首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
SHetA2 (NSC 721689), our lead Flex-Het anti-cancer agent, consists of a thiochroman (Ring A) and a 4-nitrophenyl (Ring B) linked by a thiourea bridge. In this work, several series of new analogs having a tetrahydroquinoline (THQ, Ring A) unit connected by a urea or thiourea linker to a 4-substituted phenyl (Ring B) have been prepared and evaluated relative to SHetA2 in terms of binding affinity with mortalin and inhibition of A2780 ovarian cancer cells. Six of the derivatives equaled or exceeded the efficacy shown by SHetA2. Compounds 1a-d (series 1), lacking a methyl on the Ring A nitrogen and the gem-dimethyls on the adjacent carbon, showed only weak activity. Salt 2, the quaternized N,N-dimethyl iodide salt analog of 1a, also possessed very modest growth inhibition in the cell line studied. Series 3 compounds, which had a C3 ketone and an N-methyl replacing the sulfur in Ring A, were most successful. Compound 3a [Ring A = 1,2,2,4,4-pentamethyl-3-oxo-1,2,3,4-tetrahydroquinolin-6-yl; urea linker; Ring B = 4-nitrophenyl] had slightly lower potency (IC50 3.8 μM), but better efficacy (94.8%) than SHetA2 (IC50 3.17 μM, efficacy 84.3%). In addition, 3c and 3d [urea and thiourea linkers, respectively; Ring B = 4-(trifluoromethyl)phenyl] and 3e and 3f [urea and thiourea linkers, respectively; Ring B = 4-(trifluoromethoxy)phenyl] were also evaluated since these agents possessed electron-withdrawing groups with H-bonding capability. All displayed good activity. Compounds 3c and 3e showed improvement in both potency and efficacy compared to SHetA2. In general, when the linker group between Rings A and B was a urea, efficacy values slightly exceeded those with a thiourea linker in the carbonyl-containing THQ systems 3a-g. In contrast, when Ring A possessed the 1,2,2,4,4-pentamethyl-3-hydroxytetrahydroquinolin-6-yl unit (4a-f, series 4), very modest potency and efficacy was observed. Model compound 5, an exact N-methyl THQ analog of SHetA2, demonstrated less potency (IC50 4.5 μM), but improved efficacy (91.7%). Modeling studies were performed to rationalize the observed results.  相似文献   

2.
Various substituted indazole and benzoxazolone amino acids were investigated as d-tyrosine surrogates in highly potent CGRP receptor antagonists. Compound 3, derived from the 7-methylindazole core, afforded a 30-fold increase in CGRP binding potency compared with its unsubstituted indazole analog 1. When dosed at 0.03 mg/kg SC, compound 2 (a racemic mixture of 3 and its (S)-enantiomer) demonstrated robust inhibition of CGRP-induced increases in mamoset facial blood flow up to 105 min. The compound possesses a favorable predictive in vitro toxicology profile, and good aqueous solubility. When dosed as a nasal spray in rabbits, 3 was rapidly absorbed and showed good intranasal bioavailability (42%).  相似文献   

3.
Based on previous SAR studies on N-benzylindole and barbituric acid hybrid molecules, we have synthesized a series of aromatic substituted 5-((1-benzyl-1H-indol-3-yl)methylene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione analogs (3ai) and evaluated them for their in vitro growth inhibition and cytotoxicity against a panel of 60 human tumor cell lines. Compounds 3c, 3d, 3f and 3g were identified as highly potent anti-proliferative compounds against ovarian, renal and breast cancer cell lines with GI50 values in low the nanomolar range. The 4-methoxy-N-benzyl analog (3d) was the most active compound with GI50 values of 20 nM and 40 nM against OVCAR-5 ovarian cancer cells and MDA-MB-468 breast cancer cells, respectively. Two other analogs, 3c (the 4-methyl-N-benzyl analog) and 3g (the 4-fluoro-N-benzyl analog) exhibited equimolar potency against MDA-MB-468 cells GI50 = 30 nM). Analog 3f (the 4-chloro-N-benzyl analog) exhibited a GI50 value of 40 nM against renal cancer cell line A498. These results suggest that aromatic substituted N-benzylindole dimethylbarbituric acid hybrids may have potential for development as clinical candidates to treat a variety of solid tumors.  相似文献   

