首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pedunculate oak (Quercus robur) is an ecologically and economically important forest tree species which produces seeds that are classified as recalcitrant. Thus, cryopreservation of seed meristems is a method for long-term preservation of this germplasm in gene banks. During cryopreservation, many factors, such as desiccation, cryoprotection and cooling/rewarming, can induce stress in the frozen meristems. In this study, in vitro survival and the global DNA methylation level of plumules after cryoprotection, desiccation and cryostorage was evaluated. Results indicated that both desiccation and storage in liquid nitrogen have negligible influence on DNA methylation status of Q. robur plumules. These findings support the cryopreservation of plumules as an appropriate method for conservation of Q. robur germplasm.  相似文献   

2.
Two-year-old embryogenic tissues (ET) of Picea omorika (Pančić) Purk. were successfully cryopreserved after preculture with sucrose, air-drying for 2 h, and freezing in liquid nitrogen (LN). The preculture protocol consisted of passaging the ET onto standard Litvay medium containing increasing concentrations of sucrose (0.25 M sucrose for 24 h, 0.5 M for 24 h, 0.75 M for 2 days, and 1.0 M for 3 days) for 7 days, at 25°C, and in the dark. The clumps were subsequently air-dried over silica gel, down to a 20% water content (based on fresh weight), placed in cryovials, and immersed in liquid nitrogen (LN) for 24 h. These were thawed at 42°C and progressively rehydrated in phytagel-solidified LM media containing decreasing concentrations of sucrose. After 3 weeks of in vitro culture, surviving clumps were friable and white in color, similar to their morphology prior to cryostorage. The frequency of bacterial and fungal contamination was higher if ET was frozen in LN-containing vials than in LN-free vials. This efficient cryopreservation protocol would be useful for the ex-situ conservation of P. omorika germplasm in gene banks at very low temperatures.  相似文献   

3.
Summary A modified encapsulation-dehydration cryopreservation protocol based on the replacement of cold acclimation with high-sucrose pretreatment was assessed for the long-term storage of Ribes germplasm. Four steps in the procedure were examined for eight genotypes: (1) pregrowth of shoot tips in sucrose-supplemented solid growth medium for 1 wk; (2) pretreatment of alginate-encapsulated shoot tips in sucrose-supplemented liquid culture medium for 21 h; (3) evaporative desiccation of encapsulated-dehydrated shoot tips; and (4) exposure to liquid nitrogen (LN). Differential responses were observed for black currant and gooseberry genotypes. Recovery of growing shoots was high (72–100%) at all four steps for the five black currants tested. Evaporative desiccation slightly decreased viability for some black currants and in some cases LN exposure reduced regrowth. In contrast, three gooseberry species had poor recovery from the initial sucrose culture step (32–67%), indicating sensitivity to osmotic stress, which predisposed these genotypes to poor survival after LN exposure (12–26%). The effectiveness of the modified protocol for conserving a wider range of Ribes genotypes was further ascertained by screening 22 genotypes derived from nine Ribes species. The procedure was successful for 18 of the 22 genotypes in the gene bank in Scotland. Screening genotype responses at the time of storage demonstrated regrowth ≥60% for 15 genotypes, and only four genotypes had regrowth of 0–28%. Additional genotypes were also added to the USDA cryopreserved Ribes collection.  相似文献   

