共查询到20条相似文献,搜索用时 15 毫秒
1.
Colonizing commensal bacteria after birth are required for the proper development of the gastrointestinal tract. It is believed that bacterial colonization pattern in neonatal gut affects gut barrier function and immune system maturation. Studies on the development of faecal microbiota in infants showed that the neonatal gut was first colonized with enterococci followed by other microbiota such as Bifidobacterium. Other studies showed that babies who developed allergy were less often colonized with Enterococcus during the first month of life as compared to healthy infants. Many studies have been conducted to elucidate how bifidobacteria or lactobacilli, some of which are considered probiotic, regulate infant gut immunity. However, fewer studies have been focused on enterococi. In our study, we demonstrate that E. faecalis, isolated from healthy newborns, suppress inflammatory responses activated in vivo and in vitro. We found E. faecalis attenuates proinflammatory cytokine secretions, especially IL-8, through JNK and p38 signaling pathways. This finding shed light on how the first colonizer, E.faecalis, regulates inflammatory responses in the host. 相似文献
2.
Sayaka Yoshiki Rie Matsunaga-Udagawa Kazuhiro Aoki Yuji Kamioka Etsuko Kiyokawa Michiyuki Matsuda 《Molecular biology of the cell》2010,21(6):1088-1096
Situated downstream of Ras is a key signaling molecule, Raf1. Increase in Ca2+ concentration has been shown to modulate the Ras-dependent activation of Raf1; however, the mechanism underlying this effect remains elusive. Here, to characterize the role of Ca2+ in Ras signaling to Raf1, we used a synthetic guanine nucleotide exchange factor (GEF) for Ras, eGRF. In HeLa cells expressing eGRF, Ras was activated by the cAMP analogue 007 as efficiently as by epidermal growth factor (EGF), whereas the activation of Raf1, MEK, and ERK by 007 was about half of that by EGF. Using a biosensor based on fluorescence resonance energy transfer, it was found that activation of Raf1 at the plasma membrane required not only Ras activation but also an increase in Ca2+ concentration or inhibition of calmodulin. Furthermore, the Ca2+-dependent activation of Raf1 was found to be abrogated by knockdown of Shoc2, a scaffold protein that binds both Ras and Raf1. These observations indicated that the Shoc2 scaffold protein modulates Ras-dependent Raf1 activation in a Ca2+- and calmodulin-dependent manner. 相似文献
3.
Surface recognition and penetration are critical steps in the infection cycle of many plant pathogenic fungi. In Magnaporthe oryzae, cAMP signaling is involved in surface recognition and pathogenesis. Deletion of the MAC1 adenylate cyclase gene affected appressorium formation and plant infection. In this study, we used the affinity purification approach to identify proteins that are associated with Mac1 in vivo. One of the Mac1-interacting proteins is the adenylate cyclase-associated protein named Cap1. CAP genes are well-conserved in phytopathogenic fungi but none of them have been functionally characterized. Deletion of CAP1 blocked the effects of a dominant RAS2 allele and resulted in defects in invasive growth and a reduced intracellular cAMP level. The Δcap1 mutant was defective in germ tube growth, appressorium formation, and formation of typical blast lesions. Cap1-GFP had an actin-like localization pattern, localizing to the apical regions in vegetative hyphae, at the periphery of developing appressoria, and in circular structures at the base of mature appressoria. Interestingly, Cap1, similar to LifeAct, did not localize to the apical regions in invasive hyphae, suggesting that the apical actin cytoskeleton differs between vegetative and invasive hyphae. Domain deletion analysis indicated that the proline-rich region P2 but not the actin-binding domain (AB) of Cap1 was responsible for its subcellular localization. Nevertheless, the AB domain of Cap1 must be important for its function because CAP1
ΔAB only partially rescued the Δcap1 mutant. Furthermore, exogenous cAMP induced the formation of appressorium-like structures in non-germinated conidia in CAP1
ΔAB transformants. This novel observation suggested that AB domain deletion may result in overstimulation of appressorium formation by cAMP treatment. Overall, our results indicated that CAP1 is important for the activation of adenylate cyclase, appressorium morphogenesis, and plant infection in M. oryzae. CAP1 may also play a role in feedback inhibition of Ras2 signaling when Pmk1 is activated. 相似文献
4.