4.
Leucoanthocyanidin reductase (LAR) catalyzes the NADPH-dependent reduction of 2R,3S,4S-flavan-3,4-diols into 2R,3S-flavan-3-ols, a subfamily of flavonoids that is important for plant survival and for human nutrition. LAR1 from Vitis vinifera has been co-crystallized with or without NADPH and one of its natural products, (+)-catechin. Crystals diffract to a resolution between 1.75 and 2.72 Å. The coenzyme and substrate binding pocket is preformed in the apoprotein and not markedly altered upon NADPH binding. The structure of the abortive ternary complex, determined at a resolution of 2.28 Å, indicates the ordering of a short 310 helix associated with substrate binding and suggests that His122 and Lys140 act as acid-base catalysts. Based on our 3D structures, a two-step catalytic mechanism is proposed, in which a concerted dehydration precedes an NADPH-mediated hydride transfer at C4. The dehydration step involves a Lys-catalyzed deprotonation of the phenolic OH7 through a bridging water molecule and a His-catalyzed protonation of the benzylic hydroxyl at C4. The resulting quinone methide serves as an electrophilic target for hydride transfer at C4. LAR belongs to the short-chain dehydrogenase/reductase superfamily and to the PIP (pinoresinol-lariciresinol reductase, isoflavone reductase, and phenylcoumaran benzylic ether reductase) family. Our data support the concept that all PIP enzymes reduce a quinone methide intermediate and that the major role of the only residue that has been conserved from the short-chain dehydrogenase/reductase catalytic triad (Ser…TyrXXXLys), that is, lysine, is to promote the formation of this intermediate by catalyzing the deprotonation of a phenolic hydroxyl. For some PIP enzymes, this lysine-catalyzed proton abstraction may be sufficient to trigger the extrusion of the leaving group, whereas in LAR, the extrusion of a hydroxide group requires a more sophisticated mechanism of concerted acid-base catalysis that involves histidine and takes advantage of the OH4, OH5, and OH7 substituents of leucoanthocyanidins.  相似文献   

5.
The nucleoside antibiotic, 5′-O-[N-(salicyl)sulfamoyl]adenosine (1), possesses potent whole-cell activity against Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB). This compound is also active in vivo, but suffers from poor drug disposition properties that result in poor bioavailability and rapid clearance. The synthesis and evaluation of a systematic series of lipophilic ester prodrugs containing linear and α-branched alkanoyl groups from two to twelve carbons at the 3′-position of a 2′-fluorinated analog of 1 is reported with the goal to improve oral bioavailability. The prodrugs were stable in simulated gastric fluid (pH 1.2) and under physiological conditions (pH 7.4). The prodrugs were also remarkably stable in mouse, rat, and human serum (relative serum stability: human  rat  mouse) displaying a parabolic trend in the SAR with hydrolysis rates increasing with chain length up to eight carbons (t1/2 = 1.6 h for octanoyl prodrug 7 in mouse serum) and then decreasing again with higher chain lengths. The permeability of the prodrugs was also assessed in a Caco-2 cell transwell model. All of the prodrugs were found to have reduced permeation in the apical-to-basolateral direction and enhanced permeation in the basolateral-to-apical direction relative to the parent compound 2, resulting in efflux ratios 5–28 times greater than 2. Additionally, Caco-2 cells were found to hydrolyze the prodrugs with SAR mirroring the serum stability results and a preference for hydrolysis on the apical side. Taken together, these results suggest that the described prodrug strategy will lead to lower than expected oral bioavailability of 2 and highlight the contribution of intestinal esterases for prodrug hydrolysis.  相似文献   

6.
The 4-(heteroarylthio)thieno[2,3-d]pyrimidine (TTP) series of antimalarials, represented by 1 and 17, potently inhibit proliferation of the 3D7 strain of P. falciparum (EC50 70–100 nM), but suffer from oxidative metabolism. The 1,1-cyclopropylidene isosteres 6 and 16 were designed to obviate this drawback. They were prepared by a short route that features a combined Peterson methylenation / cyclopropanation transformation of, e. g., ketone 7. Isosteres 6 and 16 possess significantly attenuated antimalarial potency relative to parents 1 and 17. This outcome can be rationalized based on the increased out-of-plane steric demands of the latter two. In support of this hypothesis, the relatively flat ketone 7 retains some of the potency of 1, even though it appears to be a comparatively inferior mimic with respect to electronics and bond lengths and angles. We also demonstrate crystallographically and computationally an apparent increase in the strength of the intramolecular sulfur hole interaction of 1 upon protonation.  相似文献   