4.
Protocorm-like bodies (PLBs) of Phalaenopsis bellina were successfully cryopreserved by the encapsulation-dehydration approach. Various stages in obtaining successful cryopreservation using this method were optimized. Encapsulated PLBs precultured in half-strength MS medium supplemented with 0.75 M sucrose for 3 days exhibited the highest viability in terms of 2,3,5-triphenyltetrazoliumchloride (TTC) reduction. The amount of sucrose in the PLBs after incubation in different concentrations of sucrose for different periods of time determined by HPLC. The highest sucrose concentration was 7 mg/g of PLBs for the PLBs treated with 0.75 M sucrose for 3 days as compared to the control which had only 1 mg/g sucrose. After sucrose preculture, the PLBs were subjected to desiccation using one of two methods. Desiccation using silica gel was more efficient in reducing PLBs moisture content. After 6 h of desiccation, PLBs desiccated using laminar air flow had 43.5% moisture content while for those desiccated using silica gel had 32% moisture content. PLBs desiccated to different moisture contents were plunged into LN. After storage in LN the encapsulated PLBs were re-warmed. Two weeks after re-warming PLBs viability was determined by TTC reduction and re-growth assessed. Encapsulated PLBs precultured with 0.75 M sucrose for 3 days followed by desiccated using silica gel for 5 h resulting in a moisture content of 39% lead to the highest post re-warming viability in terms of TTC reduction (46.6% of control PLBs) and 30% re-growth.  相似文献   

5.
Cryostorage (usually in, or above liquid nitrogen) is presently the only option for long-term germplasm conservation of species producing recalcitrant (desiccation-sensitive) seeds. The present study investigated the ultrastructural responses of zygotic embryos excised from recalcitrant Amaryllis belladonna seeds to the sequential steps involved in cryopreservation. Flash-dried embryos, with and without prior sucrose (non-penetrating) or glycerol (penetrating) cryoprotection, were cooled rapidly or slowly, recovered in vitro and then assessed for ultrastructural and viability responses. Untreated embryos were 100% viable, the ultrastructure being indicative of their actively metabolic condition. Although nuclear morphology changed, viability was unaffected after exposure to either glycerol or sucrose, but mitochondrial ultrastructure suggested enhancement of metabolic activity particularly after sucrose treatment. When flash dried after sucrose cryoprotection, a significant increase in the degree of vacuolation, abnormal plastid ultrastructure and some wall abnormality accompanied a decline in survival to 70% and 60% at water contents > and <0.4 g g−1, respectively. In contrast, glycerol cryoprotection, which promoted retention of generally normal ultrastructure and also counteracted any increase in the degree of vacuolation, was associated with 100% and 90% survival of embryos at the higher and lower water contents. After exposure to liquid nitrogen (LN), ultrastructural irregularities were minimal in rapidly cooled glycerol-cryoprotected embryos, at water content <0.4 g g−1, which showed 70% survival after retrieval from cryogenic conditions. At the other extreme, no embryos survived LN exposure when sucrose cryoprotected. The study relates the cumulative effects of subcellular abnormality and declining viability, in relation to experimental parameters for cryopreservation.  相似文献   

6.
Embryogenic tissues of Pinus nigra have been cryopreserved using a two step slow-freezing method. In the first experiment, 20 cell lines were included and the effect of the duration of cryostorage (1 h vs. 1 year) on regrowth was compared. After a short-term storage (1 h in liquid nitrogen, LN) out of 20 cell lines tested 15 showed regrowth (75%) with individual frequencies 10–100%. Long term storage (1 year in LN) resulted in regrowth of 14 cell lines (70%) while the individual frequencies reached 10–100%. One year storage had no negative influence on the fresh mass accumulation evaluated 2–3 months after thawing. Another 20 cell lines were included in the second experiment with the aim to study the correlation between cryotolerance and maturation capacity of cell lines. Between maturation capacity and cryotolerance expressed as regrowth frequencies of individual cell lines, no correlation has been found.  相似文献   

