首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 946 毫秒
1.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

2.
Lang Z  Zhou P  Yu J  Ao G  Zhao Q 《Planta》2008,227(2):387-396
SBgLR (Solanum tuberosum genomic lysine-rich) gene was isolated from a potato genomic library using SB401 (S. berthaultii 401) cDNA as probe. RT-PCR analysis of SBgLR gene expression profile and microscopic analysis of green fluorescent protein (GFP) expression in tobacco plants transformed with SBgLR promoter-GFP reporters indicate that SBgLR is a pollen-specific gene. A series of 5′deletions of SBgLR promoter were fused to the β-glucuronidase (GUS) gene and stably introduced into tobacco plants. Histochemical and quantitative assays of GUS expression in transgenic plants allowed us to localize an enhancer of SBgLR promoter to the region −345 to −269 relative to the translation start site. This 76 bp (−345 to −269) fragment enhanced GUS expression in leaves, stems and roots when fused to −90/+6 CaMV 35S minimal promoter. Deletion analysis showed that a cis-element, which can repress gene expression in root hairs, was located in the region −345 to −311. Further study indicated that the −269 to −9 region was sufficient to confer pollen-specific expression of GFP when fused to CaMV 35S enhancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Authors Zhihong Lang and Peng Zhou contributed equally to this work.  相似文献   

3.
4.
5.
Xanthomonas campestris pv phaseoli produced an extracellular endoinulinase (9.24 ± 0.03 U mL−1) in an optimized medium comprising of 3% sucrose and 2.5% tryptone. X. campestris pv. phaseoli was further subjected to ethylmethanesulfonate mutagenesis and the resulting mutant, X. campestris pv. phaseoli KM 24 demonstrated inulinase production of 22.09 ± 0.03 U mL−1 after 18 h, which was 2.4-fold higher than that of the wild type. Inulinase production by this mutant was scaled up using sucrose as a carbon source in a 5-L fermenter yielding maximum volumetric (21,865 U L−1 h−1) and specific (119,025 U g−1 h−1) productivities of inulinase after 18 h with an inulinase/invertase ratio of 2.6. A maximum FOS production of 11.9 g L−1 h−1 and specific productivity of 72 g g−1 h−1 FOS from inulin were observed in a fermenter, when the mutant was grown on medium containing 3% inulin and 2.5% tryptone. The detection of mono- and oligosaccharides in inulin hydrolysates by TLC analysis indicated the presence of an endoinulinase. This mutant has potential for large-scale production of inulinase and fructooligosaccharides.  相似文献   

6.
7.
Ethylene synthesis is accelerated in response to various environmental stresses like salinity. Ten rhizobacterial strains isolated from wheat rhizosphere taken from different salt affected areas were screened for growth promotion of wheat under axenic conditions at 1, 5, 10 and 15 dS m−1. Three strains, i.e., Pseudomonas putida (N21), Pseudomonas aeruginosa (N39) and Serratia proteamaculans (M35) showing promising performance under axenic conditions were selected for a pot trial at 1.63 (original), 5, 10 and 15 dS m−1. Results showed that inoculation was effective even in the presence of higher salinity levels. P. putida was the most efficient strain compared to the other strains and significantly increased the plant height, root length, grain yield, 100-grain weight and straw yield up to 52, 60, 76, 19 and 67%, respectively, over uninoculated control at 15 dS m−1. Similarly, chlorophyll content and K+/Na+ of leaves also increased by P. putida over control. It is highly likely that under salinity stress, 1-aminocyclopropane-1-carboxylic acid-deaminase activity of these microbial strains might have caused reduction in the synthesis of stress (salt)-induced inhibitory levels of ethylene. The results suggested that these strains could be employed for salinity tolerance in wheat; however, P. putida may have better prospects in stress alleviation/reduction.  相似文献   

8.
We have established a shoot regeneration system and genetic transformation of cockscomb (Celosia cristata and Celosia plumosus). The best results in terms of frequency of shoot regeneration and number of shoot buds per explant are observed on media supplemented with 0.5 mg l−1 6-BA (for explants of apical meristems of C. cristata) or 2.0 mg l−1 6-BA, 0.5  mg l−1 NAA and 0.5  mg l−1 IAA (for hypocotyls explants of C. plumosus). We use apical meristems of C. cristata and hypocotyls of C. plumosus as the starting material for transformation. A novel KNOTTED1-like homeobox1 (KNOX), PttKN1 (Populus tremula × P. tremuoides knotted1) isolated from the vascular cambial region of hybrid aspen, is introduced into cockscomb by Agrobacterium. A series of novel phenotypes are obtained from the transgenic cockscomb plants, including lobed or rumpled leaves, partite leaves and two or three leaves developed on the same petiole, on the basis of their leaf phenotypes. Transformants are selected by different concentrations of kanamycin. Transformants are confirmed by PCR of the NptII gene and PCR or RT-PCR of PttKN1 gene. Furthermore, RT-PCR shows that 35S:: PttKN1 RNA levels do not correlate with phenotypic severity. It is discussed that our results bring elements on possible function of PttKN1 gene. To our knowledge, genetic transformation of cockscomb is first reported.  相似文献   