The Ras/cAMP Pathway and the CDK-Like Kinase Ime2 Regulate the MAPK Smk1 and Spore Morphogenesis in Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
下载免费PDF全文

Christine M. McDonald Marisa Wagner Maitreya J. Dunham Marcus E. Shin Noreen T. Ahmed Edward Winter 《Genetics》2009,181(2):511-523
Meiotic development (sporulation) in the yeast Saccharomyces cerevisiae is induced by nutritional deprivation. Smk1 is a meiosis-specific MAP kinase homolog that controls spore morphogenesis after the meiotic divisions have taken place. In this study, recessive mutants that suppress the sporulation defect of a smk1-2 temperature-sensitive hypomorph were isolated. The suppressors are partial function alleles of CDC25 and CYR1, which encode the Ras GDP/GTP exchange factor and adenyl cyclase, respectively, and MDS3, which encodes a kelch-domain protein previously implicated in Ras/cAMP signaling. Deletion of PMD1, which encodes a Mds3 paralog, also suppressed the smk1-2 phenotype, and a mds3-Δ pmd1-Δ double mutant was a more potent suppressor than either single mutant. The mds3-Δ, pmd1-Δ, and mds3-Δ pmd1-Δ mutants also exhibited mitotic Ras/cAMP phenotypes in the same rank order. The effect of Ras/cAMP pathway mutations on the smk1-2 phenotype required the presence of low levels of glucose. Ime2 is a meiosis-specific CDK-like kinase that is inhibited by low levels of glucose via its carboxy-terminal regulatory domain. IME2-ΔC241, which removes the carboxy-terminal domain of Ime2, exacerbated the smk1-2 spore formation phenotype and prevented cyr1 mutations from suppressing smk1-2. Inhibition of Ime2 in meiotic cells shortly after Smk1 is expressed revealed that Ime2 promotes phosphorylation of Smk1's activation loop. These findings demonstrate that nutrients can negatively regulate Smk1 through the Ras/cAMP pathway and that Ime2 is a key activator of Smk1 signaling. 相似文献
5.
Dympna J. Connolly Luke A. J. O'Neill Anne F. McGettrick 《The Journal of biological chemistry》2013,288(8):5616-5623
The proinflammatory danger signal IL-33, which is released from damaged or dying cells, achieves its effects via the IL-1R family member ST2L. The detection of IL-33 by ST2L initiates downstream signaling pathways that result in the activation of MAPKs and NF-κB. Here, we show that TMED1 associates with ST2L. Using a series of mutation and deletion constructs, we demonstrate that this interaction is mediated by the GOLD domain of TMED1 and the TIR domain of ST2L. Our findings also demonstrate that TMED1 is required for optimal IL-33-induced IL-8 and IL-6 production. This discovery provides additional support to the concept that the TMED family members are important players in innate immune signaling. 相似文献
6.
Ras and Rap proteins are closely related small GTPases. Whereas Ras is
known for its role in cell proliferation and survival, Rap1 is predominantly
involved in cell adhesion and cell junction formation. Ras and Rap are
regulated by different sets of guanine nucleotide exchange factors and
GTPase-activating proteins, determining one level of specificity. In addition,
although the effector domains are highly similar, Rap and Ras interact with
largely different sets of effectors, providing a second level of specificity.
In this review, we discuss the regulatory proteins and effectors of Ras and
Rap, with a focus on those of Rap.Ras-like small G-proteins are ubiquitously expressed, conserved molecular
switches that couple extracellular signals to various cellular responses.
