共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis 总被引:19,自引:0,他引:19
The molecular mechanisms by which bone morphogenetic proteins (BMPs) promote skeletal cell differentiation were investigated in the murine mesenchymal stem cell line C3H10T1/2. Both BMP-7 and BMP-2 induced C3H10T1/2 cells to undergo a sequential pattern of chondrogenic followed by osteogenic differentiation that was dependent on both the concentration and the continuous presence of BMP in the growth media. Differentiation was determined by the expression of chondrogenesis and osteogenesis associated matrix genes. Subsequent experiments using BMP-7 demonstrated that withdrawal of BMP from the growth media led to a complete loss of skeletal cell differentiation accompanied by adipogenic differentiation of these cells. Continuous treatment with BMP-7 increased the expression of Sox9, Msx 2, and c-fos during the periods of chondrogenic differentiation after which point their expression decreased. In contrast, Dlx 5 expression was induced by BMP-7 treatment and remained elevated throughout the time-course of skeletal cell differentiation. Runx2/Cbfa1 was not detected by ribonuclease protection assay (RPA) and did not appear to be induced by BMP-7. The sequential nature of differentiation of chondrocytic and osteoblastic cells and the necessity for continuous BMP treatment to maintain skeletal cell differentiation suggests that the maintenance of selective differentiation of the two skeletal cell lineages might be dependent on BMP-7-regulated expression of other morphogenetic factors. An examination of the expression of Wnt, transforming growth factor-beta (TGF-beta), and the hedgehog family of morphogens showed that Wnt 5b, Wnt 11, BMP-4, growth and differentiation factor-1 (GDF-1), Sonic hedgehog (Shh), and Indian hedgehog (Ihh) were endogenously expressed by C3H10T1/2 cells. Wnt 11, BMP-4, and GDF-1 expression were inhibited by BMP-7 treatment in a dose-dependent manner while Wnt 5b and Shh were selectively induced by BMP-7 during the period of chondrogenic differentiation. Ihh expression also showed induction by BMP-7 treatment, however, the period of maximal expression was during the later time-points, corresponding to osteogenic differentiation. An interesting phenomenon was that BMP-7 activity could be further enhanced twofold by growing the cells in a more nutrient-rich media. In summary, the murine mesenchymal stem cell line C3H10T1/2 was induced to follow an endochondral sequence of chondrogenic and osteogenic differentiation dependent on both dose and continual presence of BMP-7 and enhanced by a nutrient-rich media. Our preliminary results suggest that the induction of osteogenesis is dependent on the secondary regulation of factors that control osteogenesis through an autocrine mechanism. 相似文献
3.
Brent L. Atkinson Kelley S. Fantle James J. Benedict William E. Huffer Arthur Gutierrez-Hartmann 《Journal of cellular biochemistry》1997,65(3):325-339
During embryonic development, cartilage formation involves the condensation of mesenchymal stem cells and a series of maturation steps that ultimately results in the mineralized hypertrophic chondrocyte. The embryonic, murine, mesenchymal stem cell line, C3H/10T1/2, is pluripotent; exposure to azacytidine or to bone morphogenetic protein-2 or -4 results in low rates of differentiation to three mesengenic lineages. In contrast to previous studies, we report conditions for 10T1/2 differentiation specifically to the cartilage lineage and at high yields. These conditions include high cell density micromass cultures, a purified mixture of osteoinductive proteins (BP; Intermedics Orthopedics, Denver, CO), a serum substitute, 50 μg/ml ascorbic acid, and 10 mM β-glycerophosphate. The cartilagenous fate was confirmed by 1) histological detection of sulfated proteoglycans, 2) electron microscopic detection of proteoglycan and rounded cells separated by extracellular matrix containing short, disorganized collagen fibrils, 3) morphological detection of a chondrocytes surrounded by a territorial matrix and encompassed within a distinct perichondrium, and 4) immunocytochemical detection of type II collagen and link protein. After 4 weeks in culture, mature although unmineralized cartilage was observed, as indicated by hypertrophic morphology, immunocytochemical detection of osteocalcin, and histological detection of lacunae. These conditions promote overt chondrogenesis for most of the treated cells and preclude lineage determination to the fat, muscle, and bone lineages, as assayed by electron microscopy and histomorphology. The faithful recapitulation of cartilage differentiation that we have established in vitro provides a versatile alternative to the use of chondrocyte and limb bud explant cultures. We propose this as a model system to study the factors that regulate commitment to the chondrogenic lineage, exclusion to related mesengenic pathways, and maturation during chondrogenesis. J. Cell. Biochem. 65:325–339. © 1997 Wiley-Liss, Inc. 相似文献
4.
