首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We screened a series of 4-anilinoquinolines and 4-anilinoquinazolines and identified novel inhibitors of Mycobacterium tuberculosis (Mtb). The focused 4-anilinoquinoline/quinazoline scaffold arrays yielded compounds with high potency and the identification of 6,7-dimethoxy-N-(4-((4-methylbenzyl)oxy)phenyl)quinolin-4-amine (34) with an MIC90 value of 0.63–1.25 µM. We also defined a series of key structural features, including the benzyloxy aniline and the 6,7-dimethoxy quinoline ring, that are important for Mtb inhibition. Importantly the compounds showed very limited toxicity and scope for further improvement by iterative medicinal chemistry.  相似文献   

2.
BTB 06237 (2-[(2,4-dichloro-5-methylphenyl)sulfanyl]-1,3-dinitro-5-(trifluoromethyl) benzene), a compound previously identified through QSAR pharmacophore development and a virtual screen of the Maybridge database, possesses potent and selective activity against Leishmania parasites. In the present study, several analogs of BTB 06237 were synthesized and analyzed for activity against Leishmania axenic amastigotes, their ability to reduce the level of parasitemia in peritoneal macrophages, and their ability to generate reactive oxygen species (ROS) in L. donovani promastigotes. It was found that an aromatic ring must be present in the position occupied by the 2,4-dichloro-5-methylphenyl group in the lead compound, but changing the functional groups generally has little effect on the antileishmanial potency. Alterations to the 1,3-dinitro-5-(trifluoromethyl)benzene ring have more influence on antiparasitic activity with two aromatic nitro groups and a third electron-withdrawing group being required. This structural requirement corresponds with redox potential, the ability to generate ROS in the parasites, and dissipation of the mitochondrial membrane potential. Finally, we used this collection of data to design a new antileishmanial compound with strong activity in vitro and improved properties as an antileishmanial candidate.  相似文献   

3.
Four series of heterocyclic compounds, namely, tetrahydro-2H-1,3,5-thiadiazine thione derivatives were synthesized in good to excellent yields and were screened for their in vitro antileishmanial activities against Leishmania major (promastigotes). Most of the compounds showed significant antileishmanial activity within the range of IC50?=?15.48–39.36?μM when compared with standard pentamidine (IC50?=?14.95?μM). The structure-activity relationship showed that N-3 and N-5 substituents have a key role against leishmanicidal activity. The ester analogues (series B) were found to have a 1.5 to 5-fold reduced activity compared to their acidic counterparts. Cytotoxicity against mammalian mouse fibroblast 3?T3 cells was also evaluated and compared between the acid and its ester analogue. The reduction of antileishmanial activity and loss of toxicity in the newly developed THTT ester derivative indicates that these compounds can be used as a template study for the production of effective antileishmanial ester prodrugs.  相似文献   

4.
The chorismate mutase (CM) is considered as an attractive target for the identification of potential antitubercular agents due to its absence in animals but not in bacteria. A series of 3-indolylmethyl substituted pyrazolotriazinone derivatives were designed and docked into CM in silico as potential inhibitors. These compounds were efficiently synthesized using the Pd/Cu-catalyzed coupling-cyclization in a single pot involving the construction of indole ring. The methodology was later extended to the preparation of corresponding benzo analogs of pyrazolotriazinones i.e. 3-indolylmethyl substituted benzotriazinone derivatives. Several of these novel compounds showed significant inhibition of CM when tested in vitro at 30 µM. The SAR (Structure-Activity-Relationship) studies suggested that benzotriazinone moiety was more favorable over the pyrazolotriazinone ring. The two best active compounds showed IC50 ∼ 0.4–0.9 µM (better than the reference/known compounds used) and no toxicity till 30 µM in vitro.  相似文献   

5.
A series of 4-(3-aryloxyaryl)quinolines with sulfone substituents on the terminal aryl ring (7) was prepared as LXR agonists. High affinity LXR ligands with excellent agonist potency and efficacy in functional assays of LXR activity were identified. In general, these sulfone agonists were equal to or superior to previously described alcohol and amide analogs in terms of affinity, functional potency, and microsomal stability. Many of the sulfones had LXRβ binding IC50 values <10 nM while the most potent compounds in an ABCA1 mRNA induction assay in J774 mouse cells had EC50 values <10 nM and were as efficacious as T0901317.  相似文献   

