, n=32). In the group not receiving Se, there was a positive correlation between final blood As concentrations and plasma T4 : T3 ratio (r=0.80, p < 0.02, n=8). Initially, blood As concentrations correlated negatively with both T3 and T4 in plasma, but this correlation disappeared upon Se supplementation. The results demonstrate that increased intake of fish may influence blood As concentrations and that circulating thyroid hormones may be influenced by Se-As interactions.  相似文献   

15.
The uptake of dietary selenium (about 3.5 mg/kg AF dry wt) as selenomethionine, selenocystine, selenite, selenate, and fish selenium in the plasma and red blood cells (RBC) of the oystercatcher has been investigated. The birds received the various selenium compounds subsequently, for at least 9 wk. After dietary supplementation of selenocystine, selenite, and selenate, plasma selenium was about 350 μg/L and RBC selenium 2.1 mg/kg dry wt. After supplementation of selenomethionine, the plasma concentration increased to 630 μg/L, and the RBC concentration to 4.1 mg/kg dry wt. When the fodder contained 3.1 mg/kg fish Se, an average plasma and RBC concentration of 415 μg/L and 14.4 mg/kg dry wt, respectively, was measured. The maximal increase of the selenium concentration in the plasma was attained at first sampling, 14 d after a change in dietary selenium (selenomethione or fish Se); the uptake seemed to be a concentration-regulated process. RBC concentrations (γ in mg/kg dry wt) increased with time (X in d) according toY=a?be?cX . Fifty percent of the total increase was attained within 17d, suggesting that diffusion into the RBC played a role. The selenium concentration in the plasma was positively correlated with the (fish) Se concentration in the fodder; the RBC concentration (60 d after the change in diet) was positively correlated with the plasma concentration. When the diet contained fish Se, the blood selenium concentrations of the captive birds were similar to the concentrations measured in field birds. Fish Se is a yet undetermined selenium compound. The present experiment showed that fish Se differed from selenomethionine, selenocystine, selenite, or selenate in uptake from the food and uptake in the RBC.  相似文献   

16.
To investigate and compare the effect of inorganic and organic Se supplementation, 18 male lambs (24.68 ± 2.89 kg mean body weight, about 8–9 months of age) were divided into three groups of six animals in each, following randomized block design. While animals in the control group (Gr I) were fed a standard TMR containing 195 g/kg crushed maize grain, 175.5 g/kg soybean meal, 260 g/kg wheat bran, 13 g/kg mineral mixture (without Se), 6.5 g/kg common salt and 350 g/kg wheat straw, animals in Gr II and Gr III were additionally supplemented with 0.15 mg Se/kg of diet through sodium selenite (inorganic Se) and Jevsel-101 (organic Se), respectively. Experimental feeding was done for a period of 90 days. To assess the humoral immune response, all the lambs were intramuscularly inoculated with a single dose (2 mL) of Haemorrhagic septicaemia oil adjuvant vaccine on day 0; and blood samples were collected on day 0, 30, 60 and 90. Supplementation of Se had no effect on serum total cholesterol, total protein, albumin, globulin, albumin:globulin ratio, T3, T4, T4:T3 ratio; serum Ca and P levels and SGOT and SGPT activity. However, there was a significant increase in the serum Se level, RBC GSH-Px activity and humoral immune response in both the Se supplemented groups as compared to control group. Average daily gain (g) was highest (110) in Gr III, followed by Gr II (98.2) and lowest in Gr I (89.1). Thus, supplementation of organic as well as inorganic Se was found to improve the growth rate, humoral immune response and antioxidant status of the lambs; and between two sources, organic Se was more effective than inorganic Se.  相似文献   

17.
18.
Three factorial experiments were conducted to determine if high dietary fluoride (F) would inhibit selenite toxicity in rats. Initially, three levels of selenite (0.05, 3, and 5 mg/kg diet) were matched against three levels of F (2, 75, and 150 mg/kg diet). Fluoride failed to prevent the depressive effect of selenite on 8-wk food intake and body wt gain. Selenium (Se) concentration of plasma and kidney and enzymatic activity of whole blood glutathione peroxidase (GSH-Px) were also unaffected by F. Liver Se concentration, however, was slightly (12%) but significantly (p<0.025) reduced when the highest F and Se levels were combined. Fluoride (150 mg/kg) appeared to reduce liver selenite toxicity (5 mg/kg). Therefore, further study focused on liver histology with treatments that eliminated the middle levels of selenite and F. Fluoride prevented the hepatic necrosis seen in selenite-toxic rats. Similar histological lesions were not observed for kidney or heart. Fluoride partially (26%) but significantly (p<0.025) reduced thiobarbituric-reactive substances in selenite-toxic rats, but there was no F effect on intracellular distribution of liver Se, glutathione levels in liver and kidney, or on liver xanthine oxidase activity. Overall, the protective effect of F on selenite toxicity appears to be confined to liver pathology. The exact mechanism for this effect, however, remains unclear. Oregon Agricultural Experiment Station Technical Paper No. 9728.  相似文献   

19.
This study aimed to determine the effectiveness of Se from hydroponically produced Se-enriched kale sprout (HPSeKS) on productive performance, egg quality, and Se concentrations in egg and tissue of laying quails. Two-hundred quails, 63 days of age, were divided into four groups. Each group consisted of five replicates and each replicate had ten birds, according to a completely randomized design. The experiment lasted for 6 weeks. The dietary treatments were T1 (control diet), T2 (control diet plus 0.2 mg Se/kg from sodium selenite), T3 (control diet plus 0.2 mg Se/kg from Se-enriched yeast), T4 (control diet plus 0.2 mg Se/kg from HPSeKS). The findings revealed that productive performance and egg quality of quails were not altered (p?>?0.05) by Se sources. Whole egg Se concentrations of quails fed Se from HPSeKS and Se-enriched yeast were higher (p?<?0.05) than that of quails fed the control diet. Breast muscle Se concentrations in quails fed Se from HPSeKS were higher (p?<?0.05) than that of quails fed Se from sodium selenite and Se-enriched yeast. Heart tissue Se concentrations of quails fed Se from Se-enriched yeast and HPSeKS were similar (p?>?0.05), but higher (p?<?0.05) than that of quails fed Se from sodium selenite. The results reveal that Se from HPSeKS did not change the performance and egg quality of quails. The effectiveness of Se from HPSeKS was comparable to that of Se-enriched yeast, which was higher than that of Se from sodium selenite.  相似文献   

20.
The present research evaluated differential effects of sodium selenite and nano-Se on growth performance, tissue Se distribution, and glutathione peroxidase (GSH-Px) activity of avian broiler. Broilers were randomly segregated into 12 groups so that three replicates were available for each of the three treatments (T-1, T-2, and T-3) and control groups. The control groups were fed basal diets without Se addition. T-1, T-2, and T-3 were fed with diets containing 0.2 mg kg−1 sodium selenite, 0.2 mg kg−1 nano-Se, and 0.5 mg kg−1 nano-Se, respectively. Compared with the control, Se supplementation remarkably improved daily weight gain and survival rate and decreased feed conversion ratio (P < 0.05). However, no significant difference was observed between T-1, T-2, and T-3. The tissue Se content was significantly higher (P < 0.05) in Se-supplemented groups than the control, and T-3 showed the highest. Furthermore, higher Se content was observed in liver, and there was a significant difference (P < 0.05) compared with that in muscle. As for serum and hepatic GSH-Px activities, Se supplementation remarkably improved GSH-Px activity (P < 0.05), and there was no significant difference (P > 0.05) between treatments (T-1, T-2, and T-3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号