首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Jang M  Jang JY  Kim SH  Uhm KB  Kang YK  Kim HJ  Chung S  Park MK 《Cell calcium》2011,50(4):370-380
Dendritic Ca2+ plays an important role not only in synaptic integration and synaptic plasticity, but also in dendritic excitability in midbrain dopamine neurons. However, the functional organization of dendritic Ca2+ signals in the dopamine neurons remains largely unknown. We therefore investigated dendritic Ca2+ signals by measuring glutamate-induced Ca2+ increases along the dendrites of acutely isolated midbrain dopamine neurons.Maximal doses of glutamate induced a [Ca2+]c rise with similar amplitudes in proximal and distal dendritic regions of a dopamine neuron. Glutamate receptors contributed incrementally to the [Ca2+]c rise according to their distance from the soma, with a reciprocal decrement in the contribution of voltage-operated Ca2+ channels (VOCCs). The contribution of AMPA and NMDA receptors increased with dendritic length, but that of metabotropic glutamate receptors decreased. At low doses of glutamate at which spontaneous firing was sustained, the [Ca2+]c rise was higher in the distal than the proximal regions of a dendrite, possibly due to the increased spontaneous firing rate.These results indicate that functional organization of Ca2+ signals in the dendrites of dopamine neurons requires different combination of VOCCs and glutamate receptors according to dendritic length, and that regional Ca2+ rises in dendrites respond differently to applied glutamate concentration.  相似文献   

2.
3.
Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs) playing a major role. SACs generate larger dendritic Ca2+ signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS) in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca2+] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage–activated Ca2+ channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.  相似文献   

4.
Neuronal dendrites are vulnerable to injury under diverse pathological conditions. However, the underlying mechanisms for dendritic Na+ overload and the selective dendritic injury remain poorly understood. Our current study demonstrates that activation of NHE-1 (Na+/H+ exchanger isoform 1) in dendrites presents a major pathway for Na+ overload. Neuronal dendrites exhibited higher pHi regulation rates than soma as a result of a larger surface area/volume ratio. Following a 2-h oxygen glucose deprivation and a 1-h reoxygenation, NHE-1 activity was increased by ∼70–200% in dendrites. This elevation depended on activation of p90 ribosomal S6 kinase. Moreover, stimulation of NHE-1 caused dendritic Na+i accumulation, swelling, and a concurrent loss of Ca2+i homeostasis. The Ca2+i overload in dendrites preceded the changes in soma. Inhibition of NHE-1 or the reverse mode of Na+/Ca2+ exchange prevented these changes. Mitochondrial membrane potential in dendrites depolarized 40 min earlier than soma following oxygen glucose deprivation/reoxygenation. Blocking NHE-1 activity not only attenuated loss of dendritic mitochondrial membrane potential and mitochondrial Ca2+ homeostasis but also preserved dendritic membrane integrity. Taken together, our study demonstrates that NHE-1-mediated Na+ entry and subsequent Na+/Ca2+ exchange activation contribute to the selective dendritic vulnerability to in vitro ischemia.  相似文献   

5.
Recent studies have shown that the dendrites of several neurons are not simple translators but are crucial facilitators of excitatory postsynaptic potential (EPSP) propagation and summation of synaptic inputs to compensate for inherent voltage attenuation. Granule cells (GCs)are located at the gateway for valuable information arriving at the hippocampus from the entorhinal cortex. However, the underlying mechanisms of information integration along the dendrites of GCs in the hippocampus are still unclear. In this study, we investigated the input integration around dendritic branches of GCs in the rat hippocampus. We applied differential spatiotemporal stimulations to the dendrites using a high-speed glutamate-uncaging laser. Our results showed that when two sites close to and equidistant from a branching point were simultaneously stimulated, a nonlinear summation of EPSPs was observed at the soma. In addition, nonlinear summation (facilitation) depended on the stimulus location and was significantly blocked by the application of a voltage-dependent Ca2+ channel antagonist. These findings suggest that the nonlinear summation of EPSPs around the dendritic branches of hippocampal GCs is a result of voltage-dependent Ca2+ channel activation and may play a crucial role in the integration of input information.  相似文献   

