首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In 2008, 800 rural Thai adults living within Kamphaeng Phet Province were enrolled in a prospective cohort study of zoonotic influenza transmission. Serological analyses of enrollment sera suggested this cohort had experienced subclinical avian influenza virus (AIV) infections with H9N2 and H5N1 viruses.

Methods

After enrollment, participants were contacted weekly for 24mos for acute influenza-like illnesses (ILI). Cohort members confirmed to have influenza A infections were enrolled with their household contacts in a family transmission study involving paired sera and respiratory swab collections. Cohort members also provided sera at 12 and 24 months after enrollment. Serologic and real-time RT-PCR assays were performed against avian, swine, and human influenza viruses.

Results

Over the 2 yrs of follow-up, 81 ILI investigations in the cohort were conducted; 31 (38%) were identified as influenza A infections by qRT-PCR. Eighty-three household contacts were enrolled; 12 (14%) reported ILIs, and 11 (92%) of those were identified as influenza infections. A number of subjects were found to have slightly elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2) virus: 21 subjects (2.7%) at 12-months and 40 subjects (5.1%) at 24-months. Among these, two largely asymptomatic acute infections with H9N2 virus were detected by >4-fold increases in annual serologic titers (final titers 1∶80). While controlling for age and influenza vaccine receipt, moderate poultry exposure was significantly associated with elevated H9N2 titers (adjusted OR = 2.3; 95% CI, 1.04–5.2) at the 24-month encounter. One subject had an elevated titer (1∶20) against H5N1 during follow-up.

Conclusions

From 2008–10, evidence for AIV infections was sparse among this rural population. Subclinical H9N2 AIV infections likely occurred, but serological results were confounded by antibody cross-reactions. There is a critical need for improved serological diagnostics to more accurately detect subclinical AIV infections in humans.  相似文献   

2.

Background

In this prospective study we sought to examine seroepidemiological evidence for acute zoonotic influenza virus infection among Romanian agricultural workers.

Methods

Sera were drawn upon enrollment (2009) and again at 12 and 24 months from 312 adult agriculture workers and 51 age-group matched controls. Participants were contacted monthly for 24 months and queried regarding episodes of acute influenza-like illnesses (ILI). Cohort members meeting ILI criteria permitted respiratory swab collections as well as acute and convalescent serum collection. Serologic assays were performed against 9 avian, 3 swine, and 3 human influenza viruses.

Results

During the two-year follow-up, a total of 23 ILI events were reported. Two subjects'' specimens were identified as influenza A by rRT-PCR. During the follow-up period, three individuals experienced elevated microneutralization antibody titers ≥1∶80 against three (one each) avian influenza viruses: A/Teal/Hong Kong/w312/97(H6N1), A/Hong Kong/1073/1999(H9N2), or A/Duck/Alberta/60/1976(H12N5). However, none of these participants met the criteria for poultry exposure. A number of subjects demonstrated four-fold increases over time in hemagglutination inhibition (HI) assay titers for at least one of the three swine influenza viruses (SIVs); however, it seems likely that two of these three responses were due to cross-reacting antibody against human influenza. Only elevated antibody titers against A/Swine/Flanders/1/1998(H3N2) lacked evidence for such confounding. In examining risk factors for elevated antibody against this SIV with multiple logistic regression, swine exposure (adjusted OR = 1.8, 95% CI 1.1–2.8) and tobacco use (adjusted OR = 1.8; 95% CI 1.1–2.9) were important predictors.

Conclusions

While Romania has recently experienced multiple incursions of highly pathogenic avian influenza among domestic poultry, this cohort of Romanian agriculture workers had sparse evidence of avian influenza virus infections. In contrast, there was evidence, especially among the swine exposed participants, of infections with human and one swine H3N2 influenza virus.  相似文献   

3.
Zhou X  Chan PK  Tam JS  Tang JW 《PloS one》2011,6(9):e24889

Background

Hepatitis C virus (HCV) 6a accounts for 23.6% of all HCV infections of the general population and 58.5% of intravenous drug users in Hong Kong. However, the geographical origin of this highly predominant HCV subgenotype is largely unknown. This study explores a hypothesis for one possible transmission route of HCV 6a to Hong Kong.

