首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mitosis, kinetochores are initially captured by the lateral sides of single microtubules and are subsequently transported toward spindle poles. Mechanisms for kinetochore transport are not yet known. We present two mechanisms involved in microtubule-dependent poleward kinetochore transport in Saccharomyces cerevisiae. First, kinetochores slide along the microtubule lateral surface, which is mainly and probably exclusively driven by Kar3, a kinesin-14 family member that localizes at kinetochores. Second, kinetochores are tethered at the microtubule distal ends and pulled poleward as microtubules shrink (end-on pulling). Kinetochore sliding is often converted to end-on pulling, enabling more processive transport, but the opposite conversion is rare. The establishment of end-on pulling is partly hindered by Kar3, and its progression requires the Dam1 complex. We suggest that the Dam1 complexes, which probably encircle a single microtubule, can convert microtubule depolymerization into the poleward kinetochore-pulling force. Thus, microtubule-dependent poleward kinetochore transport is ensured by at least two distinct mechanisms.  相似文献   

2.
The equal distribution of chromosomes during mitosis is critical for maintaining the integrity of the genome. Essential to this process are the capture of spindle microtubules by kinetochores and the congression of chromosomes to the metaphase plate . Polo-like kinase 1 (Plk1) is a mitotic kinase that has been implicated in microtubule-kinetochore attachment, tension generation at kinetochores, tension-responsive signal transduction, and chromosome congression . The tension-sensitive substrates of Plk1 at the kinetochore are unknown. Here, we demonstrate that human Nuclear distribution protein C (NudC), a 42 kDa protein initially identified in Aspergillus nidulans and shown to be phosphorylated by Plk1 , plays a significant role in regulating kinetochore function. Plk1-phosphorylated NudC colocalizes with Plk1 at the outer plate of the kinetochore. Depletion of NudC reduced end-on microtubule attachments at kinetochores and resulted in defects in chromosome congression at the metaphase plate. Importantly, NudC-deficient cells exhibited mislocalization of Plk1 and the Kinesin-7 motor CENP-E from prometaphase kinetochores. Ectopic expression of wild-type NudC, but not NudC containing mutations in the Plk1 phosphorylation sites, recovered Plk1 localization at the kinetochore and rescued chromosome congression. Thus, NudC functions as both a substrate and a spatial regulator of Plk1 at the kinetochore to promote chromosome congression.  相似文献   

3.
Winey M  Bloom K 《Genetics》2012,190(4):1197-1224
The Saccharomyces cerevisiae mitotic spindle in budding yeast is exemplified by its simplicity and elegance. Microtubules are nucleated from a crystalline array of proteins organized in the nuclear envelope, known as the spindle pole body in yeast (analogous to the centrosome in larger eukaryotes). The spindle has two classes of nuclear microtubules: kinetochore microtubules and interpolar microtubules. One kinetochore microtubule attaches to a single centromere on each chromosome, while approximately four interpolar microtubules emanate from each pole and interdigitate with interpolar microtubules from the opposite spindle to provide stability to the bipolar spindle. On the cytoplasmic face, two to three microtubules extend from the spindle pole toward the cell cortex. Processes requiring microtubule function are limited to spindles in mitosis and to spindle orientation and nuclear positioning in the cytoplasm. Microtubule function is regulated in large part via products of the 6 kinesin gene family and the 1 cytoplasmic dynein gene. A single bipolar kinesin (Cin8, class Kin-5), together with a depolymerase (Kip3, class Kin-8) or minus-end-directed kinesin (Kar3, class Kin-14), can support spindle function and cell viability. The remarkable feature of yeast cells is that they can survive with microtubules and genes for just two motor proteins, thus providing an unparalleled system to dissect microtubule and motor function within the spindle machine.  相似文献   