7.
An efficient protocol for cryopreservation of protocorm like bodies (PLBs) of Dendrobium nobile, based on encapsulation–dehydration (ED) and encapsulation–vitrification (EV), was established. In both cryogenic procedures, PLBs were initially osmoprotected with a mixture of 0.4 M sucrose and 2 M glycerol, incorporated in the encapsulation matrix [comprising 3% (w/v) sodium alginate and 0.1 M CaCl2]. Out of the two methods, EV resulted in higher survival (78.1%) and regrowth (75.9%) than ED (53.3 and 50.2% respectively). Incorporation of 0.4 M sucrose and 2 M glycerol in the encapsulation matrix resulted in higher survival percentage after cryopreservation. In both the cases (ED and EV), shoots regenerated from cryopreserved PLBs with an intermediary PLB formation. Regenerated shoots were successfully rooted in the medium containing 1.5 mg/l Indole-3 butyric acid. Successful acclimatization of plantlets was obtained in the compost containing brick pieces and charcoal chunks (1:1) + a top layer of moss with a maximum survivability (82%). EV method proved to be most appropriate way to cryopreserve the PLBs of D. nobile. Regenerated plantlets showed normal morphology as that of control plants.  相似文献   

8.
Encapsulated cocoa (Theobroma cacao L.) somatic embryos subjected to 0.08–1.25 M sucrose treatments were analyzed for embryo soluble sugar content, non-freezable water content, moisture level after desiccation and viability after desiccation and freezing. Results indicated that the higher the sucrose concentration in the treatment medium, the greater was the extent of sucrose accumulation in the embryos. Sucrose treatment greatly assisted embryo post-desiccation recovery since only 40% of the control embryos survived desiccation, whereas a survival rate of 60–95% was recorded for embryos exposed to 0.5–1.25 M sucrose. The non-freezable water content of the embryos was estimated at between 0.26 and 0.61 g H2O g−1dw depending on the sucrose treatment, and no obvious relationship could be found between the endogenous sucrose level and the amount of non-freezable water in the embryos. Cocoa somatic embryos could withstand the loss of a fraction of their non-freezable water without losing viability following desiccation. Nevertheless, the complete removal of potentially freezable water was not sufficient for most embryos to survive freezing.  相似文献   

9.
Despite the widespread use of tissue culture as a means of propagating begonias and concerns regarding the preservation of germplasm, little information is available on the cryopreservation of these commercially important plants. For this reason studies were conducted to develop an encapsulation–dehydration method for the cryopreservation of adventitious shoots of the rhizomatous begonia, Begonia x erythrophylla. Adventitious shoots of B. x erythrophylla were found to be sensitive to dehydration and very sensitive to freezing. While pre-treatment with 0.75 M sucrose significantly increased the percentage of encapsulated shoots surviving dehydration, pre-treatment with sucrose did not afford cryoprotection without prior dehydration. Addition of abscisic acid and proline to the pre-treatment medium significantly improved the percentage of shoots surviving freezing. Pre-treatment of shoots with a medium containing, 0.75 M sucrose, 3.8 μM abscisic acid and 2.15 mM proline resulted in greater than 50% of shoots surviving freezing.  相似文献   

10.
Vitrification methods are convenient for cryopreserving plant specimens, as the specimens are plunged directly into liquid nitrogen (LN) from ambient temperatures. However, tissues and species with poor survival are still not uncommon. The development of vitrification solutions with high survival that cover a range of materials is important. We attempted to develop new vitrification solutions using bromegrass cells and found that VSL, comprising 20% (w/v) glycerol, 30% (w/v) ethylene glycol, 5% (w/v) sucrose, 10% (w/v) DMSO and 10 mM CaCl2, gave the highest survival following cryopreservation, as determined by fluorescein diacetate staining. However, the cryopreserved cells showed little regrowth, for unknown reasons. To check its applicability, VSL was used to cryopreserve gentian axillary buds and the performance was compared with those of conventional vitrification solutions. Excised gentian stem segments with axillary buds (shoot apices) were two-step precultured with sucrose to induce osmotic tolerance prior to cryopreservation. Gentian axillary buds cryopreserved using VSL following the appropriate preculturing approach exhibited 78% survival (determined by the regrowth capacity), which was comparable to PVS2 and PVS1 and far better than PVS3. VSL had a wider optimal incubation time (20–45 min) than PVS2 and was more suitable for cryopreserving gentian buds. The optimal duration of the first step of the preculture was 7–11 days, and preculturing with sucrose and glucose gave a much higher survival than fructose and maltose. VSL was able to vitrify during cooling to LN temperatures, as glass transition and devitrification points were detected in the warming profiles from differential scanning calorimetry. VSL and its derivative, VSL+, seem to have the potential to be good alternatives to PVS2 for the cryopreservation of some materials, as exemplified by gentian buds. Mitsuteru Suzuki, Pramod Tandon and Masaya Ishikawa contributed equally to the work.  相似文献   

11.