6.
The output of neocortical layer 5 pyramidal cells (L5PCs) is expressed by a train of single spikes with intermittent bursts of multiple spikes at high frequencies. The bursts are the result of nonlinear dendritic properties, including Na+, Ca2+, and NMDA spikes, that interact with the ~10,000 synapses impinging on the neuron’s dendrites. Output spike bursts are thought to implement key dendritic computations, such as coincidence detection of bottom-up inputs (arriving mostly at the basal tree) and top-down inputs (arriving mostly at the apical tree). In this study we used a detailed nonlinear model of L5PC receiving excitatory and inhibitory synaptic inputs to explore the conditions for generating bursts and for modulating their properties. We established the excitatory input conditions on the basal versus the apical tree that favor burst and show that there are two distinct types of bursts. Bursts consisting of 3 or more spikes firing at < 200 Hz, which are generated by stronger excitatory input to the basal versus the apical tree, and bursts of ~2-spikes at ~250 Hz, generated by prominent apical tuft excitation. Localized and well-timed dendritic inhibition on the apical tree differentially modulates Na+, Ca2+, and NMDA spikes and, consequently, finely controls the burst output. Finally, we explored the implications of different burst classes and respective dendritic inhibition for regulating synaptic plasticity.  相似文献   

7.
In a simulated neuron with a dendritic tree, the relative effects of active and passive dendritic membranes on transfer properties were studied. The simulations were performed by means of a digital computer. The computations calculated the changes in transmembrane voltages of many compartments over time as a function of other biophysical variables. These variables were synaptic input intensity, critical firing threshold, rate of leakage of current across the membrane, and rate of longitudinal current spread between compartments. For both passive and active dendrites, the transfer properties of the soma studied for different rates of longitudinal current spread. With low rates of current spread, graded changes in firing threshold produced correspondingly graded changes in output discharge. With high rates of current spread, the neuron became a bistable operator where spiking was enhanced if the threshold was below a certain level and suppressed if the threshold was above that level. Since alterations in firing threshold were shown to have the same effect on firing rate as alterations in synaptic input intensity, the neuron can be said to change from graded to contrast-enhancing in its response to stimuli of different intensities. The presence or absence of dendritic spiking was found to have a significant effect on the integrative properties of the simulated neuron. In particular, contrast enhancement was considerably more pronounced in neurons with passive than with active dendrites in that somatic spike rates reached a higher maximum when dendrites were passive. With active dendrites, a less intense input was needed to initiate somatic spiking than with passive dendrites because a distal dendritic spike could easily propagate by means of longitudinal current spread to the soma. Once somatic spiking was initiated, though, spike rates tended to be lower with active than with passive dendrites because the soma recovered more slowly from its post-spike refractory period if it was also influenced by refractory periods in the dendrites. The experiment of comparing neurons with active and passive dendrites was repeated at a different, higher value of synaptic input. The same differences in transfer properties between the active and passive cases emerged as before. Spiking patterns in neurons with active dendrites were also affected by the time distribution of synaptic inputs. In a previous study, inputs had been random over both space and time, varying about a predetermined mean, whereas in the present study, inputs were random over space but uniform over time. When inputs were made uniform over time, spiking became more difficult to initiate and the transition from graded to bistable response became less sharp.  相似文献   

