首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Inflammation-mediated hyperalgesia involves tissue acidosis and sensitization of nociceptors. Many studies have reported increased expression of acid-sensing ion channel 3 (ASIC3) in inflammation and enhanced ASIC3 channel activity with pro-inflammatory mediators. However, the role of ASIC3 in inflammation remains inconclusive because of conflicting results generated from studies of ASIC3 knockout (ASIC3 -/-) or dominant-negative mutant mice, which have shown normal, decreased or increased hyperalgesia during inflammation.

Results

Here, we tested whether ASIC3 plays an important role in inflammation of subcutaneous tissue of paw and muscle in ASIC3 -/- mice induced by complete Freund's adjuvant (CFA) or carrageenan by investigating behavioral and pathological responses, as well as the expression profile of ion channels. Compared with the ASIC3 +/+ controls, ASIC3 -/- mice showed normal thermal and mechanical hyperalgesia with acute (4-h) intraplantar CFA- or carrageenan-induced inflammation, but the hyperalgesic effects in the sub-acute phase (1–2 days) were milder in all paradigms except for thermal hyperalgesia with CFA-induced inflammation. Interestingly, carrageenan-induced primary hyperalgesia was accompanied by an ASIC3-dependent Nav1.9 up-regulation and increase of tetrodotoxin (TTX)-resistant sodium currents. CFA-inflamed muscle did not evoke hyperalgesia in ASIC3 -/- or ASIC3 +/+ mice, whereas carrageenan-induced inflammation in muscle abolished mechanical hyperalgesia in ASIC3 -/- mice, as previously described. However, ASIC3 -/- mice showed attenuated pathological features such as less CFA-induced granulomas and milder carrageenan-evoked vasculitis as compared with ASIC3 +/+ mice.

Conclusion

We provide a novel finding that ASIC3 participates in the maintenance of sub-acute-phase primary hyperalgesia in subcutaneous inflammation and mediates the process of granuloma formation and vasculitis in intramuscular inflammation.  相似文献   

2.

Introduction  

Rheumatoid arthritis (RA) is characterized by synovial inflammation with local accumulation of mononuclear cells such as macrophages and lymphocytes. We previously demonstrated that intra-articular glucocorticoids decrease the synovial tissue (ST) T-cell population and therefore aimed to investigate whether this is mediated through modulation of apoptosis.  相似文献   

3.

Background

Sensory abnormalities are a key feature of Complex Regional Pain Syndrome (CRPS). In order to characterise these changes in patients suffering from acute or chronic CRPS I, we used Quantitative Sensory Testing (QST) in comparison to an age and gender matched control group.

Methods

61 patients presenting with CRPS I of the upper extremity and 56 healthy subjects were prospectively assessed using QST. The patients'' warm and cold detection thresholds (WDT; CDT), the heat and cold pain thresholds (HPT; CPT) and the occurrence of paradoxical heat sensation (PHS) were observed.

Results

In acute CRPS I, patients showed warm and cold hyperalgesia, indicated by significant changes in HPT and CPT. WDT and CDT were significantly increased as well, indicating warm and cold hypoaesthesia. In chronic CRPS, thermal hyperalgesia declined, but CDT as well as WDT further deteriorated. Solely patients with acute CRPS displayed PHS. To a minor degree, all QST changes were also present on the contralateral limb.

Conclusions

We propose three pathomechanisms of CRPS I, which follow a distinct time course: Thermal hyperalgesia, observed in acute CRPS, indicates an ongoing aseptic peripheral inflammation. Thermal hypoaesthesia, as detected in acute and chronic CRPS, signals a degeneration of A-delta and C-fibres, which further deteriorates in chronic CRPS. PHS in acute CRPS I indicates that both inflammation and degeneration are present, whilst in chronic CRPS I, the pathomechanism of degeneration dominates, signalled by the absence of PHS. The contralateral changes observed strongly suggest the involvement of the central nervous system.  相似文献   

4.

Background  

Co-administration of dextromethorphan (DM) with morphine during pregnancy and throughout lactation has been found to reduce morphine physical dependence and tolerance in rat offspring. No evidence was presented, however, for the effect of DM co-administered with morphine during pregnancy on inflammatory hyperalgesia in morphine-exposed offspring. Therefore, we attempt to investigate the possible effect of prenatal morphine exposure on the vulnerability to hyperalgesia and the possible therapeutic effect of DM in the present study.  相似文献   

5.