Methods

NS5A sequences derived from 26 HCV 6a samples were chosen from a five year period (1999–2004) from epidemiologically unrelated patients from Hong Kong. Partial-NS5A sequences (513-bp from nt 6728 to 7240) were adopted for Bayesian coalescent analysis to reconstruct the evolutionary history of HCV infections in Hong Kong using the BEAST v1.3 program. A rooted phylogenetic tree was drawn for these sequences by alignment with reference Vietnamese sequences. Demographic data were accessed from “The Statistic Yearbooks of Hong Kong”.

Results

Bayesian coalescent analysis showed that the rapid increase in 6a infections, which had increased more than 90-fold in Hong Kong from 1986 to 1994 correlated to two peaks of Vietnamese immigration to Hong Kong from 1978 to 1997. The second peak, which occurred from 1987 through 1997, overlapped with the rapid increase of HCV 6a occurrence in Hong Kong. Phylogenetic analyses have further revealed that HCV 6a strains from Vietnam may be ancestral to Hong Kong counterparts.

Conclusions

The high predominance of HCV 6a infections in Hong Kong was possibly associated with Vietnamese immigration during 1987–1997.  相似文献   

4.

Background

Recent studies suggest that humans exhale fine particles during tidal breathing but little is known of their composition, particularly during infection.

Methodology/Principal Findings

We conducted a study of influenza infected patients to characterize influenza virus and particle concentrations in their exhaled breath. Patients presenting with influenza-like-illness, confirmed influenza A or B virus by rapid test, and onset within 3 days were recruited at three clinics in Hong Kong, China. We collected exhaled breath from each subject onto Teflon filters and measured exhaled particle concentrations using an optical particle counter. Filters were analyzed for influenza A and B viruses by quantitative polymerase chain reaction (qPCR). Twelve out of thirteen rapid test positive patients provided exhaled breath filter samples (7 subjects infected with influenza B virus and 5 subjects infected with influenza A virus). We detected influenza virus RNA in the exhaled breath of 4 (33%) subjects–three (60%) of the five patients infected with influenza A virus and one (14%) of the seven infected with influenza B virus. Exhaled influenza virus RNA generation rates ranged from <3.2 to 20 influenza virus RNA particles per minute. Over 87% of particles exhaled were under 1 µm in diameter.

Conclusions

These findings regarding influenza virus RNA suggest that influenza virus may be contained in fine particles generated during tidal breathing, and add to the body of literature suggesting that fine particle aerosols may play a role in influenza transmission.  相似文献   

5.
You JH  Chan ES  Leung MY  Ip M  Lee NL 《PloS one》2012,7(3):e33123

Background

Seasonal and 2009 H1N1 influenza viruses may cause severe diseases and result in excess hospitalization and mortality in the older and younger adults, respectively. Early antiviral treatment may improve clinical outcomes. We examined potential outcomes and costs of test-guided versus empirical treatment in patients hospitalized for suspected influenza in Hong Kong.

Methods

We designed a decision tree to simulate potential outcomes of four management strategies in adults hospitalized for severe respiratory infection suspected of influenza: “immunofluorescence-assay” (IFA) or “polymerase-chain-reaction” (PCR)-guided oseltamivir treatment, “empirical treatment plus PCR” and “empirical treatment alone”. Model inputs were derived from literature. The average prevalence (11%) of influenza in 2010–2011 (58% being 2009 H1N1) among cases of respiratory infections was used in the base-case analysis. Primary outcome simulated was cost per quality-adjusted life-year (QALY) expected (ICER) from the Hong Kong healthcare providers'' perspective.

Results

In base-case analysis, “empirical treatment alone” was shown to be the most cost-effective strategy and dominated the other three options. Sensitivity analyses showed that “PCR-guided treatment” would dominate “empirical treatment alone” when the daily cost of oseltamivir exceeded USD18, or when influenza prevalence was <2.5% and the predominant circulating viruses were not 2009 H1N1. Using USD50,000 as the threshold of willingness-to-pay, “empirical treatment alone” and “PCR-guided treatment” were cost-effective 97% and 3% of time, respectively, in 10,000 Monte-Carlo simulations.