8.
The properties of calcium channels were studied at the period of neurogenesis in the early embryonic chick retina. The whole neural retina was isolated from embryonic day 3 (E3) chick and loaded with a Ca2+-sensitive fluorescent dye (Fura-2). The retinal cells were depolarized by puff application of high-K+ solutions. Increases in intracellular Ca2+ concentrations were evoked by the depolarization through calcium channels. The type of calcium channel was identified as l-type by the sensitivity to dihydropyridines. The Ca2+ response was completely blocked by 10 μM nifedipine, whereas it was remarkably enhanced by 5 μM Bay K 8644. Then we sought a factor to activate the calcium channel and found that GABA could activate it by membrane depolarization at the E3 chick retina. Puff application of 100 μM GABA raised intracellular Ca2+ concentrations, and this Ca2+ response to GABA was also sensitive to the two dihydropyridines. Intracellular potential recordings verified clear depolarization by bath-applied 100 μM GABA. The Ca2+ response to GABA was mediated by GABAA receptors, since the GABA response was blocked by 10 μgM bicuculline or 50 μM picrotoxin, and mimicked by muscimol but not by baclofen. Neither glutamate, kainate, nor glycine evoked any Ca2+ response. We conclude that l-type calcium channels and GABAA receptors are already are already expressed before differentiation of retinal cells and synapse formation in the chick retina. A possibility is proposed that GABA might act as a trophic factor by activating l-type calcium channels via GABAA receptors during the early period of retinal neurogenesis. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The subcellular distribution of endoplasmic reticulum proteins (IP3R1 and RYR), plasma membrane(PM) proteins (mGluR1 and PMCA Ca2+-pump), and scaffolding proteins, such as Homer 1b/c, was assessed by laser scanning confocal microscopy of rat cerebellum parasagittal sections. There appeared to be two classes of Ca2+ stores, nonjunctional Ca2+ stores and junctional Ca2+ stores, possibly referable to central cisternae/tubules and sub-PM cisternae, respectively, in soma, dendrites, and dendritic spines. Only some IP3R1s appeared to be part of multimeric, junctional Ca2+ signaling networks, whose composition is shown to include PMCA, mGluR1, Homer 1b/c and, not always, RYR1.  相似文献   

10.
In this study two-photon imaging and single cell electrophysiological measurements were carried out in PV+ hippocampal interneurons to compare the dendritic calcium dynamics of somatically evoked backpropagating action potentials (BAPs) and in vitro sharp wave oscillation (SPW) activated BAPs at different distances from the soma. In the case of 300 μm thick, non-oscillating slices, the BAP-evoked Ca2+ (BAP-Ca2+) influx propagated along the dendritic tree in a non-uniform manner and its amplitude gradually reduced when measured at more distal regions. In contrast to the evoked BAP-Ca2+s, the spontaneous SPW-induced Ca2+ influx had only a small distance-dependent decrement. Our results suggest that similarly to nicotinic acetylcholine receptor activation, synaptic activity during hippocampal SPWs increases AP backpropagation into distant dendritic segments. Bath application of Nimodipine, a specific Ca2+ channel blocker and tetrodotoxine decreased the amplitude of the somatically evoked Ca2+ influx, which suggests that L-type Ca2+ channels play an important role both during somatically evoked and SPW-induced BAPs.  相似文献   

11.
The somatopetal current transfer was studied in the mathematical models of a reconstructed brainstem motoneuron with tonically activated excitatory synaptic inputs uniformly distributed over dendritic arborization. The soma and axon provided a constant passive leak. The extrasynaptic dendritic membrane was either passive or active (of a Hodgkin-Huxley type). The longitudinal membrane current density (per unit path length) was used as an estimate of the current transfer effectiveness of different dendritic paths. Introduction of a steady uniform voltage-independent conductance per unit membrane area simulated such a synaptic activation. This actions always produced a spatially inhomogeneous membrane depolarization decaying from the distal dendritic tips toward the soma. The reason for such an inhomogeneity was the preponderance of somatopetal over somatofugal input conductance at every site in the dendrites with sealed distal ends and a leaky somatic end. In active dendrites, partial voltage-dependent extrasynaptic conductances followed this depolarization according to their activation-inactivation kinetics. The greater the local depolarization, the greater the contribution of the non-inactivating potassium conductance to the total membrane conductance. The contribution of the inactivated sodium conductance was one order of magnitude smaller. Correspondingly, the effective equilibrium potential of the total transmembrane current became spatially inhomogeneous and shifted to the potassium equilibrium potential. In the passive dendrites, the equilibrium potential remained spatially homogeneous. Inhomogeneities of the dendritic geometry (abrupt change in the diameter and, especially, asymmetrical branching) caused characteristic perturbations in the voltage gradient, so that the path profiles of the voltage, conductances, and currents diverged. This indicated a geometry-induced separation of the dendritic paths in their transfer effectiveness. Active dendrites of the same geometry were less effective than passive ones due to the effect of the potassium conductance associated with the hyperpolarizing equilibrium potential.  相似文献   