4.
Kinetochore components play a major role in regulating the transmission of genetic information during cell division. Ndc10p, a kinetochore component of the essential CBF3 complex in budding yeast is required for chromosome attachment to the mitotic spindle. ndc10-1 mutant was shown to display chromosome mis-segregation as well as an aberrant mitotic spindle (Goh and Kilmartin, 1993). In addition, Ndc10p localizes along the spindle microtubules (Muller-Reichert et al., 2003). To further understand the role of Ndc10p in the mitotic apparatus, we performed a three-dimensional electron microscopy (EM) reconstruction of mitotic spindles from serial sections of cryo-immobilized ndc10-1 mutant cells. This analysis reveals a dramatic reduction in the number of microtubules present in the half-spindle, which is connected to the newly formed spindle pole body (SPB) in ndc10-1 cells. Moreover, in contrast to wild-type (WT) cells, ndc10-1 cells showed a significantly lower signal intensity of the SPB components Spc42p and Spc110p fused with GFP, in mother cell bodies compared with buds. A subsequent EM analysis also showed clear defects in the newly formed SPB, which remains in the mother cell during anaphase. These results suggest that Ndc10p is required for maturation of the newly formed SPB. Intriguingly, mutations in other kinetochore components, ndc80-1 and spc24-1, showed kinetochore detachment from the spindle, similar to ndc10-1, but did not display defects in SPBs. This suggests that unattached kinetochores are not sufficient to cause SPB defects in ndc10-1 cells. We propose that Ndc10p, alongside its role in kinetochore–microtubule interaction, is also essential for SPB maturation and mitotic spindle integrity.  相似文献   

5.
Cell division and the microtubular cytoskeleton]   总被引:1,自引:0,他引:1  
K Izutsu 《Human cell》1991,4(2):100-108
Kinetochore microtubules result from an interaction between astral microtubules and the kinetochore of the chromosomes after breakdown of the nuclear envelope at the end of prophase. In this process, the end of a microtubule projecting from one of the polar regions contacts the primary constriction of a chromosome. The latter then undergoes rapid poleward movement. Concerning the mechanism of anaphase chromosome movement, the motive force for the chromosome-to-pole movement appears to be generated at the kinetochore or in the region very close to it. It has not been determined whether chromosomes propel themselves along stationary kinetochore microtubules by a motor at the kinetochore, or they are pulled poleward by a traction fiber consisting of kinetochore microtubules and associated motors. As chromosomes move poleward coordinate disassembly of kinetochore microtubules might occur from their kinetochore ends. In diatom and yeast spindles, elongation of the spindle in anaphase (anaphase B) may be explained by microtubule assembly at polar microtubule ends in the spindle mid-zone and sliding of the antiparallel microtubules from the opposite poles. The sliding force appears to be generated through an ATP-dependent microtubule motor. In isolated sea urchin spindles, the microtubule assembly at the equator alone might provide the force for spindle elongation, although, in addition, involvement of microtubule sliding by a GTP-requiring mechanochemical enzyme cannot be excluded. Discussions were made on possible participation in anaphase chromosome movement of such microtubule motors as dynein, kinesin, dynamin and the claret segregation protein.  相似文献   

6.
《Biophysical journal》2022,121(2):263-276
A microtubule-based machine called the mitotic spindle segregates chromosomes when eukaryotic cells divide. In the fission yeast Schizosaccharomyces pombe, which undergoes closed mitosis, the spindle forms a single bundle of microtubules inside the nucleus. During elongation, the spindle extends via antiparallel microtubule sliding by molecular motors. These extensile forces from the spindle are thought to resist compressive forces from the nucleus. We probe the mechanism and maintenance of this force balance via laser ablation of spindles at various stages of mitosis. We find that spindle pole bodies collapse toward each other after ablation, but spindle geometry is often rescued, allowing spindles to resume elongation. Although this basic behavior has been previously observed, many questions remain about the phenomenon's dynamics, mechanics, and molecular requirements. In this work, we find that previously hypothesized viscoelastic relaxation of the nucleus cannot explain spindle shortening in response to laser ablation. Instead, spindle collapse requires microtubule dynamics and is powered by the minus-end-directed motor proteins dynein Dhc1 and kinesin-14 Klp2, but it does not require the minus-end-directed kinesin Pkl1.  相似文献   