6.
We report herein the discovery of antileishmanial molecules based on the imidazo[1,2-a]pyridine ring. In vitro screenings of imidazopyridines belonging to our chemical library, toward the promastigotes stage of Leishmania donovani, J774A.1 murine and HepG2 human cells, permitted to identify three selective hit-compounds (12, 20 and 28). New derivatives were then synthesized to allow structure–activity and –toxicity relationships analyses, enabling to characterize a lead-compound (44) displaying both a high potency (IC50 = 1.8 μM) and a good selectivity index, in comparison with three antileishmanial reference drug-compounds (amphotericin B, miltefosine and pentamidine). Moreover, lead-compound 44 also exhibits good in vitro activity against the intracellular amastigote stage of L. donovani. Thus, the 6-halo-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridine scaffold appears as a new promising selective antileishmanial pharmacophore, especially when substituted at position 8 by a bromine atom.  相似文献   

7.
Fungi cause serious life-threatening infections in immunocompromised individuals and current treatments are now complicated by toxicity issues and the emergence of drug resistant strains. Consequently, there is a need for development of new antifungal drugs. Inosine monophosphate dehydrogenase (IMPDH), a key component of the de novo purine biosynthetic pathway, is essential for growth and virulence of fungi and is a potential drug target. In this study, a high-throughput screen of 114,000 drug-like compounds against Cryptococcus neoformans IMPDH was performed. We identified three 3-((5-substituted)-1,3,4-oxadiazol-2-yl)thio benzo[b]thiophene 1,1-dioxides that inhibited Cryptococcus IMPDH and also possessed whole cell antifungal activity. Analogs were synthesized to explore the SAR of these hits. Modification of the fifth substituent on the 1,3,4-oxadiazole ring yielded compounds with nanomolar in vitro activity, but with associated cytotoxicity. In contrast, two analogs generated by substituting the 1,3,4-oxadiazole ring with imidazole and 1,2,4-triazole gave reduced IMPDH inhibition in vitro, but were not cytotoxic. During enzyme kinetic studies in the presence of DTT, nucleophilic attack of a free thiol occurred with the benzo[b]thiophene 1,1-dioxide. Two representative compounds with substitution at the 5 position of the 1,3,4-oxadiazole ring, showed mixed inhibition in the absence of DTT. Incubation of these compounds with Cryptococcus IMPDH followed by mass spectrometry analysis showed non-specific and covalent binding with IMPDH at multiple cysteine residues. These results support recent reports that the benzo[b]thiophene 1,1-dioxides moiety as PAINS (pan-assay interference compounds) contributor.  相似文献   

8.
9.
A series of novel 2-substituted-thio-1,3,4-thiadiazoles bearing a 5-nitroaryl moiety including nitrofuran, nitrothiophene or nitroimidazole at the 5-position and a bulky residue attached to the 2-position of the thiadiazole ring were synthesised as potential antileishmanial agents. The target compounds were evaluated against the promastigote form of Leishmania major using the tetrazolium bromide salt (MTT) colorimetric assay. All test compounds exhibited high activity against L. major promastigotes with 50% inhibitory concentrations (IC50) ranging from 1.11 to 3.16 μM. The structure-activity relationship study indicated that the S-pendant group attached to the 2-position of the thiadiazole ring has a high flexibility for structural alteration therefore retaining good antileishmanial activity.  相似文献   

10.
Cynaroside, a flavonoid, has been shown to have antibacterial, antifungal and anticancer activities. Here, we evaluated its antileishmanial properties and its mechanism of action through different in silico and in vitro assays. Cynaroside exhibited antileishmanial activity in time- and dose-dependent manner with 50% of inhibitory concentration (IC50) value of 49.49 ± 3.515 µM in vitro. It inhibited the growth of parasite significantly at only 20 µM concentration when used in combination with miltefosine, a standard drug which has very high toxicity. It also inhibited the intra-macrophagic parasite significantly at low doses when used in combination with miltefosine. It showed less toxicity than the existing antileishmanial drug, miltefosine at similar doses. Propidium iodide staining showed that cynaroside inhibited the parasites in G0/G1 phase of cell cycle. 2,7-dichloro dihydro fluorescein diacetate (H2DCFDA) staining showed cynaroside induced antileishmanial activity through reactive oxygen species (ROS) generation in parasites. Molecular-docking studies with key drug targets of Leishmania donovani showed significant inhibition. Out of these targets, cynaroside showed strongest affinity with uridine diphosphate (UDP)-galactopyranose mutase with −10.4 kcal/mol which was further validated by molecular dynamics (MD) simulation. The bioactivity, ADMET (absorption, distribution, metabolism, excretion and toxicity) properties, Organisation for Economic Co-operation and Development (OECD) chemical classification and toxicity risk prediction showed cynaroside as an enzyme inhibitor having sufficient solubility and non-toxic properties. In conclusion, cynaroside may be used alone or in combination with existing drug, miltefosine to control leishmaniasis with less cytotoxicity.  相似文献   