Conclusions

During influenza epidemics, empirical antiviral treatment appears to be a cost-effective strategy in managing patients hospitalized with severe respiratory infection suspected of influenza, from the perspective of healthcare providers in Hong Kong.  相似文献   

6.

Background

The role of relative humidity in the aerosol transmission of influenza was examined in a simulated examination room containing coughing and breathing manikins.

Methods

Nebulized influenza was coughed into the examination room and Bioaerosol samplers collected size-fractionated aerosols (<1 µM, 1–4 µM, and >4 µM aerodynamic diameters) adjacent to the breathing manikin’s mouth and also at other locations within the room. At constant temperature, the RH was varied from 7–73% and infectivity was assessed by the viral plaque assay.

Results

Total virus collected for 60 minutes retained 70.6–77.3% infectivity at relative humidity ≤23% but only 14.6–22.2% at relative humidity ≥43%. Analysis of the individual aerosol fractions showed a similar loss in infectivity among the fractions. Time interval analysis showed that most of the loss in infectivity within each aerosol fraction occurred 0–15 minutes after coughing. Thereafter, losses in infectivity continued up to 5 hours after coughing, however, the rate of decline at 45% relative humidity was not statistically different than that at 20% regardless of the aerosol fraction analyzed.

Conclusion

At low relative humidity, influenza retains maximal infectivity and inactivation of the virus at higher relative humidity occurs rapidly after coughing. Although virus carried on aerosol particles <4 µM have the potential for remaining suspended in air currents longer and traveling further distances than those on larger particles, their rapid inactivation at high humidity tempers this concern. Maintaining indoor relative humidity >40% will significantly reduce the infectivity of aerosolized virus.  相似文献   

7.

Background

The 2009 H1N1 influenza pandemic caused offseason peaks in temperate regions but coincided with the summer epidemic of seasonal influenza and other common respiratory viruses in subtropical Hong Kong. This study was aimed to investigate the impact of the pandemic on age-specific epidemic curves of other respiratory viruses.

Methods

Weekly laboratory-confirmed cases of influenza A (subtypes seasonal A(H1N1), A(H3N2), pandemic virus A(H1N1)pdm09), influenza B, respiratory syncytial virus (RSV), adenovirus and parainfluenza were obtained from 2004 to 2013. Age-specific epidemic curves of viruses other than A(H1N1)pdm09 were compared between the pre-pandemic (May 2004 – April 2009), pandemic (May 2009 – April 2010) and post-pandemic periods (May 2010 – April 2013).

Results

There were two peaks of A(H1N1)pdm09 in Hong Kong, the first in September 2009 and the second in February 2011. The infection rate was found highest in young children in both waves, but markedly fewer cases in school children were recorded in the second wave than in the first wave. Positive proportions of viruses other than A(H1N1)pdm09 markedly decreased in all age groups during the first pandemic wave. After the first wave of the pandemic, the positive proportion of A(H3N2) increased, but those of B and RSV remained slightly lower than their pre-pandemic proportions. Changes in seasonal pattern and epidemic peak time were also observed, but inconsistent across virus-age groups.

Conclusion

Our findings provide some evidence that age distribution, seasonal pattern and peak time of other respiratory viruses have changed since the pandemic. These changes could be the result of immune interference and changing health seeking behavior, but the mechanism behind still needs further investigations.  相似文献   

8.

Background

There is some evidence that annual vaccination of trivalent inactivated influenza vaccine (TIV) may lead to reduced vaccine immunogenicity but evidence is lacking on whether vaccine efficacy is affected by prior vaccination history. The efficacy of one dose of TIV in children 6–8 y of age against influenza B is uncertain. We examined whether immunogenicity and efficacy of influenza vaccination in school-age children varied by age and past vaccination history.