7.
A novel series of potent CGRP receptor antagonists containing a central quinoline ring constraint was identified. The combination of the quinoline constraint with a tricyclic benzimidazolinone left hand fragment produced an analog with picomolar potency (14, CGRP Ki = 23 pM). Further optimization of the tricycle produced a CGRP receptor antagonist that exhibited subnanomolar potency (19, CGRP Ki = 0.52 nM) and displayed a good pharmacokinetic profile in three preclinical species.  相似文献   

8.
A promising lead compound 1 of a benzimidazole series has been identified as a corticotropin-releasing factor 1 (CRF1) receptor antagonist. In this study, we focused on replacement of a 7-alkylamino group of 1, predicted to occupy a large lipophilic pocket of a CRF1 receptor, with an aryl group. During the course of this examination, we established new synthetic approaches to 2,7-diarylaminobenzimidazoles. The novel synthesis of 7-arylaminobenzimidazoles culminated in the identification of compounds exhibiting inhibitory activities comparable to the alkyl analog 1. A representative compound, p-methoxyanilino analog 16g, showed potent CRF binding inhibitory activity against a human CRF1 receptor and human CRF1 receptor antagonistic activity (IC50 = 27 nM, 56 nM, respectively). This compound exhibited ex vivo 125I-Tyr0 (125I-CRF) binding inhibitory activity in mouse frontal cortex, olfactory bulb, and pituitary gland at 20 mg/kg after oral administration. In this report, we discuss the structure–activity-relationship of these 7-arylamino-1H-benzimidazoles and their synthetic method.  相似文献   

9.
Two new compounds oraristatin A (1) and oraristatinoside A (2), one new natural compound (2 S)-methyl-6,7-dihydroxytropate (3), and 11 known phenolic metabolites were isolated from the aerial parts of Orthosiphon aristatus. Their chemical structures were identified by 1D- and 2D NMR and HRESIMS spectroscopic analyses. The absolute configurations of 1 and 3 were determined by TD-DFT ECD spectroscopic analyses. Of the isolates, compound 2 weakly inhibited both Gram-positive and -negative bacteria (MIC = 150–300 μM), while 6 and 7 suppressed the growth of three Gram-positive bacteria and a yeast (MIC = 75–150 μM). This is the first report of the isolation of 6 − 9, 12, and 14 from the genus Orthosiphon and the antimicrobial effects of compounds 3, 7, 9, 12, and 14.  相似文献   

10.
Phytochemical investigation of the dichloromethane/methanol (1:1) extract of the roots of Bulbine frutescens led to the isolation of a new xanthone, 8-hydroxy-6-methylxanthone-1-carboxylic acid (1) and a new phenylanthraquinone, 6′,8-O-dimethylknipholone (2) along with six known compounds. The structures were elucidated on the basis of NMR and MS spectral data analyses. The structure of compound 1 was confirmed through X-ray crystallography which was then used as a reference to propose the revision of the structures of six seco-anthraquinones into xanthones. The isolated compounds were evaluated for cytotoxicity against human cervix carcinoma KB-3-1 cells with the phenylanthraquinone knipholone being the most active (IC50 = 0.43 μM). Two semi-synthetic knipholone derivatives, knipholone Mannich base and knipholone-1,3-oxazine, were prepared and tested for cytotoxic activity; both showed moderate activities (IC50 value of 1.89 and 2.50 μM, respectively).  相似文献   

11.
Chromone (4), which form the base structure of various flavonoids isolated as natural products, is capable of relaxing smooth muscle. This is relevant to the treatment of high blood pressure, asthma and chronic obstructive pulmonary disease. The former disorder involves the contraction of vascular smooth muscle (VSM), and the latter two bronchoconstriction of airway smooth muscle (ASM). One of the principal mechanisms by which flavonoids relax muscle tissue is the inhibition of phosphodiesterases (PDEs), present in both VSM and ASM. Therefore, a study was designed to analyze the structure–activity relationship of chromone derivatives in vaso- and bronchorelaxation through the inhibition of PDE. Docking studies showed that these chromones bind at the catalytic site of PDEs. Consequently, we synthesized analogs of chromones substituted at position C-2 with alkyl and naphthyl groups. These compounds were synthesized from 2-hydroxyacetophenone and acyl chlorides in the presence of DBU and pyridine, modifying the methodology reported for the synthesis of 3-acylchromones by changing the reaction temperature from 80 to 30 °C and using methylene chloride as solvent, yielding the corresponding phenolic esters 10a10h. These compounds were cyclized with an equivalent of DBU, pyridine as solvent, and heated at reflux temperature, yielding the chromones 11a11h. Evaluation of the vasorelaxant effect of 4, 11a11h on rat aorta demonstrated that potency decreases with branched alkyl groups. Whereas the EC50 of compound 11d (substituted by an n-hexyl group) was 8.64 ± 0.39 μM, that of 11f (substituted by an isobutyl group) was 14.58 ± 0.64 μM. Contrarily, the effectiveness of the compound is directly proportional to the length of the alkyl chain, as evidenced by the increase in maximal effect of compound 11c versus 11d (66% versus 100%) and 11e versus 11f (60% versus 96%). With an aromatic group like naphthyl as the C-2 substituent, the effectiveness was only 43%. All compounds tested on guinea pig trachea showed less than 55% effectiveness. Compounds 4, 11a11h were evaluated as PDE inhibitors in vitro, with 11d showing the greatest effect (73%), corroborating the importance of a long alkyl chain, which inhibits the decomposition of cGMP. Docking studies showed that the compound 11d was selective for the inhibition of PDE-5.  相似文献   