7.
To establish chromosome biorientation, aberrant kinetochore–microtubule interaction must be resolved (error correction) by Aurora B kinase. Aurora B differentially regulates kinetochore attachment to the microtubule plus end and its lateral side (end-on and lateral attachment, respectively). However, it is still unclear how kinetochore–microtubule interactions are exchanged during error correction. Here, we reconstituted the budding yeast kinetochore–microtubule interface in vitro by attaching the Ndc80 complexes to nanobeads. These Ndc80C nanobeads recapitulated in vitro the lateral and end-on attachments of authentic kinetochores on dynamic microtubules loaded with the Dam1 complex. This in vitro assay enabled the direct comparison of lateral and end-on attachment strength and showed that Dam1 phosphorylation by Aurora B makes the end-on attachment weaker than the lateral attachment. Similar reconstitutions with purified kinetochore particles were used for comparison. We suggest the Dam1 phosphorylation weakens interaction with the Ndc80 complex, disrupts the end-on attachment, and promotes the exchange to a new lateral attachment, leading to error correction.  相似文献   

8.
The Ran GTPase controls multiple cellular processes, including nuclear transport, mitotic checkpoints, spindle assembly and post-mitotic nuclear envelope reassembly. Here we examine the mitotic function of Crm1, the Ran-GTP-binding nuclear export receptor for leucine-rich cargo (bearing nuclear export sequence) and Snurportin-1 (ref. 3). We find that Crm1 localizes to kinetochores, and that Crm1 ternary complex assembly is essential for Ran-GTP-dependent recruitment of Ran GTPase-activating protein 1 (Ran-GAP1) and Ran-binding protein 2 (Ran-BP2) to kinetochores. We further show that Crm1 inhibition by leptomycin B disrupts mitotic progression and chromosome segregation. Analysis of spindles within leptomycin B-treated cells shows that their centromeres were under increased tension. In leptomycin B-treated cells, centromeres frequently associated with continuous microtubule bundles that spanned the centromeres, indicating that their kinetochores do not maintain discrete end-on attachments to single kinetochore fibres. Similar spindle defects were observed in temperature-sensitive Ran pathway mutants (tsBN2 cells). Taken together, our findings demonstrate that Crm1 and Ran-GTP are essential for Ran-BP2/Ran-GAP1 recruitment to kinetochores, for definition of kinetochore fibres and for chromosome segregation at anaphase. Thus, Crm1 is a critical Ran-GTP effector for mitotic spindle assembly and function in somatic cells.  相似文献   

9.
Li Y  Yu W  Liang Y  Zhu X 《Cell research》2007,17(8):701-712
For proper chromosome segregation, all kinetochores must achieve bipolar microtubule (MT) attachment and subsequently align at the spindle equator before anaphase onset. The MT minus end-directed motor dynein/dynactin binds kinetoehores in prometaphase and has long been implicated in chromosome congression. Unfortunately, inactivation of dynein usually disturbs spindle organization, thus hampering evaluation of its kinetochore roles. Here we specifically eliminated kinetochore dynein/dynactin by RNAi-mediated depletion of ZW10, a protein essential for kinetochore localization of the motor. Time-lapse microscopy indicated markedly-reduced congression efficiency, though congressing chromosomes displayed similar velocities as in control cells. Moreover, cells frequently failed to achieve full chromosome alignment, despite their normal spindles. Confocal microcopy revealed that the misaligned kinetochores were monooriented or unattached and mostly lying outside the spindle, suggesting a difficulty to capture MTs from the opposite pole. Kinetoehores on monoastral spindles were dispersed farther away from the pole and exhibited only mild oscillation. Furthermore, inactivating dynein by other means generated similar phenotypes. Therefore, kinetochore dynein produces on monooriented kinetochores a poleward pulling force, which may contribute to efficient bipolar attachment by facilitating their proper microtubule captures to promote congression as well as full chromosome alignment.  相似文献   

10.
Accurate chromosome segregation depends on proper assembly and function of the kinetochore and the mitotic spindle. In the budding yeast, Saccharomyces cerevisiae, the highly conserved protein kinase Mps1 has well-characterized roles in spindle pole body (SPB, yeast centrosome equivalent) duplication and the mitotic checkpoint. However, an additional role for Mps1 is suggested by phenotypes of MPS1 mutations that include genetic interactions with kinetochore mutations and meiotic chromosome segregation defects and also by the localization of Mps1 at the kinetochore, the latter being independent of checkpoint activation. We have developed a new MPS1 allele, mps1-as1, that renders the kinase specifically sensitive to a cell-permeable ATP analog inhibitor, allowing us to perform high-resolution execution point experiments that identify a novel role for Mps1 subsequent to SPB duplication. We demonstrate, by using both fixed- and live-cell fluoresence techniques, that cells lacking Mps1 function show severe defects in mitotic spindle formation, sister kinetochore positioning at metaphase, and chromosome segregation during anaphase. Taken together, our experiments are consistent with an important role for Mps1 at the kinetochore in mitotic spindle assembly and function.  相似文献   