Different signals can activate
GEFs2 that induce the
small G-protein to switch from the inactive, GDP-bound state to the active,
GTP-bound state. This induces a conformational change that allows downstream
effector proteins to bind specifically to and be activated by the GTP-bound
protein to mediate diverse biological responses. Small G-proteins are returned
to the GDP-bound state by hydrolyzing GTP with the help of GAPs. Ras (Ha-Ras,
Ki-Ras, and N-Ras) and Rap proteins (Rap1A, Rap1B, Rap2A, Rap2B, and Rap2C)
have similar effector-binding regions that interact predominantly with RA
domains or the structurally similar RBDs present in a variety of different
proteins. Both protein families operate in different signaling networks. For
instance, Ras is central in a network controlling cell proliferation and cell
survival, whereas Rap1 predominantly controls cell adhesion, cell junction
formation, cell secretion, and cell polarity. These different functions are
reflected in a largely different set of GEFs and GAPs. Also the downstream
effector proteins operate in a selective manner in either one of the
networks. 相似文献
7.
Masanori Kashimata Syed Sayeed Alan Ka Andrea Onetti-Muda Hiroshi Sakagami Tullio Faraggiana Edward W. Gresik 《Developmental biology》2000,220(2):183
We have previously reported that epidermal growth factor (EGF) stimulates branching morphogenesis of the fetal mouse submandibular gland (SMG) (M. Kashimata and E. W. Gresik, 1997, Dev. Dyn. 208, 149–161) and that the EGF receptor (EGFR) is localized principally, if not exclusively, on the epithelial components of the fetal SMG (E. W. Gresik, M. Kashimata, Y. Kadoya, R. Mathews, N. Minami, and S. Yamashina, 1997, J. Histochem. Cytochem. 45, 1651–1657). The EGFR is a receptor tyrosine kinase, and after binding of its ligand, it triggers several intracellular signaling cascades, among them the one activating the mitogen-activated protein kinases (MAPK) ERK-1/2. Here we investigated whether EGF utilizes the ERK-1/2 signaling cascade to stimulate branching morphogenesis in the fetal mouse SMG. SMG rudiments were collected as matched pairs at E14, E16, and E18 (E0 = day of vaginal plug); placed into wells of defined medium (BGJb); and exposed to EGF for 5 or 30 min or to medium alone (controls). By Western blotting we found that EGF induced the appearance of multiple bands of phosphotyrosine-containing proteins, including bands at 170 kDa and 44 kDa/42 kDa, presumably corresponding to the phosphorylated forms of EGFR and ERK-1/2, respectively. Other blots showed the specific appearance of the phosphorylated EGFR and of phospho-ERK-1/2 in response to EGF. Immunohistochemical staining for phosphotyrosine increased at the plasma membrane after EGF stimulation for 5 or 30 min. Diffuse cytoplasmic staining for MEK-1/2 (the MAPK kinase that activates ERK-1/2) increased near the cell membrane after EGF stimulation. Phospho-ERK-1/2 was localized in the nuclei of a few epithelial cells after EGF for 5 min, but in the nuclei of many cells after EGF for 30 min. PD98059, an inhibitor of phosphorylation and activation of MEK-1/2, by itself inhibited branching morphogenesis and, furthermore, decreased the stimulatory effect of EGF on branching. Western blots confirmed that this inhibitor blocked phosphorylation of ERK-1/2 in fetal SMGs exposed to EGF. These results show that components of the ERK-1/2 signaling cascade are present in epithelial cells of the fetal SMG, that they are activated by EGF, and that inhibition of this cascade perturbs branching morphogenesis. However, EGF did not cause phosphorylation of two other MAPKs, SAPK/JNK or p38MAPK, in fetal SMGs. These results imply that the ERK-1/2 signaling is responsible, at least in part, for the stimulatory effect of EGF on branching morphogenesis of the fetal mouse SMG. 相似文献
8.
