首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We report a strategy for generating efficient signal transduction with unnatural heterologous receptor combinations. As previously described [Ueda, H., Kawahara, M. et al. (2000) J. Immunol. Methods 241, 159-170], chimeric receptors composed of the V(H)/V(L) domains of anti-hen egg lysozyme antibody HyHEL-10 and N-terminally truncated erythropoietin receptor (EpoR) can be activated by lysozyme. When the cytoplasmic domains of these receptors were substituted with one derived from gp130, IL-3 dependent Ba/F3 cells expressing both V(H)-gp130 and V(L)-gp130 grew dose-dependently when given lysozyme without IL-3. However, cells expressing the heterologous pair of V(H)-gp130 and V(L)-EpoR also showed more efficient and stricter lysozyme-dependent proliferation in the absence of IL-3, indicating this combination is as an efficient and strict signal transducer as wild-type EpoR. The immunoprecipitation data indicated the existence of a preformed V(H)-gp130 and V(L)-EpoR heterodimer in the absence of lysozyme, suggesting the crucial role of a receptor conformational change in signal triggering as well as wild-type EpoR and gp130. Phosphorylation of JAK2, STAT3, and STAT5 was observed upon the addition of lysozyme, suggesting the activation of both EpoR- and gp130-derived signals.  相似文献   

2.
IL-6 has been known to modulate the growth of many hybridoma cells and also promote resultant antibody productivity. However, IL-6 is so expensive that the use of IL-6-dependent hybridomas for industrial antibody production is not practical. In this study, we aimed at designing antibody/gp130 and antibody/EpoR chimeras which could tightly control cell growth in response to more affordable cognate antigen. Retroviral vectors encoding VH or VL region of anti-hen egg lysozyme (HEL) antibody HyHEL-10 tethered to a pair of extracellular D2/transmembrane domains of erythropoietin receptor (EpoR) and cytoplasmic domains of either EpoR or gp130, were constructed, and a homodimeric or a heterodimeric pair of chimeric receptor combinations (VH-gp130 and VL-gp130 or VH-gp130 and VL-EpoR) were expressed in an IL-6-dependent hybridoma 7TD1. The chimeric receptor-derived growth signal was observed in both combinations, while some residual growth signal was observed in the absence of HEL. To reduce interchain interaction between the two receptor chains, we introduced mutations to the transmembrane domain of both chimera combinations. Consequently, the heterodimeric combination of VH-gp130 and VL-EpoR showed clear HEL-dependent cell growth, while the homodimeric combination of VH-gp130 and VL-gp130 showed reduced cell growth in the absence of HEL. This is the first report that an EpoR-gp130 cytoplasmic domain heterodimer could transduce a growth signal in hybridoma cells, indicating tight and economical growth control of hybridoma cells via our chimeric receptors.  相似文献   

3.
The receptor for leukemia inhibitory factor (LIF) consists of two polypeptides, the LIF receptor and gp130. Agonist stimulation has been shown previously to cause phosphorylation of gp130 on serine, threonine, and tyrosine residues. We found that gp130 fusion proteins were phosphorylated exclusively on Ser-782 by LIF- and growth factor-stimulated 3T3-L1 cell extracts. Ser-780 was required for phosphorylation of Ser-782 but was not itself phosphorylated. Ser-782 is located immediately N-terminal to the di-leucine motif of gp130, which regulates internalization of the receptor. Transient expression of chimeric granulocyte colony-stimulating factor receptor (G-CSFR)-gp130(S782A) receptors resulted in increased cell surface expression in COS-7 cells and increased ability to induce vasoactive intestinal peptide gene expression in IMR-32 neuroblastoma cells when compared with expression of chimeric receptors containing wild-type gp130 cytoplasmic domains. These results identify Ser-782 as the major phosphorylated serine residue in human gp130 and indicate that this site regulates cell surface expression of the receptor polypeptide.  相似文献   

4.
Since many cell functions are regulated by members of the cytokine receptor superfamily, the artificial mimicry of the cytokine receptor system would be attractive for cellular engineering. We previously showed that an antibody/cytokine receptor chimera can transduce a growth signal in response to non-natural ligands, such as fluorescein-conjugated BSA. However, considerable background of cell proliferation was observed without antigen. Therefore, we redesigned chimeric receptor constructs with different combinations of domains containing anti-fluorescein single chain Fv (ScFv), extracellular D1/D2 as well as transmembrane domains of erythropoietin receptor (EpoR), and the intracellular domain of glycoprotein 130 (gp130), to obtain strictly fluorescein-dependent chimeric receptors. When interleukin-3-dependent Ba/F3 cells were transduced with retroviral vectors encoding individual chimeric receptors, the chimeras either with both D1 and D2 domains or without any EpoR extracellular domain attained a strict ligand-dependent ON/OFF regulation.  相似文献   