9.
Effects of inoculation of wheat (Triticum aestivum L.) with the rhizobacterium Pseudomonas chlororaphis subsp. aurantiaca strain SR1 (termed SR1) were studied at an experimental field site in Río Cuarto, Argentina. Treatments involved SR1 inoculation with or without nitrogen/phosphorus fertilization. Inoculation produced a significant increase in plant height and root length in early growth stages. Inoculation plus fertilization with 40 kg ha−1 urea/30 kg ha−1 diamonic phosphate (“50% dose”) gave a yield increase of 636 kg ha−1 relative to control, and an increase of 472 kg ha−1 relative to fertilization with 80 kg ha−1 urea/60 kg ha−1 phosphate without inoculation. SR1 inoculation without fertilization, compared to control, produced increases of 6% in weight of 1,000 grains, 13% in number of spikes per plant, and 30% in number of grains per spike. Inoculation plus 50% dose fertilization also improved these parameters. Results of the study indicate that inoculation of wheat with SR1 improves various growth and yield parameters, and allows reduced dosage of nitrogen/phosphorus fertilizers in the field.  相似文献   

10.
During growth of the freshwater cyanobacteria, Oscillatoria sp. BTCC/A0004, and Scytonema sp. TISTR 8208, a pink pigment is released into the growth medium. The pigment from each source had a molecular weight of approximately 250 kDa and had adsorption maxima at 560 and 620 nm. These results suggest that pink pigment is a phycoerythrin-like protein. It inhibited the growth of green algae, Chlorella fusca and Chlamydomonas reinhardtii, but not other cyanobacteria or true bacteria. The concentration at which growth inhibition 50% occurred was 0.5, 6 and more than 10 mg ml−1, respectively.  相似文献   

11.
In industry, fosfomycin is mainly prepared via chemical epoxidation of cis-propenylphosphonic acid (cPPA). The conversion yield of fosfomycin is less than 50% in the whole process and a large quantity of waste is produced. Biotransformation by microorganisms is an alternative method of preparation. This kind of conversion is more delicate, environmentally friendly, and the conversion yield of fosfomycin would be higher. In this work, an aerobic bacterium capable of transforming cPPA to fosfomycin was isolated. The organism, designated as strain S101, was identified as Bacillus simplex by morphological and physiological characteristics as well as by analysis of the gene encoding the 16S rRNA. Fosfomycin was assayed by two means, bioassay and gas chromatography (GC). Glycerol was a good carbon source for growth and cPPA conversion of strain S101. When cPPA was used as the sole carbon source, neither growth nor conversion to fosfomycin occurred. The optimum cPPA concentration in the conversion medium was 2,000 μg ml−1. After 6 days of incubation, the concentration of fosfomycin reached its maximum level (1,838.2 μg ml−1), with a conversion ratio of 81.3%. Air was indispensable for the growth but not for the conversion to fosfomycin. Furthermore, vanadium ions were found to be essential for the conversion. High concentrations of cPPA had fewer inhibitory effects on the growth of strain S101.  相似文献   