Here we evaluated and characterized the growth dynamics of A. angustifolia embryogenic cultures (EC) submitted to different cryotreatment incubation times through morphological and time-lapse cell tracking analyzes. The EC submitted to cryopreservation protocol were evaluated by regrowth rates, and ultrastructural characterization by transmission electron microscopy (TEM). The results indicated that A. angustifolia EC support all the cryoprotection times evaluated, without cell proliferation inhibition, but with noticeable genotype-dependent response in all tested cell lines. The use of 1M DMSO showed non-inhibitory effects to EC regrowth independent of cell line or cryotreatment incubation time. However, after cryopreservation, Cr01 cell line regrowth was 100 % for all cryotreatments incubation times evaluated (30, 60, 120, 240 min), while Cr02 cell line only showed 100 % regrowth in 240 min of cryotreatment. The 100 % cell regrowth obtained in both cell lines indicates that the proposed protocol can be successful applied to A. angustifolia EC cryopreservation. Cell tracking analysis showed a survival and initial proliferation of embryogenic cells, with the first cell regrowth signs after 30 days in culture. TEM analysis revealed a conspicuous cell wall thickening in embryogenic cells after cryotreatment and after thawing, which may be related to osmotic stress response caused by the cryopreservation process. An increased heterochromatin presence was also observed in cryotreated or after thawing cells, may possibly be acting as a cell defense mechanism, decreasing the DNA vulnerability to cleavage and preserving the cell integrity.

  相似文献   

12.
Artemisia herba-alba, called Shih is a medicinal herbal plant found in the wilds. The biodiversity of this plant is heavily subjected to loss because of heavy grazing, land cultivation and collection by people to be used in folk medicine. In the current study, two cryopreservation dependent techniques to conserve the shoot-tips of in vitro grown Shih were evaluated: encapsulation- dehydration and encapsulation- vitrification. Shoot-tips of Shih were encapsulated into sodium-alginate beads. In encapsulation- dehydration, the effect of sucrose concentration (0.5, 0.75 or 1.0 M) and dehydration period (0, 2, 4 or 6 h) under sterile air-flow on survival and regrowth of encapsulated shoot tips were studied. Maximum survival (100%) and regrowth (27%) rates were obtained when encapsulated unfrozen Artemisia herba-alba shoot tips were pretreated with 0.5 M sucrose for 3 days without further air dehydration. After cryopreservation the highest survival (40%) and regrowth (6%) rates were achieved when Artemisia herba-alba shoot tips were pretreated with 1.0 M sucrose for 3 days without further air dehydration. Viability of Artemisia herba-alba shoot tips decreased with increased dehydration period. In encapsulation-vitrification, the effect of dehydration of encapsulated Artemisia herba-alba shoot tips with 100% PVS2 for various dehydration durations (10, 20, 30, 60 or 90 min) prior to freezing was studied. After cryopreservation the dehydration of encapsulated and vitrified shoot tips with 100% PVS2 for 30 min resulted in 68% survival and 12% regrowth rates. Further conservation techniques must be evaluated to increase both survival and regrowth percentages.  相似文献   