11.
In mitotic cells, an error in chromosome segregation occurs when a chromosome is left near the spindle equator after anaphase onset (lagging chromosome). In PtK1 cells, we found 1.16% of untreated anaphase cells exhibiting lagging chromosomes at the spindle equator, and this percentage was enhanced to 17.55% after a mitotic block with 2 microM nocodazole. A lagging chromosome seen during anaphase in control or nocodazole-treated cells was found by confocal immunofluorescence microscopy to be a single chromatid with its kinetochore attached to kinetochore microtubule bundles extending toward opposite poles. This merotelic orientation was verified by electron microscopy. The single kinetochores of lagging chromosomes in anaphase were stretched laterally (1.2--5.6-fold) in the directions of their kinetochore microtubules, indicating that they were not able to achieve anaphase poleward movement because of pulling forces toward opposite poles. They also had inactivated mitotic spindle checkpoint activities since they did not label with either Mad2 or 3F3/2 antibodies. Thus, for mammalian cultured cells, kinetochore merotelic orientation is a major mechanism of aneuploidy not detected by the mitotic spindle checkpoint. The expanded and curved crescent morphology exhibited by kinetochores during nocodazole treatment may promote the high incidence of kinetochore merotelic orientation that occurs after nocodazole washout.  相似文献   

12.
We argue that hypotheses for how chromosomes achieve a metaphase alignment, that are based solely on a tug-of-war between poleward pulling forces produced along the length of opposing kinetochore fibers, are no longer tenable for vertebrates. Instead, kinetochores move themselves and their attached chromosomes, poleward and away from the pole, on the ends of relatively stationary but shortening/elongating kinetochore fiber microtubules. Kinetochores are also "smart" in that they switch between persistent constant-velocity phases of poleward and away from the pole motion, both autonomously and in response to information within the spindle. Several molecular mechanisms may contribute to this directional instability including kinetochore-associated microtubule motors and kinetochore microtubule dynamic instability. The control of kinetochore directional instability, to allow for congression and anaphase, is likely mediated by a vectorial mechanism whose magnitude and orientation depend on the density and orientation or growth of polar microtubules. Polar microtubule arrays have been shown to resist chromosome poleward motion and to push chromosomes away from the pole. These "polar ejection forces" appear to play a key role in regulating kinetochore directional instability, and hence, positions achieved by chromosomes on the spindle.  相似文献   

13.
The microtubule cytoskeleton is a highly dynamic network. In dividing cells, its complex architecture not only influences cell shape and movement but is also crucial for chromosome segregation. Curiously, nothing is known about the behavior of this cellular machinery in quiescent cells. Here we show that, upon quiescence entry, the Saccharomyces cerevisiae microtubule cytoskeleton is drastically remodeled. Indeed, while cytoplasmic microtubules vanish, the spindle pole body (SPB) assembles a long and stable monopolar array of nuclear microtubules that spans the entire nucleus. Consequently, the nucleolus is displaced. Kinetochores remain attached to microtubule tips but lose SPB clustering and distribute along the microtubule array, leading to a large reorganization of the nucleus. When cells exit quiescence, the nuclear microtubule array slowly depolymerizes and, by pulling attached centromeres back to the SPB, allows the recovery of a typical Rabl-like configuration. Finally, mutants that do not assemble a nuclear array of microtubules are impaired for both quiescence survival and exit.  相似文献   