Members of both the Wnt and bone morphogenetic protein (BMP) families of signaling molecules have been implicated in the regulation of cartilage development. We explored the underlying mechanism of BMP-2-induced chondrocyte commitment of C3H10T1/2 cells. Treating cells with exogenous BMP-2 was tied to chondrocyte commitment by inhibiting matrix metalloproteinase-9 activity (MMP-9: 92 kDa type IV collagenase/gelatinase B). Glycogen synthase kinase (GSK)-3β inhibition by its specific inhibitor blocked BMP-2-induced chondrocyte commitment by stimulating MMP-9 activity. These findings indicate that the downregulation of MMP-9 by BMP-2 is associated with chondrocyte commitment, and that the GSK-3β signaling pathway is involved in this process. 相似文献
5.
Sang Wan Kim Ok Kyung Choi Ju Yeon Jung Jae‐Yeon Yang Sun Wook Cho Chan Soo Shin Kyong Soo Park Seong Yeon Kim 《Journal of cellular biochemistry》2009,106(4):626-632
Ghrelin is a 28‐residue peptide identified in the stomach as an endogenous ligand of the growth hormone secretagogue receptor that is expressed in a variety of peripheral tissues, as well as in the brain. In previous studies, ghrelin has been shown to stimulate both adipogenic differentiation from preadipocytes and osteogenic differentiation from preosteoblasts or primary osteoblasts. This study was undertaken to investigate the direct effect of ghrelin on the lineage allocation of mesenchymal stem cells (MSCs). We identified ghrelin receptor mRNA in C3H10T1/2 cells, and we found the levels of this mRNA to be attenuated during osteogenic differentiation. Treatment of cells with ghrelin resulted in both proliferation and inhibition of caspase‐3 activity. In addition, ghrelin decreased serum deprivation‐induced bax protein expression and release of cytochrome c from the mitochondria, whereas it increased bcl‐2 protein expression. Moreover, ghrelin inhibited early osteogenic differentiation, as shown by alkaline phosphatase activity and staining, and inhibited osteoblast‐specific genes expression by altering Runx2, PPARγ, and C/EBPα protein expression. J. Cell. Biochem. 106: 626–632, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
6.
7.
Khayat G Rosenzweig DH Quinn TM 《Differentiation; research in biological diversity》2012,83(4):179-184
Oscillatory mechanical stimulation at relatively high frequencies (0.1 Hz) has been shown to inhibit adipogenic and promote osteogenic differentiation of mesenchymal stem cells. However, for physiological interpretations and ease of implementation it is of interest to know whether different rates of mechanical stimulation can produce similar results. We hypothesized that relatively low frequency mechanical stimulation (0.01 Hz) can inhibit adipogenic differentiation of C3H10T1/2 mouse mesenchymal stem cells, even in a potent adipogenic differentiation medium. C3H10T1/2 cells were cultured in adipogenic medium under control (non-mechanically stimulated) conditions and under oscillatory surface stretch with 10% amplitude and 0.01 Hz frequency for 6h per day for up to 5 days. Cell population was assessed by counting and adipogenic differentiation was assessed by real-time quantitative PCR (qPCR) analysis of peroxisome proliferator-activated receptor gamma (PPARγ) and fatty acid binding protein 4 (FABP4) after 3 and 5 days. Involvement of the ERK signaling pathway was assessed by Western blot. Low frequency mechanical stimulation significantly decreased expression of PPARγ after 3 days and FABP4 after 3 and 5 days versus non-stimulated culture. ERK signaling was decreased in mechanically-stimulated culture, indicating a role in the inhibition of adipogenic differentiation. Application of this study: Low frequency mechanical stimulation may provide a technically simple means for control of mesenchymal stem cell differentiation in cell-based therapies, particularly for inhibition of differentiation toward undesired adipogenic lineages. 相似文献
8.
9.
10.