Background

Chronic inflammatory pain, when not effectively treated, is a costly health problem and has a harmful effect on all aspects of health-related quality of life. Despite the availability of pharmacologic treatments, chronic inflammatory pain remains inadequately treated. Understanding the nociceptive signaling pathways of such pain is therefore important in developing long-acting treatments with limited side effects. High local proton concentrations (tissue acidosis) causing direct excitation or modulation of nociceptive sensory neurons by proton-sensing receptors are responsible for pain in some inflammatory pain conditions. We previously found that all four proton-sensing G-protein-coupled receptors (GPCRs) are expressed in pain-relevant loci (dorsal root ganglia, DRG), which suggests their possible involvement in nociception, but their functions in pain remain unclear.

Results

In this study, we first demonstrated differential change in expression of proton-sensing GPCRs in peripheral inflammation induced by the inflammatory agents capsaicin, carrageenan, and complete Freund's adjuvant (CFA). In particular, the expression of TDAG8, one proton-sensing GPCR, was increased 24 hours after CFA injection because of increased number of DRG neurons expressing TDAG8. The number of DRG neurons expressing both TDAG8 and transient receptor potential vanilloid 1 (TRPV1) was increased as well. Further studies revealed that TDAG8 activation sensitized the TRPV1 response to capsaicin, suggesting that TDAG8 could be involved in CFA-induced chronic inflammatory pain through regulation of TRPV1 function.

Conclusion

Each subtype of the OGR1 family was expressed differently, which may reflect differences between models in duration and magnitude of hyperalgesia. Given that TDAG8 and TRPV1 expression increased after CFA-induced inflammation and that TDAG8 activation can lead to TRPV1 sensitization, it suggests that high concentrations of protons after inflammation may not only directly activate proton-sensing ion channels (such as TRPV1) to cause pain but also act on proton-sensing GPCRs to regulate the development of hyperalgesia.  相似文献   

6.

Introduction  

The purpose of this study was to investigate the profile of histone deacetylase (HDAC) expression in the synovial tissue of rheumatoid arthritis (RA) compared with that of normal control and osteoarthritis (OA), and to examine whether there is a link between HDAC activity and synovial inflammation.  相似文献   

7.
8.

Background  

Obesity causes insulin resistance in target tissues - skeletal muscle, adipose tissue, liver and the brain. Insulin resistance predisposes to type-2 diabetes (T2D) and cardiovascular disease (CVD). Adipose tissue inflammation is an essential characteristic of obesity and insulin resistance. Neuronatin (Nnat) expression has been found to be altered in a number of conditions related to inflammatory or metabolic disturbance, but its physiological roles and regulatory mechanisms in adipose tissue, brain, pancreatic islets and other tissues are not understood.  相似文献   

9.

Introduction  

Endothelins are involved in tissue inflammation, pain, edema and cell migration. Our genome-wide microarray analysis revealed that endothelin-1 (ET-1) and endothelin-2 (ET-2) showed a marked up-regulation in dorsal root ganglia during the acute phase of arthritis. We therefore examined the effects of endothelin receptor antagonists on the development of arthritis and inflammatory pain in monoarthritic mice.  相似文献   

10.

Background  

Most dental implant systems are presently made of two pieces: the implant itself and the abutment. The connection tightness between those two pieces is a key point to prevent bacterial proliferation, tissue inflammation and bone loss. The leak has been previously estimated by microbial, color tracer and endotoxin percolation.  相似文献   

11.

Background

Despite decades of intense research efforts, actions of acute opioids are not fully understood. Increasing evidence suggests that in addition to well-documented antinociceptive effects opioids also produce paradoxical hyperalgesic and excitatory effects on neurons. However, most studies focus on the pronociceptive actions of chronic opioid exposure. Matrix metalloproteinase 9 (MMP-9) plays an important role in neuroinflammation and neuropathic pain development. We examined MMP-9 expression and localization in dorsal root ganglia (DRGs) after acute morphine treatment and, furthermore, the role of MMP-9 in modulating acute morphine-induced analgesia and hyperalgesia in mice.