14.
During meiotic prophase, telomeres cluster, forming the bouquet chromosome arrangement, and facilitate homologous chromosome pairing. In fission yeast, bouquet formation requires switching of telomere and centromere positions. Centromeres are located at the spindle pole body (SPB) during mitotic interphase, and upon entering meiosis, telomeres cluster at the SPB, followed by centromere detachment from the SPB. Telomere clustering depends on the formation of the microtubule-organizing center at telomeres by the linker of nucleoskeleton and cytoskeleton complex (LINC), while centromere detachment depends on disassembly of kinetochores, which induces meiotic centromere formation. However, how the switching of telomere and centromere positions occurs during bouquet formation is not fully understood. Here, we show that, when impaired telomere interaction with the LINC or microtubule disruption inhibited telomere clustering, kinetochore disassembly-dependent centromere detachment and accompanying meiotic centromere formation were also inhibited. Efficient centromere detachment required telomere clustering-dependent SPB recruitment of a conserved telomere component, Taz1, and microtubules. Furthermore, when artificial SPB recruitment of Taz1 induced centromere detachment in telomere clustering-defective cells, spindle formation was impaired. Thus, detachment of centromeres from the SPB without telomere clustering causes spindle impairment. These findings establish novel regulatory mechanisms, which prevent concurrent detachment of telomeres and centromeres from the SPB during bouquet formation and secure proper meiotic divisions.  相似文献   

15.
We have used local fluorescence photoactivation to mark the lattice of spindle microtubules during anaphase A in Xenopus extract spindles. We find that both poleward spindle microtubule flux and anaphase A chromosome movement occur at similar rates (~2 μm/min). This result suggests that poleward microtubule flux, coupled to microtubule depolymerization near the spindle poles, is the predominant mechanism for anaphase A in Xenopus egg extracts. In contrast, in vertebrate somatic cells a “Pacman” kinetochore mechanism, coupled to microtubule depolymerization near the kinetochore, predominates during anaphase A. Consistent with the conclusion from fluorescence photoactivation analysis, both anaphase A chromosome movement and poleward spindle microtubule flux respond similarly to pharmacological perturbations in Xenopus extracts. Furthermore, the pharmacological profile of anaphase A in Xenopus extracts differs from the previously established profile for anaphase A in vertebrate somatic cells. The difference between these profiles is consistent with poleward microtubule flux playing the predominant role in anaphase chromosome movement in Xenopus extracts, but not in vertebrate somatic cells. We discuss the possible biological implications of the existence of two distinct anaphase A mechanisms and their differential contributions to poleward chromosome movement in different cell types.  相似文献   

16.
The relationship between chromosome movement and mirotubules was explored by combining micromanipulation of living grasshopper spermatocytes with electron microscopy. We detached chromosomes from the spindle and placed them far out in the cytoplasm. Soon, the chromosomes began to move back toward the spindle and the cells were fixed at a chosen moment. The microtubules seen in three-dimensional reconstructions were correlated with the chromosome movement just prior to fixation. Before movement began, detached chromosomes had no kinetochore microtubules or a single one at most. Renewed movement was always accompanied by the reappearance of kinetochore microtubules; a single kinetochore microtubule appeared to suffice. Chromosome movements and kinetochore microtubule arrangements were unusual after reattachment, but their relationship was not: poleward forces, parallel to the kinetochore microtubule axis (as in normal anaphase), would explain the movement, however odd. The initial arrangement of kinetochore microtubules would have led to aberrant chromosome distribution if it persisted, but instead, reorientation to the appropriate arrangement always followed. Observations on living cells permitted us to place in sequence the kinetochore microtubule arrangements seen in fixed cells, revealing the microtubule transformations during reorientation. From the sequence of events we conclude that chromosome movement can cause reorientation to begin and that in the changes which follow, an unstable attachment of kinetochore microtubules to the spindle plays a major role.  相似文献   

17.
It is widely accepted that the kinetochore is built on CENP-A–marked centromeric chromatin in a hierarchical order from inner to outer kinetochore. Recruitment of many kinetochore proteins depends on microtubule attachment status, but it remains unclear how their assembly/disassembly is orchestrated. Applying 3D structured illumination microscopy to Xenopus laevis egg extracts, here we reveal that in the absence of microtubule attachment, proteins responsible for lateral attachment and spindle checkpoint signaling expand to form micrometer-scale fibrous structures over CENP-A–free chromatin, whereas a core module responsible for end-on attachment (CENP-A, CENP-T, and Ndc80) does not. Both outer kinetochore proteins (Bub1, BubR1, Mad1, and CENP-E) and the inner kinetochore component CENP-C are integral components of the expandable module, whose assembly depends on multiple mitotic kinases (Aurora B, Mps1, and Plx1) and is suppressed by protein phosphatase 1. We propose that phospho-dependent coexpansion of CENP-C and outer kinetochore proteins promotes checkpoint signal amplification and lateral attachment, whereas their selective disassembly enables the transition to end-on attachment.  相似文献   