12.
The maturing large neurons of the rat red nucleus in animals ranging in age from 1 to 21 days of postnatal life were studied ultrastructurally. Days 1--6 were characterized by rapid morphologic maturation occurring concomitantly with the onset of synaptogenesis. Morphogenesis was confined to the soma, while the first synaptic contacts were also formed in relationship to the soma. Days 6--9 demonstrated continued somal morphogenesis exemplified by cytoplasmic expansion and by the conspicuous presence of perisomatic and growth cone processes. Proximal dendritic morphogenesis was initiated, and synaptogenesis became complex with synaptic sites occurring in relation to the neuronal soma, the perisomatic processes and proximal dendrites. Days 9--15 were characterized by the completion of somal and proximal dendritic morphogenesis and by a massive degree of synaptogenic activity. During this interval, the soma lost perisomatic and growth cone processes, while somatic spines appeared. By the end of this period the neuronal soma and the proximal dendrites appeared mature in terms of both morphology and synaptic input. Complete neuronal maturation was ultimately attained by day 21 of postnatal life.  相似文献   

13.
Autonomous tonic firing of the midbrain dopamine neuron is essential for maintenance of ambient dopamine level in the brain, in which intracellular Ca2+ concentration ([Ca2+]c) plays a complex but pivotal role. However, little is known about Ca2+ signals by which dopamine neurons maintain an optimum spontaneous firing rate. In the midbrain dopamine neurons, we here show that spontaneous firing evoked [Ca2+]c changes in a phasic manner in the dendritic region but a tonic manner in the soma. Tonic levels of somatic [Ca2+]c strictly tallied with spontaneous firing rates. However, manipulatory raising or lowering of [Ca2+]c with caged compounds from the resting firing state proportionally suppressed or raised spontaneous firing rate, respectively, suggesting presence of the homeostatic regulation mechanism for spontaneous firing rate via tonic [Ca2+]c changes of the soma. More importantly, abolition of this homeostatic regulation mechanism significantly exaggerated the responses of tonic firings and high-frequency phasic discharges to glutamate. Therefore, we conclude that this Ca2+-dependent homeostatic regulation mechanism is responsible for not only maintaining optimum rate of spontaneous firing, but also proper responses to glutamate. Perturbation of this mechanism could cause dopamine neurons to be more vulnerable to glutamate and Ca2+ toxicities.  相似文献   

14.
The spatiotemporal distribution of cytosolic free calcium concentration ([Ca2+]i) in cerebellar granule cells (GrCs) is thought to be critical in defining the occurrence and direction of long-term changes in synaptic strength at cerebellar mossy fiber-GrC synapses. Despite this, the mechanisms responsible for shaping Ca2+ transients in GrCs are not well understood. To investigate the interplay between Ca2+ entry, extrusion, buffering and dendritic morphology in shaping Ca2+ elevations in GrCs, we developed a model of Ca2+ regulation in these cells and examined the requirements for reproducing fluorescence responses to depolarization and synaptic stimulation previously described in the literature. Two conclusions can be drawn from our simulation results. First, a significant progressive decrease in the amplitudes of depolarization-evoked fluorescence transients from the dendritic endings (digits) toward the soma of GrCs, can be reproduced in the model only if the density of Ca2+ channels is considerably higher or the concentration of endogenous buffers is much lower in the digits than in the parent dendrites. In contrast, heterogeneities in the distribution of Ca2+ pumps or in cytosolic fractional volume cannot account for the formation of [Ca2+]i gradients in GrCs. Second, much lower amplitudes of fluorescence transients induced by depolarization and synaptic stimulation than expected from typical measurements of Ca2+ and NMDA receptor-mediated currents can be reconciled with a pronounced slowing of the decay of fluorescence responses in the digits of GrCs after introducing a high-affinity Ca2+ indicator if a high-capacity immobile Ca2+ buffer (presumably plasma membrane-associated) is suggested to be present in the soma and apical part of digits. Mitochondria also are likely to modulate synaptically evoked Ca2+ responses in GrCs. The alternative hypotheses are thoroughly discussed and research avenues for their testing in future experiments are proposed.  相似文献   