Methods and Findings

We conducted a randomized controlled trial of 2009–10 TIV. Influenza vaccination history in the two preceding years was recorded. Immunogenicity was assessed by comparison of HI titers before and one month after receipt of TIV/placebo. Subjects were followed up for 11 months with symptom diaries, and respiratory specimens were collected during acute respiratory illnesses to permit confirmation of influenza virus infections. We found that previous vaccination was associated with reduced antibody responses to TIV against seasonal A(H1N1) and A(H3N2) particularly in children 9–17 y of age, but increased antibody responses to the same lineage of influenza B virus in children 6–8 y of age. Serological responses to the influenza A vaccine viruses were high regardless of vaccination history. One dose of TIV appeared to be efficacious against confirmed influenza B in children 6–8 y of age regardless of vaccination history.

Conclusions

Prior vaccination was associated with lower antibody titer rises following vaccination against seasonal influenza A vaccine viruses, but higher responses to influenza B among individuals primed with viruses from the same lineage in preceding years. In a year in which influenza B virus predominated, no impact of prior vaccination history was observed on vaccine efficacy against influenza B. The strains that circulated in the year of study did not allow us to study the effect of prior vaccination on vaccine efficacy against influenza A.  相似文献   

9.

Background

The weekly proportion of laboratory tests that are positive for influenza is used in public health surveillance systems to identify periods of influenza activity. We aimed to estimate the sensitivity of influenza testing in Canada based on results of a national respiratory virus surveillance system.

Methods and Findings

The weekly number of influenza-negative tests from 1999 to 2006 was modelled as a function of laboratory-confirmed positive tests for influenza, respiratory syncytial virus (RSV), adenovirus and parainfluenza viruses, seasonality, and trend using Poisson regression. Sensitivity was calculated as the number of influenza positive tests divided by the number of influenza positive tests plus the model-estimated number of false negative tests. The sensitivity of influenza testing was estimated to be 33% (95%CI 32–34%), varying from 30–40% depending on the season and region.

Conclusions

The estimated sensitivity of influenza tests reported to this national laboratory surveillance system is considerably less than reported test characteristics for most laboratory tests. A number of factors may explain this difference, including sample quality and specimen procurement issues as well as test characteristics. Improved diagnosis would permit better estimation of the burden of influenza.  相似文献   

10.

Importance and Objective

Prior influenza infection is a risk factor for invasive meningococcal disease. Quantifying the fraction of meningococcal disease attributable to influenza could improve understanding of viral-bacterial interaction and indicate additional health benefits to influenza immunization.

Design, Setting and Participants

A time series analysis of the association of influenza and meningococcal disease using hospitalizations in 9 states from 1989–2009 included in the State Inpatient Databases from the Agency for Healthcare Research and Quality and the proportion of positive influenza tests by subtype reported to the Centers for Disease Control. The model accounts for the autocorrelation of meningococcal disease and influenza between weeks, temporal trends, co-circulating respiratory syncytial virus, and seasonality. The influenza-subtype-attributable fraction was estimated using the model coefficients. We analyzed the synchrony of seasonal peaks in hospitalizations for influenza, respiratory syncytial virus, and meningococcal disease.

Results and Conclusions

In 19 of 20 seasons, influenza peaked≤2 weeks before meningococcal disease, and peaks were highly correlated in time (ρ = 0.95; P <.001). H3N2 and H1N1 peaks were highly synchronized with meningococcal disease while pandemic H1N1, B, and respiratory syncytial virus were not. Over 20 years, 12.8% (95% CI, 9.1–15.0) of meningococcal disease can be attributable to influenza in the preceding weeks with H3N2 accounting for 5.2% (95% CI, 3.0–6.5), H1N1 4.3% (95% CI, 2.6–5.6), B 3.0% (95% CI, 0.8–4.9) and pH1N1 0.2% (95% CI, 0–0.4). During the height of influenza season, weekly attributable fractions reach 59%. While vaccination against meningococcal disease is the most important prevention strategy, influenza vaccination could provide further protection, particularly in young children where the meningococcal disease vaccine is not recommended or protective against the most common serogroup.  相似文献   

11.