18.
Micromanipulation of living grasshopper spermatocytes in anaphase has been combined with electron microscopy to reveal otherwise obscure features of spindle organization. A chromosome is pushed laterally outside the spindle and stretched, and the cell is fixed with a novel, agar-treated glutaraldehyde solution. Two- and three-dimensional reconstructions from serial sections of seven cells show that kinetochore microtubules of the manipulated chromosome are shifted outside the confusing thicket of spindle microtubules and mechanical associations among microtubules are revealed by bent or shifted microtubules. These are the chief results: (a) The disposition of microtubules invariably is consistent with a skeletal role for spindle microtubules. (b) The kinetochore microtubule bundle is composed of short and long microtubules, with weak but recognizable mechanical associations among them. Some kinetochore microtubules are more tightly linked to one other microtubule within the bundle. (c) Microtubules of the kinetochore microtubule bundle are firmly connected to other spindle microtubules only near the pole, although some nonkinetochore microtubules of uncertain significance enter the bundle nearer to the kinetochore. (d) The kinetochore microtubules of adjacent chromosomes are mechanically linked, which provides an explanation for interdependent chromosome movement in "hinge anaphases." In the region of the spindle open to analysis after chromosome micromanipulation, microtubules may be linked mechanically by embedment in a gel, rather than by dynein or other specific, cross-bridging molecules.  相似文献   

19.
The Aurora B kinase coordinates kinetochore–microtubule attachments with spindle checkpoint signaling on each mitotic chromosome. We find that EB1, a microtubule plus end–tracking protein, is required to enrich Aurora B at inner centromeres in a microtubule-dependent manner. This regulates phosphorylation of both kinetochore and chromatin substrates. EB1 regulates the histone phosphorylation marks (histone H2A phospho-Thr120 and histone H3 phospho-Thr3) that localize Aurora B. The chromosomal passenger complex containing Aurora B can be found on a subset of spindle microtubules that exist near prometaphase kinetochores, known as preformed K-fibers (kinetochore fibers). Our data suggest that EB1 enables the spindle microtubules to regulate the phosphorylation of kinetochores through recruitment of the Aurora B kinase.  相似文献   

20.
BACKGROUND: Duplicated chromosomes are equally segregated to daughter cells by a bipolar mitotic spindle during cell division. By metaphase, sister chromatids are coupled to microtubule (MT) plus ends from opposite poles of the bipolar spindle via kinetochores. Here we describe a phosphorylation event that promotes the coupling of kinetochores to microtubule plus ends. RESULTS: Dam1 is a kinetochore component that directly binds to microtubules. We identified DAM1-765, a dominant allele of DAM1, in a genetic screen for mutations that increase stress on the spindle pole body (SPB) in Saccharomyces cerevisiae. DAM1-765 contains the single mutation S221F. We show that S221 is one of six Dam1 serines (S13, S49, S217, S218, S221, and S232) phosphorylated by Mps1 in vitro. In cells with single mutations S221F, S218A, or S221A, kinetochores in the metaphase spindle form tight clusters that are closer to the SPBs than in a wild-type cell. Five lines of experimental evidence, including localization of spindle components by fluorescence microscopy, measurement of microtubule dynamics by fluorescence redistribution after photobleaching, and reconstructions of three-dimensional structure by electron tomography, combined with computational modeling of microtubule behavior strongly indicate that, unlike wild-type kinetochores, Dam1-765 kinetochores do not colocalize with an equal number of plus ends. Despite the uncoupling of the kinetochores from the plus ends of MTs, the DAM1-765 cells are viable, complete the cell cycle with the same kinetics as wild-type cells, and biorient their chromosomes as efficiently as wild-type cells. CONCLUSIONS: We conclude that phosphorylation of Dam1 residues S218 and S221 by Mps1 is required for efficient coupling of kinetochores to MT plus ends. We find that efficient plus-end coupling is not required for (1) maintenance of chromosome biorientation, (2) maintenance of tension between sister kinetochores, or (3) chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号