12.
A non-characterized gene, previously proposed as the d-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with d-fructose and decreased for other substrates in the order: d-tagatose, d-psicose, d-ribulose, d-xylulose and d-sorbose. Its activity was maximal at pH 9 and 40°C while being enhanced by Mn2+. At pH 9 and 40°C, 118 g d-psicose l−1 was produced from 700 g d-fructose l−1 after 3 h. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Callus selection (CS) and the flamingo-bill explant (FB) methods were evaluated for efficacy in transformation for celery. Agrobacterium tumefaciens strains EHA105 and GV3101, each with the bar gene under the promoters NOS (pGPTV-BAR) or 35S (pDHB321.1), were used. Leaf explants were inoculated and co-cultivated for 2 d in the dark. Calluses emerged on the explants on callus medium (C), Murashige and Skoog (MS) medium + 2,4-Dichlorophenoxyacetic acid (2,4-D) (2.3 μM) + kinetin (2.8 μM) + timentin (300 mg·l−1). Calluses 4- to 6-wk-old were selected for glufosinate (GS) resistance by a two step method. First, calluses were transferred to C medium + GS 0.35, 0.5, 1, 2, 5, or 10 mg·l−1; calluses formed only with 0, 0.35 and 0.5 mg·l−1 GS. All growing calluses from 0 and 0.35 mg·l−1 and a few from 0.5 mg·l−1, were divided and placed back on C + GS 0.35–0.5 mg·l−1 for another 5–6 wk. Second, tolerant clones were again divided and placed on C + GS 1–50 mg·l−1. When cultivar XP85 was inoculated with both strains, using pGPTVBAR, 19 glufosinate resistant (GR) callus clones were selected, but shoots regenerated only for strain EHA105 inoculations. When both of the strains (each with pDHB321.1) were inoculated on cv. XP166, 3 and 12 GR calluses occurred for EHA105 and GV3101, respectively. Using CS, a total of 34 GR callus clones were selected, and shoots were regenerated from over 50% of them on Gamborg B5 medium + 6-(γ, γ-dimethylallylamino) purine 2ip (4.9 μM) + naphthaleneacetic acid (NAA; 1.6 μM) and rooted on MS in 5–6 mo total time. Conversely, using FB with inoculation by GV3101/pDHB321.1 on cv. XP166 yielded putative transgenic celery plants confirmed by polymerase chain reaction (PCR) in just 6 wk. Transformation of the bar gene into celery was confirmed by PCR for 5 and 6 CS and FB lines, respectively. Southern blot analyses indicated 1–2 copies in CS lines and 1 copy in FB lines. Herbicide assays on whole plants with 100 and 300 mg·l−1 glufosinate indicated a range of low to high tolerance for lines derived by both methods. The bar gene was found to be Mendelian inherited in one self-fertile CS derived line.  相似文献   

14.
Zhou L  Cao X  Zhang R  Peng Y  Zhao S  Wu J 《Biotechnology letters》2007,29(4):631-634
Two oligosaccharides, a heptasaccharide (HS) and an octasaccharide (OS), isolated from Paris polyphylla var. yunnanensis, stimulated the growth and saponin accumulation of Panax ginseng hairy roots at 5–30 mg l−1. HS and OS at 30 mg l−1, fed separately to hairy root cultures at 10 days post-inoculation, increased the root biomass dry weight by more than 70% to ∼20 g l−1 from 13 g l−1 and the total saponin content of roots by more than 1-fold to ∼3.5% from 1.6% (w/w). The results suggest that the two oligosaccharides may have plant growth-regulatory activity in plant tissue cultures.  相似文献   

15.
The endochitinase DNA and cDNA from Trichoderma sp. were cloned, sequenced and expressed. The cloned DNA and cDNA sequences were 1,476 and 1,275 bp in length, respectively. There were three introns in DNA sequence in comparison with the cDNA sequence. The endochitinase protein contained three regions: the signal peptide, the prepro-region and the mature protein region. The gene fragment encoding the mature endochitinase was ligated into the expression vector pET-28a+, yielding pET-1. The plasmid pET-1 was transformed into the Escherichia coli BL21 (DE3). The clone bearing pET-1 was picked and cultured at 30°C for the expression of endochitinase. SDS-PAGE analysis showed that the endochitinase was expressed in the periplasmic space and the purified protein showed a single band. The activity of 70.2 U/mg was obtained from the cellular extract of the recombinant strain. The activity of endochitinase was 2.5-fold higher at 24 h than at 16 h in the periplasmic space. The optimal pH and temperature of the recombinant endochitinase were determined to be 7.0 and 35°C, respectively. It was relatively stable within the pH range of 5–8. Significant activity stimulation by 1 mM Mg2+ and 5 mM Fe2+ and inhibition by 5 mM Co2+ and 5 mM Hg2+ were observed. The kinetic constants Km, Vmax and Kcat for the hydrolysis of the colloidal chitin were 1.5 mM, 1.37 μmol min−1 and 6.23 min−1, respectively.  相似文献   

16.
This study investigated the factors affecting in vitro flowering of Perilla frutescens. The shoots regenerated from cotyledonary and hypocotyl explants cultured on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) and indole-3-acetic acid, each at 0.5 mg l−1, were excised and transferred to MS medium containing 30 g l−1 of sucrose, 8.25 g l−1 of ammonium nitrate, and 1.0 mg l−1 of BA. After 40 d of culture, 86.2% of shoots flowered and most of which self-fertilized in vitro and produced mature fruits with viable seeds. These seeds were germinated and plants were grown to maturity and flowered in soil under greenhouse conditions. The in vitro flowering system reported in this study may facilitate rapid breeding of P. frutescens and offers a model system for studying the physiological mechanism of flowering.  相似文献   