Background

Studies that aimed at comparing the clinical presentation of influenza patients across virus types and subtypes/lineages found divergent results, but this was never investigated using data collected over several years in a countrywide, primary care practitioners-based influenza surveillance system.

Methods

The IBVD (Influenza B in Vircases Database) study collected information on signs and symptoms at disease onset from laboratory-confirmed influenza patients of any age who consulted a sentinel practitioner in France. We compared the clinical presentation of influenza patients across age groups (0–4, 5–14, 15–64 and 65+ years), virus types (A, B) and subtypes/lineages (A(H3N2), pandemic A(H1N1), B Victoria, B Yamagata).

Results

Overall, 14,423 influenza cases (23.9% of which were influenza B) were included between 2003–2004 and 2012–2013. Influenza A and B accounted for over 50% of total influenza cases during eight and two seasons, respectively. There were minor differences in the distribution of signs and symptoms across influenza virus types and subtypes/lineages. Compared to patients aged 0–4 years, those aged 5–14 years were more likely to have been infected with type B viruses (OR 2.15, 95% CI 1.87–2.47) while those aged 15–64 years were less likely (OR 0.83, 95% CI 0.73–0.96). Males and influenza patients diagnosed during the epidemic period were less likely to be infected with type B viruses.

Conclusions

Despite differences in age distribution, the clinical illness produced by the different influenza virus types and subtypes is indistinguishable among patients that consult a general practitioner for acute respiratory infections.  相似文献   

12.
Yang L  Chiu SS  Chan KP  Chan KH  Wong WH  Peiris JS  Wong CM 《PloS one》2011,6(3):e17882

Background

Reliable estimates of disease burden associated with respiratory viruses are keys to deployment of preventive strategies such as vaccination and resource allocation. Such estimates are particularly needed in tropical and subtropical regions where some methods commonly used in temperate regions are not applicable. While a number of alternative approaches to assess the influenza associated disease burden have been recently reported, none of these models have been validated with virologically confirmed data. Even fewer methods have been developed for other common respiratory viruses such as respiratory syncytial virus (RSV), parainfluenza and adenovirus.

Methods and Findings

We had recently conducted a prospective population-based study of virologically confirmed hospitalization for acute respiratory illnesses in persons <18 years residing in Hong Kong Island. Here we used this dataset to validate two commonly used models for estimation of influenza disease burden, namely the rate difference model and Poisson regression model, and also explored the applicability of these models to estimate the disease burden of other respiratory viruses. The Poisson regression models with different link functions all yielded estimates well correlated with the virologically confirmed influenza associated hospitalization, especially in children older than two years. The disease burden estimates for RSV, parainfluenza and adenovirus were less reliable with wide confidence intervals. The rate difference model was not applicable to RSV, parainfluenza and adenovirus and grossly underestimated the true burden of influenza associated hospitalization.

Conclusion

The Poisson regression model generally produced satisfactory estimates in calculating the disease burden of respiratory viruses in a subtropical region such as Hong Kong.  相似文献   

13.

Background

The Canadian National Antiviral Stockpile (NAS) contains treatment for 17.5% of Canadians. This assumes no concurrent intervention strategies and no wastage due to non-influenza respiratory infections. A dynamic model can provide a mechanism to consider complex scenarios to support decisions regarding the optimal NAS size under uncertainty.

Methods

We developed a dynamic model for pandemic influenza in Canada that is structured by age and risk to calculate the demand for antivirals to treat persons with pandemic influenza under a wide-range of scenarios that incorporated transmission dynamics, disease severity, and intervention strategies. The anticipated per capita number of acute respiratory infections due to viruses other than influenza was estimated for the full pandemic period from surveys based on criteria to identify potential respiratory infections.