12.
The leaves of Dilobeia thouarsii (Roemer and Schulte), a tree that is endemic to Madagascar (Proteaceae), are used in traditional Malagasy medicine to treat bacterial skin infections and wounds. This study investigated the in vitro antibacterial activities of D. thouarsii leaf extracts and identified the bioactive compounds with the aim of providing a scientific basis for its use against skin diseases. Using broth microdilution method for leaf crude extract and its compounds, we investigated inhibition of the growth of Bacillus cereus, Bacillus megaterium, Staphylococcus aureus, Enterococcus faecalis, Vibrio harveyi, Vibrio fisheri, Salmonella Typhimurium, Salmonella antarctica, Escherichia coli, and Klebsiella pneumoniae. The two purified phenolic compounds from leaf ethyl acetate extracts (1, 2) were found to be more active than the crude extract itself. The structure of the two compounds was elucidated by NMR and mass spectrometry: compound 1 was identified as 4-aminophenol and compound 2 as 4-hydroxybenzaldehyde. A marked inhibitory effect (MIC < 0.1 mg/ml) was found against S. aureus, which is a major agent in skin infections. We observed moderate activities (MIC values of between 0.1 and 0.5 mg/ml) for E. faecalis, Vibrio spp., and Bacillus spp. Neither compound was active against Salmonella spp., E. coli and K. pneumoniae (MICs > 1 mg/ml). To conclude, the high antimicrobial activity of D. thouarsii leaf extracts against S. aureus supports its traditional use to treat skin infections.  相似文献   

13.
PI-103 (7) is a potent dual phosphatidylinositol 3-kinase (PI3K)/mTOR inhibitor, but its rapid in vivo metabolism hinders its further clinical development. To improve the bioavailability of PI-103, we designed and synthesized a PI-103 bioisostere, PI-103BE (9) in which the phenolic hydroxyl group of PI-103 was replaced by a boronate, a structural modification known to enhance bioavailability of molecules containing phenolic hydroxyl moieties. In cell culture, PI-103BE is partially converted to its corresponding boronic acid (10) and to a lesser extent the active ingredient, PI-103. This mixture contributes to the in vitro activity of 9 that shows reduced potency compared to the parent compound. When administered to mice by oral gavage, 9 displays a significantly improved pharmacokinetic profile compared to PI-103, which shows no oral bioavailability at the same dose. Drug exposure of 9 as measured by the area under curve (AUC) value is 88.2 ng/mL*h for 7 and 8879.9 ng/mL*h for 10. When given by intraperitoneal injection (IP), the prodrug afforded an AUC of 32.3 ng/mL*h for 7 and 400.9 ng/mL*h for 10, compared to 9.7 ng/mL*h from PI-103 injection. In plasma from both pharmacokinetic studies, 9 is fully converted to 10 and 7, with the boronic acid metabolite (10) displaying antiproliferative activities comparable to 9, but weaker than 7. The boronic bioisostere of PI-103 thus offers an improved bioavailability that could be translated to in vivo efficacy of PI-103.  相似文献   

14.
A series of novel 1-(substituted phenyl)-3-(2-oxo-1,3,4-oxadiazol-5-yl) β-carbolines (4ae) and the corresponding Mannich bases 59(ac) were synthesized and evaluated for their in vitro antitumor activity against seven human cancer cell lines. Compounds of 4ae series showed a broad spectrum of antitumor activity, with GI50 values lower than 15 μM for five cell lines. The derivative 4b, having the N,N-dimethylaminophenyl group at C-1, displayed the highest activity with GI50 in the range of 0.67–3.20 μM. A high selectivity and potent activity were observed for some Mannich bases, particularly towards resistant ovarian (NCI-ADR/RES) cell lines (5a, 5b, 6a, 6c and 9b), and ovarian (OVCAR-03) cell lines (5b, 6a, 6c, 9a, 9b and 9c). In addition, the interaction of compound 4b with DNA was investigated by using UV and fluorescence spectroscopic analysis. These studies indicated that 4b interact with ctDNA by intercalation binding.  相似文献   