Tarcio Teodoro Braga Matheus Correa-Costa Yuri Felipe Souza Guise Angela Castoldi Cassiano Donizetti de Oliveira Meire Ioshie Hyane Marcos Antonio Cenedeze Simone Aparecida Teixeira Marcelo Nicolas Muscara Katia Regina Perez Iolanda Midea Cuccovia Alvaro Pacheco-Silva Giselle Martins Gon?alves Niels Olsen Saraiva Camara 《Molecular medicine (Cambridge, Mass.)》2012,18(1):1231-1239
Inflammation contributes to the pathogenesis of chronic kidney disease (CKD). Molecules released by the inflamed injured tissue can activate toll-like receptors (TLRs), thereby modulating macrophage and CD4+ T-cell activity. We propose that in renal fibrogenesis, M2 macrophages are recruited and activated in a T helper subset 2 cell (TH2)-prone inflammatory milieu in a MyD88-dependent manner. Mice submitted to unilateral ureteral ligation (UUO) demonstrated an increase in macrophage infiltration with collagen deposition after 7 d. Conversely, TLR2, TLR4 and MyD88 knockout (KO) mice had an improved renal function together with diminished TH2 cytokine production and decreased fibrosis formation. Moreover, TLR2, TLR4 and MyD88 KO animals exhibited less M2 macrophage infiltration, namely interleukin (IL)-10+ and CD206+ CD11bhigh cells, at 7 d after surgery. We evaluated the role of a TH2 cytokine in this context, and observed that the absence of IL-4 was associated with better renal function, decreased IL-13 and TGF-β levels, reduced arginase activity and a decrease in fibrosis formation when compared with IL-12 KO and wild-type (WT) animals. Indeed, the better renal outcomes and the decreased fibrosis formation were restricted to the deficiency of IL-4 in the hematopoietic compartment. Finally, macrophage depletion, rather than the absence of T cells, led to reduced lesions of the glomerular filtration barrier and decreased collagen deposition. These results provide evidence that future therapeutic strategies against renal fibrosis should be accompanied by the modulation of the M1:M2 and TH1:TH2 balance, as TH2 and M2 cells are predictive of fibrosis toward mechanisms that are sensed by innate immune response and triggered in a MyD88-dependent pathway. 相似文献
9.
巨噬细胞免疫调变信号——PKA与PKC对MAPK信号通路的调节 总被引:7,自引:0,他引:7
以前的研究工作表明,细菌脂多糖(LPS)可以调变抑制性巨噬细胞为增强T、B淋巴细胞及NK细胞活性,同时又能保持或增强其抗肿瘤效应。忆报道了在这一复杂的免疫调变过程中伴随有蛋白激酶C(PKC)和促分裂原活化蛋白激酶(MAPK)信号转导通路的激活。为了探索免疫调变过程中其他信号对MAPK通路的影响,以LPS调变小鼠腹腔抑制性巨噬细胞为模型,研究了cAMP/PKA和佛波酯(PMA)/PKC信号对MAPK 相似文献
10.
Rui Wang Hong-Bin Wang Chan Juan Hao Yi Cui Xiao-Chen Han Yi Hu Fei-Feng Li Hong-Fei Xia Xu Ma 《PloS one》2012,7(10)
Background
MicroRNA-101 (miR-101) expression is negatively associated with tumor growth and blood vessel formation in several solid epithelial cancers. However, the role of miR-101 in human breast cancer remains elusive.Results
MiR-101 was significantly decreased in different subtypes of human breast cancer tissues compared with that in adjacent normal breast tissues (P<0.01). Up-regulation of miR-101 inhibited cell proliferation, migration and invasion, and promoted cell apoptosis in ER alpha-positive and ER alpha-negative breast cancer cells and normal breast cells. Down-regulation of miR-101 displayed opposite effects on cell growth and metastasis. Further investigation revealed a significant inverse correlation between the expression of miR-101 and Stathmin1 (Stmn1), and miR-101 could bind to the 3′-untranslated region (UTR) of Stmn1 to inhibit Stmn1 translation. The inhibition of cell growth and metastasis induced by up-regulation of miR-101 was partially restored by overexpresson of Stmn1. Knockdown of Stmn1 attenuates the down-regulation of miR-101-mediated enhancement of cell growth and metastasis. More importantly, in vivo analysis found that Stmn1 mRNA and protein level in different subtypes of human breast cancer tissues, contrary to the down-regulation of miR-101, were significantly elevated.Conclusions
This study demonstrates that down-regulation of miR-101 in different subtypes of human breast cancer tissues is linked to the increase of cellular proliferation and invasiveness via targeting Stmn1, which highlights novel regulatory mechanism in breast cancer and may provide valuable clues for the future clinical diagnosis of breast cancer. 相似文献11.