Results

Our results demonstrate that up to two thirds of the population could develop respiratory symptoms as a result of infection with a pandemic strain. In the case of perfect antiviral allocation, up to 39.8% of the population could request antiviral treatment. As transmission dynamics, severity and timing of the emergence of a novel influenza strain are unknown, the sensitivity analysis produced considerable variation in potential demand (median: 11%, IQR: 2–21%). If the next pandemic strain emerges in late spring or summer and a vaccine is available before the anticipated fall wave, the median prediction was reduced to 6% and IQR to 0.7–14%. Under the strategy of offering empirical treatment to all patients with influenza like symptoms who present for care, demand could increase to between 65 and 144%.

Conclusions

The demand for antivirals during a pandemic is uncertain. Unless an accurate, timely and cost-effective test is available to identify influenza cases, demand for antivirals from persons infected with other respiratory viruses will be substantial and have a significant impact on the NAS.  相似文献   

14.

Background

Studies seeking to estimate the burden of influenza among hospitalized adults often use case definitions that require presence of pneumonia. The goal of this study was to assess the extent to which restricting influenza testing to adults hospitalized with pneumonia could underestimate the total burden of hospitalized influenza disease.

Methods

We conducted a modelling study using the complete State Inpatient Databases from Arizona, California, and Washington and regional influenza surveillance data acquired from CDC from January 2003 through March 2009. The exposures of interest were positive laboratory tests for influenza A (H1N1), influenza A (H3N2), and influenza B from two contiguous US Federal Regions encompassing the study area. We identified the two outcomes of interest by ICD-9-CM code: respiratory and circulatory hospitalizations, as well as critical illness hospitalizations (acute respiratory failure, severe sepsis, and in-hospital death). We linked the hospitalization datasets with the virus surveillance datasets by geographic region and month of hospitalization. We used negative binomial regression models to estimate the number of influenza-associated events for the outcomes of interest. We sub-categorized these events to include all outcomes with or without pneumonia diagnosis codes.

Results

We estimated that there were 80,834 (95% CI 29,214–174,033) influenza-associated respiratory and circulatory hospitalizations and 26,760 (95% CI 14,541–47,464) influenza-associated critical illness hospitalizations. When a pneumonia diagnosis was excluded, the estimated number of influenza-associated respiratory and circulatory hospitalizations was 24,816 (95% CI 6,342–92,624). The estimated number of influenza-associated critical illness hospitalizations was 8,213 (95% CI 3,764–20,799). Around 30% of both influenza-associated respiratory and circulatory hospitalizations, as well as influenza-associated critical illness hospitalizations did not have pneumonia diagnosis codes.

Conclusions

Surveillance studies which only consider hospitalizations that include a diagnosis of pneumonia may underestimate the total burden of influenza hospitalizations.  相似文献   

15.

Background

Despite impressive advances in our understanding of the biology of novel influenza A(H1N1) virus, little is as yet known about its transmission efficiency in close contact places such as households, schools, and workplaces. These are widely believed to be key in supporting propagating spread, and it is therefore of importance to assess the transmission levels of the virus in such settings.

Methodology/Principal Findings

We estimate the transmissibility of novel influenza A(H1N1) in 47 households in the Netherlands using stochastic epidemic models. All households contained a laboratory confirmed index case, and antiviral drugs (oseltamivir) were given to both the index case and other households members within 24 hours after detection of the index case. Among the 109 household contacts there were 9 secondary infections in 7 households. The overall estimated secondary attack rate is low (0.075, 95%CI: 0.037–0.13). There is statistical evidence indicating that older persons are less susceptible to infection than younger persons (relative susceptibility of older persons: 0.11, 95%CI: 0.024–0.43. Notably, the secondary attack rate from an older to a younger person is 0.35 (95%CI: 0.14–0.61) when using an age classification of ≤12 versus >12 years, and 0.28 (95%CI: 0.12–0.50) when using an age classification of ≤18 versus >18 years.

Conclusions/Significance

Our results indicate that the overall household transmission levels of novel influenza A(H1N1) in antiviral-treated households were low in the early stage of the epidemic. The relatively high rate of adult-to-child transmission indicates that control measures focused on this transmission route will be most effective in minimizing the total number of infections.  相似文献   

16.
Zhou Y  Ng DM  Seto WH  Ip DK  Kwok HK  Ma ES  Ng S  Lau LL  Peiris JS  Cowling BJ 《PloS one》2011,6(11):e27169

Background

Healthcare workers in many countries are recommended to receive influenza vaccine to protect themselves as well as patients. A monovalent H1N1 vaccine became available in Hong Kong in December 2009 and around 10% of local healthcare workers had received the vaccine by February 2010.