15.
Acetylcholine effects on neuronal firing responses evoked by somatic or dendritic applications of excitatory amino acids were studied in slices of guinea-pig parietal cortex. Excitatory reactions initiated by dendritic activation were enhanced by acetylcholine wherever it was iontophoretically applied: either to soma or dendrites. The effect consisted in shortening spike response latencies and increasing response intensity and duration. The modified responses were recorded within 1-min interval after acetylcholine microinjections at a distance within 300 microns of the soma. Parameters of responses to somatic applications of excitatory amino acids were not significantly changed by acetylcholine. The results suggest that acetylcholine improves dendritic propagation rather than membrane excitability.  相似文献   

16.
An electron-microscopic investigation of the synaptic organization of the rat's ventroposterolateral nucleus (VPL) and of a reticular thalamic nucleus (RTN) area related to somatosensory thalamic nucleus was performed. In a group of 11 rats, wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) was injected either in the first somatosensory area of cortex (SI) or in the dorsal column nuclei (DCN). The retrogradely and/or anterogradely transported enzyme was visualized using paraphenylenediamine-pyrocatechol (PPD-PC) as substrate. In a second series of six experiments, an immunocytochemical procedure using a specific anti-γ-aminobutyric acid (anti-GABA) was employed. Postembedding localization of GABA was performed for ultrastructural observation by means of the colloidal gold immunostaining procedure. Thin sections of recognized VPL and RTN areas from WGA:HRP-injected animals were further processed for immunocytochemistry in order to localize simultaneously, at the electron-microscopic level, the transported enzyme and GABA.

The results obtained with this procedure demonstrated that HRP-labeled terminals from DCN contacted the soma and proximal dendrites of VPL neurons, while the terminals labeled after SI cortical injections were predominantly localized to the distal portion of the dendrites. The same cortical injection also determined the presence of labeled synaptic boutons contacting the soma, and both proximal and distal dendrites of RTN neurons. GABA-immunolabeled terminals were observed in VPL in a number larger than those observed with other methods, since not only typical F terminals were labeled but also terminals containing round and/or pleomorphic vesicles. GABA-ergic terminals contacted the soma and the proximal and distal dendrites of VPL neurons, while in RTN cells they made synaptic contact mainly with the soma and proximal dendrites. In the double-labeling experiments, terminals containing both HRP and specific immunogold GABA staining were never observed.

The present data provide a direct demonstration of the presence of a strong inhibitory input from RTN upon VPL neurons and of the existence of autoinhibition within RTN neurons.  相似文献   

17.
We recently showed that streptozotocin (STZ) injections in rats lead to the development of painful peripheral diabetic neuropathy (PDN) accompanied by enhancement of CaV3.2 T-type calcium currents (T-currents) and hyperexcitability in dorsal root ganglion (DRG) neurons. Here we used the classical peripherally acting T-channel blocker mibefradil to examine the role of CaV3.2 T-channels as pharmacological targets for treatment of painful PDN. When administered intraperitoneally (i.p.), at clinically relevant doses, mibefradil effectively alleviated heat, cold and mechanical hypersensitivities in STZ-treated diabetic rats in a dose-dependent manner. We also found that CaV3.2 antisense (AS)-treated diabetic rats exhibit a significant decrease in painful PDN compared with mismatch antisense (MIS)-treated diabetic rats. Co-treatment with mibefradil (9 mg/kg i.p.) resulted in reversal of heat, cold and mechanical hypersensitivity in MIS-treated but not in AS-treated diabetic rats, suggesting that mibefradil and CaV3.2 AS share the same cellular target. Using patch-clamp recordings from acutely dissociated DRG neurons, we demonstrated that mibefradil similarly blocked T-currents in diabetic and healthy rats in a voltage-dependent manner by stabilizing inactive states of T-channels. We conclude that antihyperalgesic and antiallodynic effects of mibefradil in PDN are at least partly mediated by inhibition of CaV3.2 channels in peripheral nociceptors. Hence, peripherally acting voltage-dependent T-channel blockers could be very useful in the treatment of painful symptoms of PDN.  相似文献   