11.
Plasmodium falciparum, the causative agent of the most deadly form of human malaria, is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and represents a potential target for anti-malarial therapy. A high throughput screen and subsequent medicinal chemistry program identified a series of N-alkyl-5-(1H-benzimidazol-1-yl)thiophene-2-carboxamides with low nanomolar in vitro potency against DHODH from P. falciparum, P. vivax, and P. berghei. The compounds were selective for the parasite enzymes over human DHODH, and x-ray structural data on the analog Genz-667348, demonstrated that species selectivity could be attributed to amino acid differences in the inhibitor-binding site. Compounds from this series demonstrated in vitro potency against the 3D7 and Dd2 strains of P. falciparum, good tolerability and oral exposure in the mouse, and ED50 values in the 4-day murine P. berghei efficacy model of 13–21 mg/kg/day with oral twice-daily dosing. In particular, treatment with Genz-667348 at 100 mg/kg/day resulted in sterile cure. Two recent analogs of Genz-667348 are currently undergoing pilot toxicity testing to determine suitability as clinical development candidates.  相似文献   

12.
Visceral leishmaniasis (VL) is the most fatal form of leishmaniasis and it affects 70 countries worldwide. Increasing drug resistant for antileishmanial drugs such as miltefosine, sodium stibogluconate and pentamidine has been reported in the VL endemic region. Amphotericin B has shown potential antileishmanial activity in different formulations but its cost of treatment and associated nephrotoxicity have limited its use by affected people living in the endemic zone. To control the VL infection in the affected countries, it is necessary to develop new antileishmanial compounds with high efficacy and negligible toxicity. Computer aided programs such as binding free energy estimation; ADMET prediction and molecular dynamics simulation can be used to investigate novel antileishmanial molecules in shorter duration. To develop antileishmanial lead molecule, we performed standard precision (SP) docking for 1160 benzoxaborole analogs along with reference inhibitors against trypanothione reductase of Leishmania parasite. Furthermore, extra precision (XP) docking, ADMET prediction, prime MM-GBSA was conducted over 115 ligands, showing better docking score than reference inhibitors to get potential antileishmanial compounds. Simultaneously, area under the curve (AUC) was estimated using ROC plot to validate the SP and XP docking protocol. Later on, two benzoxaborole analogs with best MM-GBSA ΔG-bind were subjected to molecular simulation and docking confirmation to ensure the ligand interaction with TR. The presented drug discovery based on computational study confirms that BOB27 can be used as a potential drug candidate and warrants further experimental investigation to fight against VL in endemic areas.  相似文献   

13.
A series of hybrid antiprotozoal compounds with quinine-triazolyl scaffold were prepared by copper catalyzed Huisgen 1,3-dipolar cycloaddition via O-mesylation with mesyl chloride followed by azide displacement. The synthesized azide derivative was made to react with various aromatic and aliphatic alkynes. The triazolyl-linked quinine scaffolds were synthesized under solvent-free mechanochemical ball milling conditions. Products (6a-s) were screened for in-vitro antimalarial and antileishmanial activity. Screening results indicated that out of the synthesized series of 19 products, compounds 6d, 6h, 6l, 6m, and 6n showed significant antimalarial (P. falciparum) and antileishmanial activities (L. donavani) with IC50 values 0.28, 0.28, 0.25, 0.33, 0.76 µM and 8.26, 4.4, 1.78, 3.95, and 4.06 µM, respectively. Further toxicological analysis established the Median lethal dose (LD50), No observed adverse effect level (NOAEL) and human equivalent dose (HED) of the most potent compounds by acute and sub acute toxicity studies performed in rodent animal model. The studies revealed that compounds (6d, 6h, 6l and 6m) did not reveal any toxic manifestation at dose 1000 mg/Kg and from which the corresponding HED was calculated to be 13.84 mg/kg.  相似文献   