Rajesh Jayachandran Xiaolong Liu Somdeb BoseDasgupta Philipp Müller Chun-Lei Zhang Despina Moshous Vera Studer Jacques Schneider Christel Genoud Catherine Fossoud Frédéric Gambino Malik Khelfaoui Christian Müller Deborah Bartholdi Helene Rossez Michael Stiess Xander Houbaert Rolf Jaussi Daniel Frey Richard A. Kammerer Xavier Deupi Jean-Pierre de Villartay Andreas Lüthi Yann Humeau Jean Pieters 《PLoS biology》2014,12(3)
Cognitive and behavioral disorders are thought to be a result of neuronal dysfunction, but the underlying molecular defects remain largely unknown. An important signaling pathway involved in the regulation of neuronal function is the cyclic AMP/Protein kinase A pathway. We here show an essential role for coronin 1, which is encoded in a genomic region associated with neurobehavioral dysfunction, in the modulation of cyclic AMP/PKA signaling. We found that coronin 1 is specifically expressed in excitatory but not inhibitory neurons and that coronin 1 deficiency results in loss of excitatory synapses and severe neurobehavioral disabilities, including reduced anxiety, social deficits, increased aggression, and learning defects. Electrophysiological analysis of excitatory synaptic transmission in amygdala revealed that coronin 1 was essential for cyclic–AMP–protein kinase A–dependent presynaptic plasticity. We further show that upon cell surface stimulation, coronin 1 interacted with the G protein subtype Gαs to stimulate the cAMP/PKA pathway. The absence of coronin 1 or expression of coronin 1 mutants unable to interact with Gαs resulted in a marked reduction in cAMP signaling. Strikingly, synaptic plasticity and behavioral defects of coronin 1–deficient mice were restored by in vivo infusion of a membrane-permeable cAMP analogue. Together these results identify coronin 1 as being important for cognition and behavior through its activity in promoting cAMP/PKA-dependent synaptic plasticity and may open novel avenues for the dissection of signal transduction pathways involved in neurobehavioral processes. 相似文献
12.
13.
We have studied activation-induced dephosphorylation of proteins in human neutrophils loaded with [32P]orthophosphate using two-dimensional gel electrophoresis and autoradiography. A major phosphoprotein of 20 kDa in resting neutrophils was markedly dephosphorylated upon activation of cells with chemotactic peptide or phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC). Using a monoclonal anti-cofilin antibody, this phosphoprotein could be shown to be identical with cofilin, a protein implicated in actin filament remodeling. Signaling pathways leading to this dephosphorylation were further characterized. To define the role of PKC isoforms in cofilin dephosphorylation, we used different PKC inhibitors. Gö 6976 (10 μM), which inhibits preferentially PKC α and β, did not prevent PMA-induced dephosphorylation of cofilin, whereas Ro 31-8220 and CGP 41 251 (10 μM), which act also on Ca2+-independent PKC isoforms, almost completely suppressed this event. The lack of effect of Gö 6976 was not due to insufficient entry into the cells, as this drug suppressed PMA-induced increases in protein phosphorylation. Ca2+-independent PKC isoforms, rather than PKC α or β, may thus be involved in PMA-induced cofilin dephosphorylation. In contrast, Ro 31-8220 did not inhibit chemotactic peptide-induced cofilin dephosphorylation, suggesting here a PKC-independent pathway. The phosphatase inhibitor okadaic acid (1–2 μM) attenuated phosphorylation of cofilin in resting cells. This reduced level was not further attenuated by PMA. Phosphatases 1 and/or 2A may thus control cofilin phosphorylation in resting cells and contribute to PMA-induced cofilin dephosphorylation. Dephosphorylation of cofilin induced by PMA, chemotactic peptide, or okadaic acid was always accompanied by a shift of cofilin to the cell periphery into F-actin-rich areas. These findings suggest a role of cofilin in stimulus-dependent actin remodeling in motile neutrophils. 相似文献
14.