Katsuki Y Sakamoto K Minamizato T Makino H Umezawa A Ikeda MA Perbal B Amagasa T Yamaguchi A Katsube K 《Biochemical and biophysical research communications》2008,368(3):808-814
CCN3/NOV activates the Notch signal through the carboxyl terminal cysteine-rich (CT) domain. CCN3 transfection to Kusa-A1 inhibited osteogenic differentiation and cell proliferation, which is accompanied by upregulation of Hes/Hey, Notch downstream targets, and p21, a CDK inhibitor. Upregulation of Hes/Hey and p21 was abrogated by the deletion of CT domain. Anti-proliferative activity of CCN3 was also abrogated by CT domain deletion whereas anti-osteogenic activity was not completely abrogated. We found that CT domain-deleted CCN3 still possesses antagonistic effect on BMP-2. These results suggest that CCN3 employs Notch and BMP pathways in anti-osteogenic activity while it inhibits cell proliferation uniquely by Notch/p21 pathway. 相似文献
11.
R C Miller C R Geard D J Brenner K Komatsu S A Marino E J Hall 《Radiation research》1989,117(1):114-127
The relative biological effectiveness (RBE) of a range of neutron energies relative to 250-kVp X rays has been determined for oncogenic transformation and cell survival in the mouse C3H 10T 1/2 cell line. Monoenergetic neutrons at 0.23, 0.35, 0.45, 0.70, 0.96, 1.96, 5.90, and 13.7 MeV were generated at the Radiological Research Accelerator Facility of the Radiological Research Laboratories, Columbia University, and were used to irradiate asynchronous cells at low absorbed doses from 0.05 to 1.47 Gy. X irradiations covered the range 0.5 to 8 Gy. Over the more than 2-year period of this study, the 31 experiments provided comprehensive information, indicating minimal variability in control material, assuring the validity of comparisons over time. For both survival and transformation, a curvilinear dose response for X rays was contrasted with linear or nearly linear dose responses for the various neutron energies. RBE increased as dose decreased for both end points. Maximal RBE values for transformation ranged from 13 for cells exposed to 5.9-MeV neutrons to 35 for 0.35-MeV neutrons. This study clearly shows that over the range of neutron energies typically seen by nuclear power plant workers and individuals exposed to the atomic bombs in Japan, a wide range of RBE values needs to be considered when evaluating the neutron component of the effective dose. These results are in concordance with the recent proposals in ICRU 40 both to change upward and to vary the quality factor for neutron irradiations. 相似文献
12.
Mingke Wang Yongping Su Huiqin Sun Tao Wang Guohe Yan Xinze Ran Fengchao Wang Tianming Cheng Zhongmin Zou 《Differentiation; research in biological diversity》2010
A murine embryonic mesenchymal cell line C3H/10T1/2 possesses the potential to differentiate into multiple cell phenotypes and has been recognized as multipotent mesenchymal stem cells, but no in vitro model of its endothelial differentiation has been established and the effect of angiogenic factors on the differentiation is unknown. The aim of the present study was to evaluate the role of angiogenic factors in inducing endothelial differentiation of C3H/10T1/2 cells in vitro. C3H/10T1/2 cells were treated with angiogenic factors, VEGF (10 ng/mL) and bFGF (5 ng/mL). At specified time points, cells were subjected to morphological study, immunofluorescence staining, RT-PCR, LDL-uptake tests and 3-D culture for the examination of the structural and functional characteristics of endothelial cells. Classic cobblestone-like growth pattern appeared at 6 day of the induced differentiation. Immunofluorescence staining and RT-PCR analyses revealed that the induced cells exhibited endothelial cell-specific markers such as CD31, von Willebrand factor, Flk1, Flt1, VE-cadherin, Tie2, EphrinB2 and Vezf1 at 9 day. The induced C3H/10T1/2 cells exhibited functional characteristics of the mature endothelial phenotype, such as uptake of acetylated low-density lipoproteins (Ac-LDL) and formation of capillary-like structures in three-dimensional culture. At 9 day, Weibel–Palade bodies were observed under a transmission electron microscope. This study demonstrates, for the first time, endothelial differentiation of C3H/10T1/2 cells induced by angiogenic factors, VEGF and bFGF, and confirms the multipotential differentiation ability. This in vitro model is useful for investigating the molecular events in endothelial differentiation of mesenchymal stem cells. 相似文献
13.