Results

Subcutaneous morphine induced a marked up-regulation of MMP-9 protein in DRGs but not spinal cords. Morphine also increased MMP-9 activity and mRNA expression in DRGs. MMP-9 up-regulation peaked at 2 h but returned to the baseline after 24 h. In DRG tissue sections, MMP-9 is expressed in small and medium-sized neurons that co-express mu opioid receptors (MOR). In DRG cultures, MOR agonists morphine, DAMGO, and remifentanil each increased MMP-9 expression in neurons, whereas the opioid receptor antagonist naloxone and the MOR-selective antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) suppressed morphine-induced MMP-9 expression. Notably, subcutaneous morphine-induced analgesia was enhanced and prolonged in Mmp9 knockout mice and also potentiated in wild-type mice receiving intrathecal injection of MMP-9 inhibitors. Consistently, intrathecal injection of specific siRNA targeting MMP-9 reduced MMP-9 expression in DRGs and enhanced and prolonged morphine analgesia. Subcutaneous morphine also produced heat hyperalgesia at 24 h, but this opioid-induced hyperalgesia was not enhanced after MMP-9 deletion or inhibition.

Conclusions

Transient MMP-9 up-regulation in DRG neurons can mask opioid analgesia, without modulating opioid-induced hyperalgesia. Distinct molecular mechanisms (MMP-9 dependent and independent) control acute opioid-induced pronociceptive actions (anti-analgesia in the first several hours and hyperalgesia after 24 h). Targeting MMP-9 may improve acute opioid analgesia.  相似文献   

12.
13.

Introduction  

Neutrophils and monocytes play an important role in overt inflammation in chronic inflammatory joint diseases such as rheumatoid arthritis (RA). The sympathetic nervous system (SNS) inhibits many neutrophil/monocyte functions and macrophage tumor necrosis factor (TNF), but because of the loss of sympathetic nerve fibers in inflamed tissue, sympathetic control is attenuated. In this study, we focused on noradrenergic and TNF regulation of human neutrophil peptides 1-3 (HNP1-3), which are proinflammatory bactericidal α-defensins.  相似文献   

14.

Background  

Recent research show that polycystic ovary syndrome (PCOS) may have an association with low-grade chronic inflammation, IL-18 is considered as a strong risk marker of inflammation.  相似文献   

15.

Introduction  

Cytokines produced by spinal cord glia after peripheral injuries have a relevant role in the maintenance of pain states. Thus, while IL-1β is overexpressed in the spinal cords of animals submitted to experimental arthritis and other chronic pain models, intrathecal administration of IL-1β to healthy animals induces hyperalgesia and allodynia and enhances wind-up activity in dorsal horn neurons.  相似文献   

16.

Introduction  

Inflammation is an important feature of many joint diseases, and levels of cartilage biomarkers measured in synovial fluid may be influenced by local inflammatory status. Little is known about the magnitude and time course of inflammation-induced changes in cartilage tissue turnover as measured in vivo by synovial fluid markers. We aimed to study temporal changes in concentrations of inflammatory mediators, matrix metalloproteinase activity and cartilage biomarkers over 1 week in joints with experimentally induced inflammation.  相似文献   

17.

Background  

High concentrations of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have been identified in the cervical mucus plug (CMP) at term of pregnancy. Their physiological and pathophysiological implications, however, remain to be elucidated, and CMPs from preterm labor have never been examined. This study was therefore conducted to describe the concentrations of MMP-2, TIMP-1, MMP-8 and MMP-9 in the CMP in relation to gestational age, IL-8 as an indicator of inflammation, compartment of the CMP, and preterm labor.  相似文献   

18.

Background

Chronic inflammation is frequently observed on histological analysis of malignant and non-malignant prostate specimens. It is a suspected supporting factor for prostate diseases and their progression and a main cause of false positive PSA tests in cancer screening. We hypothesized that inflammation induces autoantibodies, which may be useful biomarkers. We aimed to identify and validate prostate inflammation associated serum autoantibodies in prostate cancer patients and evaluate the expression of corresponding autoantigens.