13.
This study was aimed at improving the 2,3,5-triphenyl-tetrazoliumchloride (TTC) reduction test for initial assessment of cell survival after cryopreservation. Experiments were carried out on three embryogenic cell suspensions of different ages: 9-year-old Gentiana tibetica (King ex Hook. F.), 2-year-old G. kurroo (Royle), and 1-year-old G. cruciata (L.). The suspensions were maintained in MS medium supplemented with 1.0 mg 1−1 3,6-dichloro-o-anisic acid, 0.1 mg 1−1 naphthaleneacetic acid, 2.0 mg l−1 6-benzylaminopurine, 80.0 mg 1−1 adenine sulphate and 0.09 M sucrose. Four weeks before freezing, part of the tissue was subcultured to the same medium with sucrose concentrations elevated from 0.09 M (3%sMS) to 0.175 M (6%sMS) or 0.26 M (9%sMS). In freezing treatments without cryoprotection, tissue was plunged directly into liquid nitrogen (LN) or cooled gradually. In freezing treatments with cryoprotection, the cells were pretreated with 1 M sucrose, or with 0.4 M sorbitol + 0.25 M proline or + 0.08 M DMSO, or with vitrification solution (PVS2). Encapsulation was another variant. TTC reduction activity was spectrophotometrically assessed immediately, 1, 3, 5, 24 and 48 h after thawing. Cells without cryoprotection were lethally damaged, but TTC reduction activity in those cells ranged from 6.5% (tissue from 3%sMS) to 73 % (tissue from 9%sMS) directly after thawing. Formazan production was reduced to zero after 24 h. The TTC test showed 50% formazan content immediately after thawing of DMSO-protected G. tibetica tissue, but only 22.47% after 24 h and 2.9% after 48 h. Ultrastructural analysis of those cells showed lethal damage in many of them. For the PVS2 treatment, the formazan content was similar in samples analyzed directly after thawing and 24 h later. Cells treated with PVS2 did not show structural disturbances. Encapsulated cell aggregates of G. cruciata treated with concentrations of sucrose increasing up to 1 M produced 2.6 times more formazan. When applied at least 48 h after thawing, the TTC test can reflect cell viability and can be used to compare the effectiveness of cryoprotectant performance and freezing protocols, but it must be carefully evaluated, with appropriate controls.  相似文献   

14.
Alginate beads containing axillary buds of in vitro-grown gentian (Gentiana scabra Bunge var. buergeri Maxim.), were successfully cryopreserved following 2 step-preculture with sucrose and desiccation. The optimal preculture conditions were as follows: axillary buds were excised from in vitro-grown gentian plants and precultured on semi-solid Murashige and Skoog (MS) medium containing 0.1 M sucrose for 10 days (25 °C, 16-h photoperiod) (first step). This was followed by incubation on semi-solid MS media containing 0.4 M (1 day) and then 0.7 M sucrose (1 day) (second step). After preculture, the buds were encapsulated in alginate beads and desiccated aseptically on silica gel for 9 h to a water content of 10% (fresh weight basis), followed by immersion in liquid nitrogen (LN). With this protocol, 87% of the gentian buds survived exposure to LN and showed normal development of shoots and roots in vitro and in vivo. Depletion of NH4NO3 in the regeneration medium did not improve survival following desiccation and exposure to LN. The results show that 2 step-preculture with sucrose is effectively applicable in encapsulation–desiccation based cryopreservation of gentian axillary buds. This preculture can replace the conventionally used lengthy cold-hardening treatment and is useful for routine cryopreservation of gentian germplasm.  相似文献   