Methods

We conducted a cross-sectional study of the prevalence of antibody to pandemic (H1N1) 2009 among HCWs in Hong Kong in February–March 2010 following the first pandemic wave and the pH1N1 vaccination campaign. In this study we focus on the subset of healthcare workers who reported receipt of non-adjuvanted monovalent 2009 H1N1 vaccine (Panenza, Sanofi Pasteur). Sera collected from HCWs were tested for antibody against the pH1N1 virus by hemagglutination inhibition (HI) and viral neutralization (VN) assays.

Results

We enrolled 703 HCWs. Among 104 HCWs who reported receipt of pH1N1 vaccine, 54% (95% confidence interval (CI): 44%–63%) had antibody titer ≥1∶40 by HI and 42% (95% CI: 33%–52%) had antibody titer ≥1∶40 by VN. The proportion of HCWs with antibody titer ≥1∶40 by HI and VN significantly decreased with age, and the proportion with antibody titer ≥1∶40 by VN was marginally significantly lower among HCWs who reported prior receipt of 2007–08 seasonal influenza vaccine (odds ratio: 0.43; 95% CI: 0.19–1.00). After adjustment for age, the effect of prior seasonal vaccine receipt was not statistically significant.

Conclusions

Our findings suggest that monovalent H1N1 vaccine may have had suboptimal immunogenicity in HCWs in Hong Kong. Larger studies are required to confirm whether influenza vaccine maintains high efficacy and effectiveness in HCWs.  相似文献   

17.

Background

In Kenya, detailed data on the age-specific burden of influenza and RSV are essential to inform use of limited vaccination and treatment resources.

Methods

We analyzed surveillance data from August 2009 to July 2012 for hospitalized severe acute respiratory illness (SARI) and outpatient influenza-like illness (ILI) at two health facilities in western Kenya to estimate the burden of influenza and respiratory syncytial virus (RSV). Incidence rates were estimated by dividing the number of cases with laboratory-confirmed virus infections by the mid-year population. Rates were adjusted for healthcare-seeking behavior, and to account for patients who met the SARI/ILI case definitions but were not tested.

Results

The average annual incidence of influenza-associated SARI hospitalization per 1,000 persons was 2.7 (95% CI 1.8–3.9) among children <5 years and 0.3 (95% CI 0.2–0.4) among persons ≥5 years; for RSV-associated SARI hospitalization, it was 5.2 (95% CI 4.0–6.8) among children <5 years and 0.1 (95% CI 0.0–0.2) among persons ≥5 years. The incidence of influenza-associated medically-attended ILI per 1,000 was 24.0 (95% CI 16.6–34.7) among children <5 years and 3.8 (95% CI 2.6–5.7) among persons ≥5 years. The incidence of RSV-associated medically-attended ILI was 24.6 (95% CI 17.0–35.4) among children <5 years and 0.8 (95% CI 0.3–1.9) among persons ≥5 years.

Conclusions

Influenza and RSV both exact an important burden in children. This highlights the possible value of influenza vaccines, and future RSV vaccines, for Kenyan children.  相似文献   

18.
Yang L  Wong CM  Lau EH  Chan KP  Ou CQ  Peiris JS 《PloS one》2008,3(1):e1399

Background

Consultation rates of influenza-like illness (ILI) in an outpatient setting have been regarded as a good indicator of influenza virus activity in the community. As ILI-like symptoms may be caused by etiologies other than influenza, and influenza virus activity in the tropics and subtropics is less predictable than in temperate regions, the correlation between of ILI and influenza virus activity in tropical and subtropical regions is less well defined.