Methods

Radical prostatectomy specimens of prostate cancer patients (N = 70) were classified into high and low inflammation groups according to the amount of tissue infiltrating lymphocytes. The corresponding pre-surgery blood serum samples were scrutinized for autoantibodies using a low-density protein array. Selected autoantigens were identified in prostate tissue and their expression pattern analyzed by immunohistochemistry and qPCR. The identified autoantibody profile was cross-checked in an independent sample set (N = 63) using the Luminex-bead protein array technology.

Results

Protein array screening identified 165 autoantibodies differentially abundant in the serum of high compared to low inflammation patients. The expression pattern of three corresponding antigens were established in benign and cancer tissue by immunohistochemistry and qPCR: SPAST (Spastin), STX18 (Syntaxin 18) and SPOP (speckle-type POZ protein). Of these, SPAST was significantly increased in prostate tissue with high inflammation. All three autoantigens were differentially expressed in primary and/or castration resistant prostate tumors when analyzed in an inflammation-independent tissue microarray. Cross-validation of the inflammation autoantibody profile on an independent sample set using a Luminex-bead protein array, retrieved 51 of the significantly discriminating autoantibodies. Three autoantibodies were significantly upregulated in both screens, MUT, RAB11B and CSRP2 (p>0.05), two, SPOP and ZNF671, close to statistical significance (p = 0.051 and 0.076).

Conclusions

We provide evidence of an inflammation-specific autoantibody profile and confirm the expression of corresponding autoantigens in prostate tissue. This supports evaluation of autoantibodies as non-invasive markers for prostate inflammation.  相似文献   

19.

Objective

Substance P, encoded by the Tac1 gene, is involved in neurogenic inflammation and hyperalgesia via neurokinin 1 (NK1) receptor activation. Its non-neuronal counterpart, hemokinin-1, which is derived from the Tac4 gene, is also a potent NK1 agonist. Although hemokinin-1 has been described as a tachykinin of distinct origin and function compared to SP, its role in inflammatory and pain processes has not yet been elucidated in such detail. In this study, we analysed the involvement of tachykinins derived from the Tac1 and Tac4 genes, as well as the NK1 receptor in chronic arthritis of the mouse.

Methods

Complete Freund’s Adjuvant was injected intraplantarly and into the tail of Tac1−/−, Tac4−/−, Tacr1−/− (NK1 receptor deficient) and Tac1−/−/Tac4−/− mice. Paw volume was measured by plethysmometry and mechanosensitivity using dynamic plantar aesthesiometry over a time period of 21 days. Semiquantitative histopathological scoring and ELISA measurement of IL-1β concentrations of the tibiotarsal joints were performed.

Results

Mechanical hyperalgesia was significantly reduced from day 11 in Tac4−/− and Tacr1−/− animals, while paw swelling was not altered in any strain. Inflammatory histopathological alterations (synovial swelling, leukocyte infiltration, cartilage destruction, bone damage) and IL-1β concentration in the joint homogenates were significantly smaller in Tac4−/− and Tac1−/−/Tac4−/− mice.

Conclusions

Hemokinin-1, but not substance P increases inflammation and hyperalgesia in the late phase of adjuvant-induced arthritis. While NK1 receptors mediate its antihyperalgesic actions, the involvement of another receptor in histopathological changes and IL-1β production is suggested.  相似文献   

20.

Background

The obese-asthma phenotype is not well defined. The aim of this study was to examine both mechanical and inflammatory influences, by comparing lung function with body composition and airway inflammation in overweight and obese asthma.

Methods

Overweight and obese (BMI 28-40 kg/m2) adults with asthma (n = 44) completed lung function assessment and underwent full-body dual energy x-ray absorptiometry. Venous blood samples and induced sputum were analysed for inflammatory markers.

Results

In females, android and thoracic fat tissue and total body lean tissue were inversely correlated with expiratory reserve volume (ERV). Conversely in males, fat tissue was not correlated with lung function, however there was a positive association between android and thoracic lean tissue and ERV. Lower body (gynoid and leg) lean tissue was positively associated with sputum %neutrophils in females, while leptin was positively associated with android and thoracic fat tissue in males.

Conclusions

This study suggests that both body composition and inflammation independently affect lung function, with distinct differences between males and females. Lean tissue exacerbates the obese-asthma phenotype in females and the mechanism responsible for this finding warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号