15.
Substituted diphenyl sulfones (10an) were synthesised, and the structures were confirmed by NMR, LC–MS and X-ray crystallography. Their antagonistic activities towards 5-HT6 receptor were assessed in a cell-based functional assay. Diphenyl sulfone 10a, in spite of being the smallest and simplest known sulfonyl-containing 5-HT6R antagonist, showed a strong potency (Ki = 1.6 μM). Its derivative with a methylamine substituent, 10g (N-methyl-2-(phenylsulfonyl)aniline), was ~66-times as active as diphenyl sulfone (Ki = 24.3 nM). Addition of a piperazinyl moiety in the para-position relative to the sulfonyl group in compound 10m (N-methyl-2-(phenylsulfonyl)-5-piperazin-1-ylaniline) led to a further 150-fold increase in potency (Ki = 0.16 nM) to block the serotonin-induced response of HEK-293 cells that were stably transfected with the human recombinant 5-HT6 receptor.  相似文献   

16.
A novel fluorescent ligand was synthesized as a high-affinity, high specificity probe for visualizing the serotonin transporter (SERT). The rhodamine fluorophore was extended from an aniline substitution on the 5-position of the dihydroisobenzofuran ring of citalopram (2, 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile), using an ethylamino linker. The resulting rhodamine-labeled ligand 8 inhibited [3H]5-HT uptake in COS-7 cells (Ki = 225 nM) with similar potency to the tropane-based JHC 1-064 (1), but with higher specificity towards the SERT relative to the transporters for dopamine and norepinephrine. Visualization of the SERT with compound 8 was demonstrated by confocal microscopy in HEK293 cells stably expressing EGFP–SERT.  相似文献   

17.
Aminopyrimidine 2 (4-(1-(2-(1H-indol-3-yl)ethyl)piperidin-3-yl)-N-cyclopropylpyrimidin-2-amine) emerged from a high throughput screen as a novel 5-HT1A agonist. This compound showed moderate potency for 5-HT1A in binding and functional assays, as well as moderate metabolic stability. Implementation of a strategy for improving metabolic stability by lowering the lipophilicity (c Log D) led to identification of methyl ether 31 (4-(1-(2-(1H-indol-3-yl)ethyl)piperidin-3-yl)-N-(2-methoxyethyl)pyrimidin-2-amine) as a substantially improved compound within the series.  相似文献   

18.
From the twigs of Eurycorymbus cavaleriei, seven new benzeneacetic acid derivatives cavaol A–G (17) were isolated. The structures were elucidated on the basis of the results of spectroscopic (NMR, IR, UV and MS) analysis. In the present study, the quinone reductase (QR) induction activities of compounds 17 were assayed. Compounds 3 and 4 showed moderate QR induction with concentrations to double the enzyme activity (CD) of 9.9 ± 0.3 and 7.9 ± 0.5 μg/mL, respectively. LC-MS-MS analysis revealed that the quinone reductase induction activity of compounds 3 and 4 was not due to alkylating the sulfhydryl groups of Keap1. There must be some other pathways for compounds 3 and 4 to induce quinone reductase.  相似文献   

19.
In the course of search for the robust analogs of 1′-acetoxychavicol acetate (ACA, 1), the Rev-export inhibitor from the medicinal plant Alpinia galanga, we clarified formation of the quinone methide intermediate ii to be essential for exerting the inhibitory activity of 1. Based on this mechanism of action, the rational design from the MO calculation of the conclusive activation energy to ii resulted in the four halogenated analogs with more potent activity than ACA (1). In particular, the difluoroanalog 20d exhibited approximately four-fold potent activity as compared with 1.  相似文献   

20.
A novel series of spiroindoline derivatives was discovered for use as inducers of oligodendrocyte progenitor cell (OPC) differentiation, resulting from optimization of screening hit 1. Exploration of structure-activity relationships led to compound 18, which showed improved potency (rOPC EC50 = 0.0032 μM). Furthermore, oral administration of compound 18 significantly decreased clinical severity in an experimental autoimmune encephalomyelitis (EAE) model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号