Methodology and Principal Findings

In this study, we used wavelet analysis to investigate the relationship between seasonality of influenza virus activity and consultation rates of ILI reported separately by General Out-patient Clinics (GOPC) and General Practitioners (GP). During the periods 1998–2000 and 2002–2003, influenza virus activity exhibited both annual and semiannual cycles, with one peak in the winter and another in late spring or early summer. But during 2001 and 2004–2006, only annual cycles could be clearly identified. ILI consultation rates in both GOPC and GP settings share a similar non-stationary seasonal pattern. We found high coherence between ILI in GOPC and influenza virus activity for the annual cycle, but this was only significant (p<0.05) during the periods 1998–1999 and 2002–2006. For the semiannual cycle high coherence (p<0.05) was also found significant during the period 1998–1999 and year 2003 when two peaks of influenza were evident. Similarly, ILI in GP setting is also associated with influenza virus activity for both the annual and semiannual cycles. On average, oscillation of ILI in GP and of ILI in GOPC preceded influenza virus isolation by approximately four and two weeks, respectively.

Conclusions

Our findings suggest that consultation rates of ILI precede the oscillations of laboratory surveillance by at least two weeks and can be used as a predictor for influenza epidemics in Hong Kong. The validity of our model for other tropical regions needs to be explored.  相似文献   

19.

Background

Since its appearance in 2009, the pandemic influenza A(H1N1) virus circulated worldwide causing several severe infections.

Methods

Respiratory samples from patients with 2009 influenza A(H1N1) and acute respiratory distress attending 24 intensive care units (ICUs) as well as from patients with lower respiratory tract infections not requiring ICU admission and community upper respiratory tract infections in the Lombardy region (10 million inhabitants) of Italy during the 2010–2011 winter-spring season, were analyzed.

Results

In patients with severe ILI, the viral load was higher in bronchoalveolar lavage (BAL) with respect to nasal swab (NS), (p<0.001) suggesting a higher virus replication in the lower respiratory tract. Four distinct virus clusters (referred to as cluster A to D) circulated simultaneously. Most (72.7%, n = 48) of the 66 patients infected with viruses belonging to cluster A had a severe (n = 26) or moderate ILI (n = 22). Amino acid mutations (V26I, I116M, A186T, D187Y, D222G/N, M257I, S263F, I286L/M, and N473D) were observed only in patients with severe ILI. D222G/N variants were detected exclusively in BAL samples.

Conclusions

Multiple virus clusters co-circulated during the 2010–2011 winter-spring season. Severe or moderate ILI were associated with specific 2009 influenza A(H1N1) variants, which replicated preferentially in the lower respiratory tract.  相似文献   

20.

Background

Acute respiratory infections (ARIs) are a major cause of morbidity and mortality in children in Africa. The circulation of viruses classically implicated in ARIs is poorly known in Burkina Faso. The aim of this study was to identify the respiratory viruses present in children admitted to or consulting at the pediatric hospital in Ouagadougou.

Methods

From July 2010 to July 2011, we tested nasal aspirates of 209 children with upper or lower respiratory infection for main respiratory viruses (respiratory syncytial virus (RSV), metapneumovirus, adenovirus, parainfluenza viruses 1, 2 and 3, influenza A, B and C, rhinovirus/enterovirus), by immunofluorescence locally in Ouagadougou, and by PCR in France. Bacteria have also been investigated in 97 samples.

Results

153 children (73.2%) carried at least one virus and 175 viruses were detected. Rhinoviruses/enteroviruses were most frequently detected (rhinovirus n = 88; enterovirus n = 38) and were found to circulate throughout the year. An epidemic of RSV infections (n = 25) was identified in September/October, followed by an epidemic of influenza virus (n = 13), mostly H1N1pdm09. This epidemic occurred during the period of the year in which nighttime temperatures and humidity were at their lowest. Other viruses tested were detected only sporadically. Twenty-two viral co-infections were observed. Bacteria were detected in 29/97 samples with 22 viral/bacterial co-infections.

Conclusions

This study, the first of its type in Burkina Faso, warrants further investigation to confirm the seasonality of RSV infection and to improve local diagnosis of influenza. The long-term objective is to optimize therapeutic management of infected children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号