14.
Isomeric iodinated derivatives of nimesulide, with an iodine substituent on the phenoxy ring, were prepared with the aim of identifying potential candidate compounds for the development of imaging agents targeting cyclooxygenase-2 (COX-2) in the brain. Both the experimental log P7.4 and pKa values for these iodinated analogs were in the acceptable range for passive brain penetration. The para-iodo-substituted analog was a more potent and selective COX-2 inhibitor than nimesulide, with a potency that was comparable to the reference drug, celecoxib. Iodination at the ortho- or meta-position of the phenoxy ring was associated with a substantial loss of COX-2 inhibitory activity. Transport studies across Caco-2 cell monolayers in the presence and absence of a P-glycoprotein (P-gp) inhibitor, verapamil, indicated that the para-iodo-substituted analog was not a P-gp transport substrate; this feature is a prerequisite for potential in vivo brain imaging compounds. The para-iodo-substituted analog of nimesulide appears to be an attractive candidate for the development of radioiodine-labeled tracers for in vivo brain imaging of COX-2 levels.  相似文献   

15.
Naphtoquinones have been used as promising scaffolds for drug design studies against protozoan parasites. Considering the highly toxic and limited therapeutic arsenal, the global negligence with tropical diseases and the elevated prevalence of co-morbidities especially in developing countries, the parasitic diseases caused by various Leishmania species (leishmaniasis) became a significant public health threat in 98 countries. The aim of this work was the evaluation of antileishmanial in vitro potential of thirty-six 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones obtained by a three component reaction of lawsone, the appropriate aldehyde and thiols adequately substituted, exploiting the in situ generation of o-quinonemethides (o-QM) via the Knoevenagel condensation. The antileishmanial activity of the naphthoquinone derivatives was evaluated against promastigotes and intracellular amastigotes of Leishmania (Leishmania) infantum and their cytotoxicity was verified in mammalian cells. Among the thirty-six compounds, twenty-seven were effective against promastigotes, with IC50 values ranging from 8 to 189 µM; fourteen compounds eliminated the intracellular amastigotes, with IC50 values ranging from 12 to 65 µM. The compounds containing the phenyl groups at R1 and R2 and with the fluorine substituent at the phenyl ring at R2, rendered the most promising activity, demonstrating a selectivity index higher than 15 against amastigotes. A QSAR (quantitative structure activity relationship) analysis yielded insights into general structural requirements for activity of most compounds in the series. Considering the in vitro antileishmanial potential of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones and their structure-activity relationships, novel lead candidates could be exploited in future drug design studies for leishmaniasis.  相似文献   

16.
The chemical investigation of the CH2Cl2/MeOH (1:1) extract from the aerial part of Mussaenda erythrophylla Schumach. & Thonn. (Rubiaceae) resulted in the isolation of sixteen known compounds (116) distributed in coumarins, flavonoid glucosides, quinic acid derivatives, triterpenoids, monoglycerid, steroids, tetraterpenoid and polyol. The structures of the compounds were determined by spectrometric and spectroscopic analysis including MS and NMR data followed by their comparison with reported ones in the literature. The chemophenetic significance of the isolated compounds was discussed. The crude extract and some of the isolated compounds were assessed in vitro for their antileishmanial, cytotoxic and antiplasmodial activities. The crude extract of M. erythrophylla showed moderate antileishmanial activity (IC50 = 61.6 μg/mL) while the hexane soluble fraction showed good antileishmanial activity (IC50 = 31.06 μg/mL) compared to the reference drug amphotericin B (IC50 = 0.11 μM). Compounds 11 and 9 also exhibited potent antileishmanial activity (IC50 = 53.7–52.0 μM). The crude extract as well as the ethyl acetate soluble fraction also exhibited good antiplasmodial activity (IC50 = 7.43 ± 0.00 μg/mL and 14.49 ± 2.96 μg/mL respectively), while compounds 11, 15 and 16 showed weak activity with IC50 > 20 μM compared to the reference drug artemisinin (IC50 = 0.014 ± 0.001 μM).  相似文献   