15.
Regrowth of plants after cryopreservation varies, and resulting regrowth ranges from poor to excellent. Oxidative stress is a potential cause of damage in plant tissues. Antioxidants and anti-stress compounds may improve regrowth by preventing or repairing the damage. Lipoic acid (LA), glutathione (GSH), glycine betaine (GB), and polyvinylpyrrolidone (PVP) were tested during cryopreservation of shoot tips using the plant vitrification solution 2 (PVS2) protocol. Two in vitro-grown blackberry cultivars were cold acclimated and then cryopreserved in liquid nitrogen (LN). The antioxidant and anti-stress compounds were added at four critical steps of the protocol: pretreatment, loading, rinsing, and regrowth. Three out of the four compounds significantly improved regrowth of cryopreserved shoot tips. Regrowth ranged from 40% to 50% for controls to >80% for treated shoot tips. LA (4-8 mM) produced high regrowth at pretreatment, loading, and rinsing for ‘Chehalem’ and at all steps for ‘Hull Thornless’. Recovery improved at all steps with GSH (0.16 mM) and GB (10 mM). PVP had a neutral or negative impact on regrowth. Overall addition of LA, GSH, and GB improved regrowth by ∼25% over the shoot tips cryopreserved using the regular PVS2 protocol (control). This study shows that adding non-vitamin antioxidants and anti-stress compounds during the PVS2-vitrification protocol improves regrowth of shoot cultures following cryopreservation. We recommend inclusion of antioxidants as part of standard cryopreservation protocols.  相似文献   

16.
The objective of the present study was the cryopreservation of monotypic endemic Hladnikia pastinacifolia Rchb. shoot tips from an in vitro culture, via encapsulation-dehydration (ED) or encapsulation-vitrification (EV). For all tested genotypes, the highest rates of shoot regrowth and multiplication were obtained after overnight preculture in 0.4 M sucrose, encapsulation in Murashige and Skoog (MS) medium with 0.4 M sucrose and 1 M glycerol, followed by polymerization in 3% (w/v) Na-alginate in MS with 0.4 M sucrose. Optimal osmoprotection was achieved for ED with 0.4 M sucrose plus 1 M glycerol and for EV with 0.4 M sucrose plus 2 M glycerol. The best dehydration time for ED was 150 min in a desiccation chamber with silica gel, and the best vitrification time for EV was 85 min in plant vitrification solution 2 (PVS2). For ED, dehydration for 150 min resulted in explant water content of 22%. When the encapsulation method was combined with ED, 53% regrowth was achieved, and when it was combined with EV, 64% regrowth was achieved. Both methods could become applicable for the long-term cryopreservation of H. pastinacifolia germplasm, although EV was faster and resulted in better final regrowth success. Genetic stability analysis of cryopreserved plant samples was carried out for two genotypes, using random amplified polymorphic DNA (RAPD) markers to compare the two different cryopreservation protocols. Significant genetic differences between the genotypes were detected and a low level of genomic variation was observed.  相似文献   

17.
Some cultured plant cells are able to acquire tolerance to various stresses when they are cultured under suitably controlled conditions. Induction of a high level of desiccation tolerance in suspension-cultured cells of the liverwort Marchantia polymorpha was examined for studying the mechanisms of desiccation tolerance and vitrification at the cellular level. Desiccation tolerance level of cells was very low and the survival rate was less than 10% after exposure to drying below 0.1 g H2O g−1 dry weight (DW). Preculture treatment in 0.5 M sucrose medium was the most effective method for inducing a high level of desiccation tolerance in cells and the survival rate was 87% even after being desiccated to below 0.1 g H2O g−1 DW. Preculture treatment caused alteration of cell structures and accumulation of a large amount of sucrose and newly synthesized proteins in cells. Abundant sucrose and preculture-induced proteins were necessary for full development of desiccation tolerance in the cells. When water content decreased to below 0.1 g H2O g−1 DW, desiccation-tolerant cells that had been precultured were vitrified above 0°C and maintained stable viability. We have succeeded in the induction of desiccation tolerance that allows formation of intracellular glass with cell viability at ambient temperatures by controlling culture conditions, and our results suggest that suspension-cultured cells of M. polymorpha are useful for studying cellular mechanisms for the development of desiccation tolerance and the stabilization of vitrified cells.  相似文献   