5.
6.
Signals propagated via the gp130 subunit of the interleukin-6 (IL-6)-type cytokine receptors mediate, among various cellular responses, proliferation of hematopoietic cells and induction of acute-phase plasma protein (APP) genes in hepatic cells. Hematopoietic growth control by gp130 is critically dependent on activation of both STAT3 and protein tyrosine phosphatase 2 (SHP-2). To investigate whether induction of APP genes has a similar requirement for SHP-2, we constructed two chimeric receptors, G-gp130 and G-gp130(Y2F), consisting of the transmembrane and cytoplasmic domains of gp130 harboring either a wild-type or a mutated SHP-2 binding site, respectively, fused to the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor. Rat hepatoma H-35 cells stably expressing the chimeric receptors were generated by retroviral transduction. Both chimeric receptors transmitted a G-CSF-induced signal characteristic of that triggered by IL-6 through the endogenous gp130 receptor; i.e., both activated the appropriate JAK, induced DNA binding activity by STAT1 and STAT3, and up-regulated expression of the target APP genes, those for α-fibrinogen and haptoglobin. Notwithstanding these similarities in the patterns of signaling responses elicited, mutation of the SHP-2 interaction site in G-gp130(Y2F) abrogated ligand-activated receptor recruitment of SHP-2 as expected. Moreover, the tyrosine phosphorylation state of the chimeric receptor, the associated JAK activity, and the induced DNA binding activity of STAT1 and STAT3 were maintained at elevated levels and for an extended period of time in G-gp130(Y2F)-expressing cells following G-CSF treatment compared to that in cells displaying the G-gp130 receptor. H-35 cells ectopically expressing G-gp130(Y2F) were also found to display an enhanced sensitivity to G-CSF and a higher level of induction of APP genes. Overexpression of the enzymatically inactive SHP-2 enhanced the signaling by the wild-type but not by the Y2F mutant G-gp130 receptor. These results indicate that gp130 signaling for APP gene induction in hepatic cells differs qualitatively from that controlling the proliferative response in hematopoietic cells in not being strictly dependent on SHP-2. The data further suggest that SHP-2 functions normally to attenuate gp130-mediated signaling in hepatic (and, perhaps, other) cells by moderating JAK action.  相似文献   

7.
Mammary gland remodeling depends on gp130 signaling through Stat3 and MAPK   总被引:7,自引:0,他引:7  
The interleukin-6 (IL6) family of cytokines signals through the common receptor subunit gp130, and subsequently activates Stat3, MAPK, and PI3K. Stat3 controls cell death and tissue remodeling in the mouse mammary gland during involution, which is partially induced by IL6 and LIF. However, it is not clear whether Stat3 activation is mediated solely through the gp130 pathway or also through other receptors. This question was explored in mice carrying two distinct mutations in the gp130 gene; one that resulted in the complete ablation of gp130 and one that led to the loss of Stat3 binding sites (gp130Delta/Delta). Deletion of gp130 specifically from mammary epithelium resulted in a complete loss of Stat3 activity and resistance to tissue remodeling comparable to that seen in the absence of Stat3. A less profound delay of mammary tissue remodeling was observed in gp130Delta/Delta mice. Stat3 tyrosine and serine phosphorylation was still detected in these mice suggesting that Stat3 activation could be the result of gp130 interfacing with other receptors. Experiments in primary mammary epithelial cells and transfected COS-7 cells revealed a p44/42 MAPK and EGFR-dependent Stat3 activation. Moreover, the gp130-dependent EGFR activation was independent of EGF ligands, suggesting a cytoplasmic interaction and cross-talk between these two receptors. These experiments establish that two distinct Stat3 signaling pathways emanating from gp130 are utilized in mammary tissue.  相似文献   