Overexposure of the fetus to glucocorticoids in gestation is detrimental to fetal development. The passage of maternal glucocorticoids into the fetal circulation is governed by 11beta-Hydroxysteroid Dehydrogenase Type 2 (HSD11B2) in the placental syncytiotrophoblasts. Human chorionic gonadotropin (hCG) plays an important role in maintaining placental HSD11B2 expression via activation of the cAMP pathway. In this study, we investigated the relationship between the activation of the cAMP pathway by hCG and subsequent phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) or p38 mitogen-activated protein kinase (MAPK) pathways in the regulation of placental HSD11B2 expression in human placental syncytiotrophoblasts. We found that treatment of the placental syncytiotrophoblasts with either hCG or dibutyl cAMP (dbcAMP) could promote the phosphorylation of p38 and ERK1/2. Inhibition of p38 MAPK with SB203580 not only reduced the basal HSD11B2 mRNA and protein levels but also attenuated HSD11B2 levels induced by either hCG or dbcAMP. By contrast, inhibition of ERK1/2 with PD98059 increased the basal mRNA and protein levels of HSD11B2 and had no effect on HSD11B2 mRNA and protein levels induced by either hCG or dbcAMP. These data suggest that p38 MAPK is involved in both basal and hCG/cAMP-induced expression of HSD11B2, and ERK1/2 may play a role opposite to p38 MAPK at least in the basal expression of HSD11B2 in human placental syncytiotrophoblasts and that there is complicated cross-talk between hCG/cAMP and MAPK cascades in the regulation of placental HSD11B2 expression. 相似文献
15.
Barry Boland David A. Smith Declan Mooney Sonia S. Jung Dominic M. Walsh Frances M. Platt 《The Journal of biological chemistry》2010,285(48):37415-37426
Alterations in the metabolism of amyloid precursor protein (APP) are believed to
play a central role in Alzheimer disease pathogenesis. Burgeoning data indicate
that APP is proteolytically processed in endosomal-autophagic-lysosomal
compartments. In this study, we used both in vivo and
in vitro paradigms to determine whether alterations in
macroautophagy affect APP metabolism. Three mouse models of glycosphingolipid
storage diseases, namely Niemann-Pick type C1, GM1 gangliosidosis, and Sandhoff
disease, had mTOR-independent increases in the autophagic vacuole
(AV)-associated protein, LC3-II, indicative of impaired lysosomal flux. APP
C-terminal fragments (APP-CTFs) were also increased in brains of the three mouse
models; however, discrepancies between LC3-II and APP-CTFs were seen between
primary (GM1 gangliosidosis and Sandhoff disease) and secondary (Niemann-Pick
type C1) lysosomal storage models. APP-CTFs were proportionately higher than
LC3-II in cerebellar regions of GM1 gangliosidosis and Sandhoff disease,
although LC3-II increased before APP-CTFs in brains of NPC1 mice. Endogenous
murine Aβ40 from RIPA-soluble extracts was increased in brains of all
three mice. The in vivo relationship between AV and APP-CTF
accumulation was also seen in cultured neurons treated with agents that impair
primary (chloroquine and leupeptin + pepstatin) and secondary (U18666A
and vinblastine) lysosomal flux. However, Aβ secretion was unaffected by
agents that induced autophagy (rapamycin) or impaired AV clearance, and
LC3-II-positive AVs predominantly co-localized with degradative LAMP-1-positive
lysosomes. These data suggest that neuronal macroautophagy does not directly
regulate APP metabolism but highlights the important anti-amyloidogenic role of
lysosomal proteolysis in post-secretase APP-CTF catabolism. 相似文献
16.