18.
Summary Cryopreservation of African violet via encapsulation-dehydration, vitrification, and encapsulation-vitrification of shoot tips was evaluated. Encapsulation-dehydration, pretreatment of shoot tips with 0.3 M sucrose for 2 d followed by air dehydration for 2 and 4 h resulted in complete survival and 75% regrowth, respectively. Dehydration of encapsulated shoot tips with silica gel for 1 h resulted in 80% survival but only 30% regrowth. Higher viability of shoot tips was obtained when using a step-wise dehydration of the material rather than direct exposure to 100% plant vitrification solution (PVS2). Complete survival and 90% regrowth were achieved with a four-step dehydration with PVS2 at 25°C for 20 min prior to freezing. The use of 2M glycerol plus 0.4M sucrose or 10% dimethyl sulfoxide (DMSO) plus 0.5M sucrose as a cryoprotectant resulted in 55% survival of shoots. The greatest survival (80–100%) and regrowth (80%) was obtained when shoot tips were cryoprotected with 10% DMSO plus 0.5M sucrose or 5% DMSO plus 0.75M sucrose followed by dehydration with 100% PVS2. Shoot tips cryoprotected with 2M glycerol plus 0.4M sucrose for 20 min exhibited complete survival (100%) and the highest regrowth (55%). In encapsulation-vitrification, dehydration of encapsulated and cryoprotected shoot tips with 100% PVS2 at 25°C for 5 min resulted in 85% survival and 80% regrowth.  相似文献   

19.
 Sugar beet shoot tips from cold-acclimated plants were successfully cryopreserved using a vitrification technique. Dissected shoot tips were precultured for 1 day at 5  °C on solidified DGJ0 medium with 0.3 M sucrose. After loading for 20 min with a mixture of 2 M glycerol and 0.4 M sucrose (20  °C), shoot tips were dehydrated with PVS2 (0  °C) for 20 min prior to immersion in liquid nitrogen. Both cold acclimation and loading enhanced the dehydration tolerance of shoot tips to PVS2. After thawing, shoot tips were deloaded for 15 min in liquid DGJ0 medium with 1.2 M sucrose (20  °C). The optimal exposure time to both loading solution and PVS2 depended on the in vitro morphology of the clone. With tetraploid clones a higher sucrose concentration during cold acclimation and preculture further enhanced survival after cryopreservation. Survival rates ranged between 60% and 100% depending on the clone. Since only 10–50% of the surviving shoot tips developed into non-hyperhydric shoots, regrowth was optimized. Received: 13 September 1999 / Revision received: 2 March 2000 / Accepted: 16 March 2000  相似文献   

20.

In this study, an effective root-based cryopreservation method was developed for Hypericum perforatum L., an important medicinal species, using in vitro plants. A systematic approach was applied to determine effective combinations of protocol steps such as preculture, osmoprotection, vitrification solution treatment, and unloading, followed by protocol optimization using a single-factor approach. The effects of root section type (root tips, middle sections, or basal sections), duration of root section culture after excision, and donor plant age were also investigated. In a wild genotype, middle and basal root sections excised from 8-wk-old plants and cryopreserved at the age of 10 d after excision showed the highest plant regrowth after cryopreservation. In the optimized protocol, root sections were precultured in 10% (w/v) sucrose for 17 h, osmoprotected with a solution composed of 17.5% (w/v) glycerol and 17.5% (w/v) sucrose for 20 min, followed by a vitrification solution of 40% (w/v) glycerol and 40% (w/v) sucrose for 30 min, and cryopreserved using aluminum foil strips (droplet-vitrification). After rewarming in preheated 25% (w/v) sucrose solution and 30-min unloading, root segments were recovered on medium supplemented with 1.0 mg L−1 gibberellic acid and showed 78% plant regrowth. This cryopreservation method was successfully adapted for five elite lines of H. perforatum with a 45 to 87% regrowth rate after cryopreservation. These results suggest that root cryopreservation may be an effective method for medicinal plant conservation and should be tested with a broader range of species.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号