18.
The efficacy of excitation induced by iontophoretic application of excitatory amino acids to the soma or different parts of the dendritic tree has been compared in experiments performed on parietal cortex slices. Spike activity was recorded extracellularly from single nerve cells of layer V. In total, the responses of 125 neurons were analyzed. Upon application of glutamate and aspartate to the neuronal soma and the majority of dendrites, latencies of excitatory responses did not exceed 500 msec. In 18% of cases, neuronal responses to transmitter application to basal and apical dendrites had longer (2–3 sec) latencies. The maximum intensity of responses was observed when excitatory amino acids had been applied to the soma or proximal parts of dendrites. If applied at a distance of over 100 µm to basal and 300 µm to apical dendrites, glutamate and aspartate elicited cellular responses whose intensity was 2–3 times lower than that of the responses induced by application to the soma. The maximum distances at which somatic spike responses could be recorded were 350 µm and 800 µm for basal and apical dendrites, respectively. Different latencies of the responses to somatic and dendritic applications of excitatory amino acids in some neurons, as well as high efficacy of responses to stimulation of remote parts of dendritic tree, may indicate nonidentity of electrical properties of dendritic and somatic membranes.Neirofiziologiya/Neurophysiology, Vol. 25, No. 6, pp. 437–446, November–December, 1993.  相似文献   

19.
The patch-clamp technique allows investigation of the electrical excitability of neurons and the functional properties and densities of ion channels. Most patch-clamp recordings from neurons have been made from the soma, the largest structure of individual neurons, while their dendrites, which form the majority of the surface area and receive most of the synaptic input, have been relatively neglected. This protocol describes techniques for recording from the dendrites of neurons in brain slices under direct visual control. Although the basic technique is similar to that used for somatic patching, we describe refinements and optimizations of slice quality, microscope optics, setup stability and electrode approach that are required for maximizing the success rate for dendritic recordings. Using this approach, all configurations of the patch-clamp technique (cell-attached, inside-out, whole-cell, outside-out and perforated patch) can be achieved, even for relatively distal dendrites, and simultaneous multiple-electrode dendritic recordings are also possible. The protocol--from the beginning of slice preparation to the end of the first successful recording--can be completed in 3 h.  相似文献   

20.
1. Intersegmental interneurons (INs) that participate in the larval bending reflex and the pupal gin trap closure reflex were identified in the isolated ventral nerve cord of Manduca sexta. INs 305, 504, and 703 show qualitatively different responses in the pupa than in the larva to electrical stimulation of sensory neurons that are retained during the larval-pupal transition to serve both reflexes. Action potentials produced by current injected into the 3 interneurons excite motor neurons that are directly involved in the larval and pupal reflexes. The excitation of the motor neurons is not associated with EPSPs at a fixed latency following action potentials in the interneurons, and thus there do not seem to be direct synaptic connections between the interneurons and the motor neurons. 2. IN 305 (Fig. 2) has a lateral soma, processes in most of the dorsal neuropil ipsilateral to the soma, and a crossing neurite that gives rise to a single contralateral descending axon. IN 305 is excited by stimulation of the sensory nerve ipsilateral to its soma in the larva and the pupa. Stimulation of the sensory nerve contralateral to its soma produces an inhibitory response in the larva, but a mixed excitatory/inhibitory response to the identical stimulus in the pupa. 3. IN 504 (Fig. 3) has a lateral soma, processes throughout most of the neuropil ipsilateral to the soma, and a crossing neurite that bifurcates to give rise to a process extending to the caudal limit of the neuropil and an ascending axon. IN 504 is excited by stimulation of the sensory nerve ipsilateral to its soma in both larvae and pupae, while the response to stimulation of the sensory nerve contralateral to its soma is inhibitory in the larva but mixed (excitatory/inhibitory) in the pupa. 4. IN 703 has a large antero-lateral soma, a neurite that extends across to the contralateral side giving rise to processes located primarily dorsally in both ipsilateral and contralateral neuropils, and two axons that ascend and descend in the connectives contralateral to the soma (Fig. 4). IN 703 responds to stimulation of the sensory nerves on either side of the ganglion, but the form of the response changes during the larval-pupal transition. In the larva, the response consists of very phasic (0-2 spikes) excitation, but in the pupa there is a prolonged excitation that greatly outlasts the stimulus (Fig. 6).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号