17.
A series of hydroxamates (4a–4l) were prepared from p-aminobenzoic acid to inhibit HDAC8. The idea is to substitute rigid aromatic ring in place of less rigid piperazine ring of hydroxamates reported earlier by our group. It is expected to increase potency retaining the selectivity. Result obtained suggested that the modifications carried out retained the selectivity towards HDAC8 isoform and increasing the potency in very few cases. Increase in potency is also associated with variation in cap aryl region. Two compounds (4f & 4l) were found to inhibit HDAC8 at concentrations (IC50) less than 20 μM.  相似文献   

18.
Synthesis and biological evaluation of a novel class of substituted N-benzyl-1-(2,3-dichlorophenyl)-1H-tetrazol-5-amine derivatives resulted in the identification of potent P2X7 antagonists. These compounds were assayed for activity at both the human and rat P2X7 receptors. On the benzyl moiety, a variety of functional groups were tolerated, including both electron-withdrawing and electron-donating substituents. Ortho-substitution on the benzyl group provided the greatest potency. The ortho-substituted analogs showed approximately 2.5-fold greater potency at human compared to rat P2X7 receptors. Compounds 12 and 38 displayed hP2X7pIC50s >7.8 with less than 2-fold difference in potency at the rP2X7.  相似文献   

19.
A rational-based process was adopted for repurposing pyrrolidine-based 3-deoxysphingosylphosphorylcholine analogs bearing variable acyl chains, different stereochemical configuration and/or positional relationships. Structural features were highly influential on activity. Amongst, enantiomer 1e having 1,2-vicinal relationship for the -CH2O- and the N-acyl moieties, a saturated palmitoyl chain and an opposite stereochemical configuration to natural sphingolipids was the most potent hit compound against promastigotes showing IC50 value of 28.32 µM. The corresponding enantiomer 1a was 2-fold less potent showing a eudismic ratio of 0.54 in promastigotes. Compounds 1a and 1e inhibited the growth of amastigotes more potently relative to promastigotes. Amongst, enantiomer 1a as the more selective and safer. In silico docking study using a homology model of Leishmania donovani inositol phosphoceramide synthase (IPCS) provided plausible reasoning for the molecular factors underlying the found activity. Collectively, this study suggests compounds 1a and 1e as potential hit compounds for further development of new antileishmanial agents.  相似文献   

20.
SHetA2 (NSC 721689), our lead Flex-Het anti-cancer agent, consists of a thiochroman (Ring A) and a 4-nitrophenyl (Ring B) linked by a thiourea bridge. In this work, several series of new analogs having a tetrahydroquinoline (THQ, Ring A) unit connected by a urea or thiourea linker to a 4-substituted phenyl (Ring B) have been prepared and evaluated relative to SHetA2 in terms of binding affinity with mortalin and inhibition of A2780 ovarian cancer cells. Six of the derivatives equaled or exceeded the efficacy shown by SHetA2. Compounds 1a-d (series 1), lacking a methyl on the Ring A nitrogen and the gem-dimethyls on the adjacent carbon, showed only weak activity. Salt 2, the quaternized N,N-dimethyl iodide salt analog of 1a, also possessed very modest growth inhibition in the cell line studied. Series 3 compounds, which had a C3 ketone and an N-methyl replacing the sulfur in Ring A, were most successful. Compound 3a [Ring A = 1,2,2,4,4-pentamethyl-3-oxo-1,2,3,4-tetrahydroquinolin-6-yl; urea linker; Ring B = 4-nitrophenyl] had slightly lower potency (IC50 3.8 μM), but better efficacy (94.8%) than SHetA2 (IC50 3.17 μM, efficacy 84.3%). In addition, 3c and 3d [urea and thiourea linkers, respectively; Ring B = 4-(trifluoromethyl)phenyl] and 3e and 3f [urea and thiourea linkers, respectively; Ring B = 4-(trifluoromethoxy)phenyl] were also evaluated since these agents possessed electron-withdrawing groups with H-bonding capability. All displayed good activity. Compounds 3c and 3e showed improvement in both potency and efficacy compared to SHetA2. In general, when the linker group between Rings A and B was a urea, efficacy values slightly exceeded those with a thiourea linker in the carbonyl-containing THQ systems 3a-g. In contrast, when Ring A possessed the 1,2,2,4,4-pentamethyl-3-hydroxytetrahydroquinolin-6-yl unit (4a-f, series 4), very modest potency and efficacy was observed. Model compound 5, an exact N-methyl THQ analog of SHetA2, demonstrated less potency (IC50 4.5 μM), but improved efficacy (91.7%). Modeling studies were performed to rationalize the observed results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号