8.
9.
K Luo  H F Lodish 《The EMBO journal》1996,15(17):4485-4496
Transforming growth factor-beta (TGF-beta) affects multiple cellular functions through the type I and type II receptor Ser/Thr kinases (TbetaRI and TbetaRII). Analysis of TGF-beta signaling pathways has been hampered by the lack of cell lines in which both TbetaRI and TbetaRII are deleted, and by the inability to study signal transduction by TbetaRI independently of TbetaRII since TbetaRI does not bind TGF-beta directly. To overcome these problems, we constructed and expressed chimeric receptors with the extracellular domain of the erythropoietin receptor (EpoR) and the cytoplasmic domains of TbetaRI or TbetaRII. When expressed in Ba/F3 cells, which do not express EpoR, Epo induces the formation of a heteromeric complex between cell surface EpoR-TbetaRI and EpoR-TbetaRII chimeras. Neither the EpoR-TbetaRI nor the EpoR-TbetaRII chimera interacts with endogenous TGF-beta receptors. Ba/F3 cells expressing both EpoR-TbetaRI and EpoR-TbetaRII chimeras, but not EpoR-TbetaRI or EpoR-TbetaRII alone, undergo Epo-induced growth arrest. When expressed in Ba/F3 cells in the absence of the EpoR-TbetaRII chimera, EpoR-TbetaRI(T204D), a chimeric receptor with a point mutation in the GS domain of TbetaRI that is autophosphorylated constitutively, triggers growth inhibition in response to Epo. Thus, both homo- and heterodimerization of the cytoplasmic domain of the type I TGF-beta receptor are required for intracellular signal transduction leading to inhibition of cell proliferation. These chimeric receptors provide a unique system to study the function and signal transduction of individual TGF-beta receptor subunits independently of endogenous TGF-beta receptors.  相似文献   

10.
During an acute phase response, interleukin-6 (IL-6) and glucocorticoids up-regulate expression of the three fibrinogen (FBG) genes (fga, fgb, and fgg) in liver and lung epithelium; however, little constitutive lung expression occurs. Recently, we showed that the magnitude of Stat3 binding to three IL-6 motifs on the human gammaFBG promoter correlates negatively with their functional activity in hepatocytes, although these cis-elements are critical for promoter activity. We determined the role of IL-6-receptor-gp130-Stat3 signaling in IL-6 activation of the gammaFBG promoter in liver and lung epithelial cells. Although IL-6 induced gammaFBG promoter activity approximately 30-fold in HepG2 cells, it was increased only 2-fold in lung A549 cells. Equivalent production of gp130 was demonstrated in both cell types by Western blotting; however, lower production of both IL-6-receptor and Stat3 explains, in part, reduced activity of the gammaFBG promoter in lung cells. Dexamethasone potentiated IL-6 induction of the gammaFBG promoter 2.3-fold in both HepG2 and A549 cells for a combined increase in promoter activity of 70-fold or 4.5-fold, respectively. Dexamethasone potentiation is likely due to the induction of IL-6-receptor expression as well as prolonged intensity and duration of Stat3 activation. By circumventing IL-6-receptor-gp130-coupled signaling with ectopic expression of the granulocyte colony-stimulating factor receptor (GCSFR)-gp130(133) chimeric receptor, overexpression of Stat3 induced gammaFBG promoter activity 30-fold in A549 cells. Together, the data suggest tissue-specific differences in IL-6-receptor-gp130-coupled signaling, thereby limiting the extent of Stat3 activation and gammaFBG expression during lung inflammation.  相似文献   

11.
Cell migration is one of the fundamental cellular responses governing development, homeostasis and disorders of the body. Therefore, artificial control of cell migration holds great promise for the treatment of many diseases. In this study, we developed an artificial cell migration system based on chimeric receptors that can respond to an artificial ligand that is quite different from natural chemoattractants. Chimeric receptors consisting of an anti-fluorescein single-chain Fv tethered to the extracellular D2 domain of erythropoietin receptor (EpoR) and the transmembrane/cytoplasmic domains of EpoR, gp130, interleukin-2 receptor, c-Kit, c-Fms, epidermal growth factor receptor (EGFR) or insulin receptor were expressed in the murine Ba/F3 pro-B cell line. Migration assays revealed that chimeric receptors containing the cytoplasmic domain of c-Kit, c-Fms or EGFR transduced migration signals in response to fluorescein-conjugated bovine serum albumin (BSA-FL). Furthermore, based on the cell migration in response to BSA-FL, we successfully selected genetically modified cells from mixtures of gene-transduced and untransduced cells. This study represents the first demonstration of cell migration in response to an artificial ligand that is quite different from natural chemoattractants, suggesting its potential application to immunotherapies and tissue engineering.  相似文献   

12.
13.
Y Yamanaka  K Nakajima  T Fukada  M Hibi    T Hirano 《The EMBO journal》1996,15(7):1557-1565
Interleukin-6 (IL-6) induces growth arrest and macrophage differentiation through its receptor in a murine myeloid leukaemic cell line, M1, although it is largely unknown how the IL-6 receptor generates these signals. By using chimeric receptors consisting of the extracellular domain of growth hormone receptor and the transmembrane and cytoplasmic domain of gp130 with progressive C-terminal truncations, we showed that the membrane-proximal 133, but not 108, amino acids of gp130 could generate the signals for growth arrest, macrophage differentiation, down-regulation of c-myc and c-myb, induction of junB and IRF1 and Stat3 activation. Mutational analysis of this region showed that the tyrosine residue with the YXXQ motif was critical not only for Stat3 activation but also for growth arrest and differentiation, accompanied by down-regulation of c-myc and c-myb and immediate early induction of junB and IRF1. The tight correlation between Stat3 activation and other IL-6 functions was further observed in the context of the full-length cytoplasmic region of gp130. The result suggest that Stat3 plays an essential role in the signals for growth arrest and differentiation.  相似文献   