17.
18.
Trametes versicolor 1 was shown to grow on phenol as its sole carbon and energy source. The culture growth and degradation ability dependence on culture medium pH value was observed. The optimal pH value of a liquid Czapek salt medium was 6.5. The investigated strain utilized completely 0.5 g/l phenol in 6 days. The dynamics of the phenol degradation process was investigated. The process was characterized by specific growth rate μmax 0.33 h−1, metabolic coefficient k = 4.4, yield coefficient Y x/s  = 0.23 and rate of degradation Q = 0.506 h−1. The intracellular activities of phenol hydroxylase (0.333 U/mg protein) and cis,cis-muconate lactonizing enzyme (0.41 U/mg protein) were demonstrated for the first time in this fungus. In an attempt to estimate the occurrence of gene sequences in T. versicolor 1 related to phenol degradation pathway a dot blot analysis with total DNA isolated from this strain was performed. Two synthetic oligonucleotides were used as hybridizing probes. One of the probes was homologous to the 5′end of phyA gene coding for phenol hydroxylase in Trichosporon cutaneum ATCC 46490. The other probe was created on the basis of cis,cis-muconate lactonizing enzyme coding gene in T. cutaneum ATCC 58094. The results of these investigations showed that T. versicolor 1 may carry genes similar to those of Trichosporon cutaneum capable to degrade phenol.  相似文献   

19.
He X  Xu X  Liu B 《Molecular biology reports》2009,36(7):1819-1824
The products of mammalian LPIN2 and LPIN3 are phosphatidate phosphatase type 1 enzymes, which play an important role in the de novo biosynthesis of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine. In this study, we obtained a 2,985-bp cDNA sequence of porcine LPIN2, which contains a 2,676-bp open reading frame flanked by an 11-bp 5′UTR and a 298-bp 3′UTR, and a 2,843-bp cDNA sequence of porcine LPIN3, which contains a 111-bp 5′UTR, a 2,580-bp open reading frame and a 152-bp 3′UTR. RT-PCR analysis showed that both LPIN2 and LPIN3 mRNA were ubiquitously expressed with a very high level in liver. By using the somatic cell hybrid panel (SCHP) and the radiation hybrid (IMpRH) panel, porcine LPIN2 and LPIN3 were assigned to 6q24-(1/2)q31 and 17(1/2)q21-q23, respectively. One T2193C single nucleotide polymorphism in LPIN2 was identified and was detected by Hin6I PCR-RFLP. Association analysis showed that different genotypes of LPIN2 were associated with back-fat thickness between the 6th and 7th ribs (P < 0.01).  相似文献   

20.
The re-emergence of Gymnodinum catenatum blooms after a 10 year hiatus of absence initiated the present investigation. This study aims to evaluate the exposure of small pelagic fishes to paralytic shellfish toxins (PST) during blooms of G. catenatum. Sardines (Sardina pilchardus) were selected as a representative fish species. In order to assess toxin availability to fish, both intracellular PSTs (toxin retained within the algal cells) and extracellular PSTs (toxin found in seawater outside algal cells) were quantified, as well as toxin levels within three fish tissue matrices (viscera, muscle and brain). During the study period, the highest cell densities of G. catenatum reached 2.5 × 104 cells l−1 and intracellular PST levels ranged from 3.4 to 398 ng STXeq l−1 as detected via an enzyme linked immunosorbent assay (ELISA). Measurable extracellular PSTs were also detected in seawater (0.2–1.1 μg STXeq l−1) for the first time in Atlantic waters. The PST profile in G. catenatum was determined via high performance liquid chromatography with fluorescence detection (HPLC-FLD) and consisted mostly of sulfocarbamoyl (C1+2, B1) and decarbamoyl (dcSTX, dcGTX2+3, dcNEO) toxins. The observed profile was similar to that reported previously in G. catenatum blooms in this region before the 10-year hiatus. Sardines, planktivorous fish that ingest a large number of phytoplankton cells, were found to contain PSTs in the viscera, reaching a maximum of 531 μg STXeq kg−1. PSTs were not detected in corresponding muscle or brain tissues. The PST profile characterized in sardine samples consisted of the same sulfocarbamoyl and decarbamoyl toxins found in the algal prey with minor differences in relative abundance of each toxin. Overall, the data suggest that significant biotransformation of PSTs does not occur in sardines. Therefore, planktivorous fish may be a good tracer for the occurrence of offshore G. catenatum blooms and the associated PSTs produced by these algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号