Chang-Shi Chen Audrey Bellier Cheng-Yuan Kao Ya-Luen Yang Huan-Da Chen Ferdinand C. O. Los Raffi V. Aroian 《PloS one》2010,5(3)
Pore-forming toxins (PFTs) are the single largest class of bacterial virulence factors. The DAF-2 insulin/insulin-like growth factor-1 signaling pathway, which regulates lifespan and stress resistance in Caenorhabditis elegans, is known to mutate to resistance to pathogenic bacteria. However, its role in responses against bacterial toxins and PFTs is as yet unexplored. Here we reveal that reduction of the DAF-2 insulin-like pathway confers the resistance of Caenorhabditis elegans to cytolitic crystal (Cry) PFTs produced by Bacillus thuringiensis. In contrast to the canonical DAF-2 insulin-like signaling pathway previously defined for aging and pathogenesis, the PFT response pathway diverges at 3-phosphoinositide-dependent kinase 1 (PDK-1) and appears to feed into a novel insulin-like pathway signal arm defined by the WW domain Protein 1 (WWP-1). In addition, we also find that WWP-1 not only plays an important role in the intrinsic cellular defense (INCED) against PFTs but also is involved in innate immunity against pathogenic bacteria Pseudomonas aeruginosa and in lifespan regulation. Taken together, our data suggest that WWP-1 and DAF-16 function in parallel within the fundamental DAF-2 insulin/IGF-1 signaling network to regulate fundamental cellular responses in C. elegans. 相似文献
17.
18.
19.
Reynolds K. Brobey Dwight German Patricia K. Sonsalla Prem Gurnani Johanne Pastor C-C Hsieh John Papaconstantinou Philip P. Foster Makoto Kuro-o Kevin P. Rosenblatt 《PloS one》2015,10(10)
Klotho transgenic mice exhibit resistance to oxidative stress as measured by their urinal levels of 8-hydroxy-2-deoxyguanosine, albeit this anti-oxidant defense mechanism has not been locally investigated in the brain. Here, we tested the hypothesis that the reactive oxygen species (ROS)-sensitive apoptosis signal-regulating kinase 1 (ASK1)/p38 MAPK pathway regulates stress levels in the brain of these mice and showed that: 1) the ratio of free ASK1 to thioredoxin (Trx)-bound ASK1 is relatively lower in the transgenic brain whereas the reverse is true for the Klotho knockout mice; 2) the reduced p38 activation level in the transgene corresponds to higher level of ASK1-bound Trx, while the KO mice showed elevated p38 activation and lower level of–bound Trx; and 3) that 14-3-3ζ is hyper phosphorylated (Ser-58) in the transgene which correlated with increased monomer forms. In addition, we evaluated the in vivo robustness of the protection by challenging the brains of Klotho transgenic mice with a neurotoxin, MPTP and analyzed for residual neuron numbers and integrity in the substantia nigra pars compacta. Our results show that Klotho overexpression significantly protects dopaminergic neurons against oxidative damage, partly by modulating p38 MAPK activation level. Our data highlight the importance of ASK1/p38 MAPK pathway in the brain and identify Klotho as a possible anti-oxidant effector. 相似文献
20.
Expansins are cell wall proteins that promote cell wall loosening by inducing pH-dependent cell wall extension and stress relaxation. Expansins are required in a series of physiological developmental processes in higher plants such as seed germination. Here we identified an Arabidopsis expansin gene AtEXPA2 that is exclusively expressed in germinating seeds and the mutant shows delayed germination, suggesting that AtEXP2 is involved in controlling seed germination. Exogenous GA application increased the expression level of AtEXP2 during seed germination, while ABA application had no effect on AtEXP2 expression. Furthermore, the analysis of DELLA mutants show that RGL1, RGL2, RGA, GAI are all involved in repressing AtEXP2 expression, and RGL1 plays the most dominant role in controlling AtEXP2 expression. In stress response, exp2 mutant shows higher sensitivity than wild type in seed germination, while overexpression lines of AtEXP2 are less sensitive to salt stress and osmotic stress, exhibiting enhanced tolerance to stress treatment. Collectively, our results suggest that AtEXP2 is involved in the GA-mediated seed germination and confers salt stress and osmotic stress tolerance in Arabidopsis. 相似文献