BACKGROUND: The molecular mechanisms underlying the biologic effects or differentiation of mesenchymal stromal cells (MSC) have not been clarified. Screening for genes differentially expressed at different stages is an important step in determining these molecular mechanisms. METHODS: In this study, we analyzed the gene expression profiles of C3H10T1/2 (10T1/2) cells and two sublines, A54 (pre-adipocyte) and M1601 (myoblast), as a model of MSC and downstream committed progenitors. RESULTS: We found up-regulated expression of delta-like-1 (Dlk), Wnt-5a and IL-1 receptor-like-1 (ST2) in 10T1/2 cells; stem cell factor (SCF) and stromal derived factor-1 (SDF-1) in A54 cells; and cardiac muscle-specific gene in M1601 cells. Overexpression of Dlk in A54 cells did not induce any effects on their differentiation into adipocytes. After differentiation into adipocytes, A54 cells reduced the expression of SCF, SDF-1 and Ang-1 as well as the ability to support the formation of a cobblestone appearance. DISCUSSION: The results suggest that these three lines hae different gene profiles and are a useful system for analyzing the differentiation and function of MSC and progenitor cells. 相似文献
14.
15.
16.
M E Schillaci S Carpenter M R Raju R J Sebring M E Wilder D T Goodhead 《Radiation research》1989,118(1):83-92
In the first paper of this series (Radiat. Res. 110, 396-412 (1987], using V79 cells, we reported that the relative biological effectiveness (RBE) of ultrasoft X rays was found to increase with decreasing energy, and the oxygen enhancement ratio (OER) was found to decrease with decreasing energy. In this report, we present RBE and OER results for 10T1/2 cells that are known to grow uniformly flat and are considerably thinner than V79 cells. Thus the variation in dose across the cell nucleus is considerably reduced. The OER results agree well with our earlier V79 results. However, the RBE values for 10T1/2 cells compared to V79 cells are systematically less for all soft X rays and especially for 0.28 keV carbon-K (1.3 compared to 3.4 for V79 cells). Some plausible explanations are presented to reconcile the apparent discrepancy between V79 and 10T1/2 results. 相似文献
17.
18.
19.
Rani Roy Valery Kudryashov Stephen B. Doty Itzhak Binderman Adele L. Boskey 《Differentiation; research in biological diversity》2010,79(4-5):211-217
The murine mesenchymal cell line, C3H10T1/2 in micromass culture undergoes chondrogenic differentiation with the addition of BMP-2. This study compares the use of BMP-2 vs. insulin, transferrin, and sodium selenite (ITS) to create a chondrogenic micromass cell culture system that models cartilage calcification in the presence of 4 mM inorganic phosphate. BMP-2 treated cultures showed more intense alcian blue staining for proteoglycans than ITS treated cultures at early time points. Both ITS and BMP-2 treated cultures showed similar mineral deposition in cultures treated with 4 mM phosphate via von Kossa staining, however FTIR spectroscopy of cultures showed different matrix properties. ITS treated cultures produced matrix that more closely resembled mouse calcified cartilage by FTIR analysis. 45Ca uptake curves showed delayed onset of mineralization in cultures treated with BMP-2, however they had an increased rate of mineralization (initial slope of 45Ca uptake curve) when compared to the cultures treated with ITS. Immunohistochemistry showed the presence of both collagens type I and type II in BMP-2 and ITS treated control (1 mM inorganic phosphate) and mineralizing cultures. BMP-2 treated mineralizing cultures displayed more intense staining for collagen type II than all other cultures. Collagen type X staining was detected at Day 9 only in mineralizing cultures treated with ITS. Western blotting of Day 9 cultures confirmed the presence of collagen type X in the mineralizing ITS cultures, and also showed very small amounts of collagen type X in BMP-2 treated cultures and control ITS cultures. By Day 16 all cultures stained positive for collagen type X. These data suggest that BMP-2 induces a more chondrogenic phenotype, while ITS treatment favors maturation and hypertrophy of the chondrocytes in the murine micromass cultures. 相似文献
20.
The effect of 3-methoxybenzamide, an inhibitor of poly(ADP-ribose) polymerase, on N-methyl-N′-nitro-N-nitrosoguanidine-induced mutations has been examined in exponentially dividing cells where this inhibitor is a strong potentiator of cytotoxicity and in quiescent cells where the inhibitor has little or no effect on cell survival. The yield of mutants decreased in dividing cells by approximately 70% while mutation frequencies showed small but statistically significant increases in quiescent cells. These results suggest that apparent decreased mutation frequencies observed in the presence of ADP-ribosylation inhibitors are due to selective inhibition of expression of mutations in dividing cells caused by an irreversible G2 cell cycle block. 相似文献