14.
15.
Signaling through hematopoietic cytokine receptors such as the erythropoietin receptor (EpoR) depends on the activation of a receptor-bound Janus kinase (JAK) and tyrosine phosphorylation of the cytoplasmic domain. To visualize the EpoR and elucidate structural requirements coordinating signal transduction, we probed the EpoR by inserting the green fluorescent protein (GFP) at various positions. We show that insertion of GFP in proximity to the transmembrane domain, either in the extracellular or the cytoplasmic domain, results in EpoR-GFP receptors incompetent to elicit biological responses in a factor-dependent cell line or in erythroid progenitor cells. Surprisingly, a receptor harboring GFP insertion in the middle of the cytoplasmic domain, and thereby separating the JAK2 binding site from the tyrosine residues, is capable of supporting signal transduction in response to ligand binding. Comparable with the wild type EpoR, but more efficient than a C-terminal EpoR-GFP fusion, this chimeric receptor promotes the maturation of erythroid progenitor cells and is localized in punctated endosome-like structures. We conclude that the extracellular, transmembrane, and membrane-proximal segment of the cytoplasmic domain form a rigid structural entity whose precise orientation is essential for the initiation of signal transduction, whereas the cytoplasmic domain possesses flexibility in adopting an activated conformation.  相似文献   

16.
A tripartite receptor comprising the external region of the erythropoietin (Epo) receptor, the transmembrane and JAK-binding domains of the gp130 subunit of the interleukin-6 (IL-6) receptor, and a seven amino acid STAT1 recruitment motif (Y440) from the interferon (IFN)-gamma receptor, efficiently mediates an IFN-gamma-like response. An analogous completely foreign chimeric receptor in which the Y440 motif is replaced with the Y905 motif from gp130 also mediates an IFN-gamma-like response, but less efficiently. The IFNGR1 signal-transducing subunit of the IFN-gamma receptor is tyrosine phosphorylated through the chimeric receptors and the endogenous IL-6 and OSM receptors. Cross phosphorylation of IFNGR1 is not, however, required for the IFN-gamma-like response through the chimeric receptors, nor does it mediate an IFN-gamma-like response to IL-6 or OSM. The data argue strongly for modular JAK/STAT signalling and against any rigid structural organization for the "pathways" involved. They emphasize the likely high degree of overlap between the signals generated from disparate JAK-receptor complexes and show that relatively minor changes in such complexes can profoundly affect the response.  相似文献   

17.
Erythroid progenitor cell expansion depends upon co-signaling by Epo receptor (EpoR) and Kit, but underlying mechanisms are incompletely understood. To quantitatively analyze EpoR contributions to co-signaling, phosphotyrosine (Tyr(P)) mutants were expressed as human epidermal growth factor (hEGF) receptor-mEpoR EE chimeras at matched and physiological levels in FDCW2 hematopoietic progenitor cells and were assayed for proliferative activities in the absence or presence of endogenous Kit stimulation. Two Tyr(P)-null (but Jak2-coupled) EpoR forms each retained 相似文献   

18.
Tyk2 is a Jak family member involved in cytokine signaling through heterodimeric-type receptors. Here, we analyzed the impact of the Val(678)-to-Phe substitution on Tyk2 functioning. This mutation is homologous to the Jak2 Val(617)-to-Phe mutation, implicated in myeloproliferative disorders. We studied ligand-independent and ligand-dependent Jak/Stat signaling in cells expressing Tyk2 V678F. Moreover, the effect of Tyk2 V678F was monitored in the context of the native heterodimeric interferon alpha receptor and in the context of a homodimeric receptor chimera, EpoR/R1, containing the ectodomain of the erythropoietin receptor. We show that Tyk2 V678F has increased catalytic potential in vivo and in vitro and more so when it is anchored to the homodimeric receptor. Tyk2 V678F leads to constitutive Stat3 phosphorylation but has no notable effect on the canonical interferon alpha-induced signaling. However, if anchored to the homodimeric EpoR/R1, the mutant confers to the cell increased sensitivity to erythropoietin. Thus, despite the catalytic gain of function of Tyk2 V678F, the effect on ligand-induced signaling is manifest only when two mutant enzymes are juxtaposed via the homodimeric receptor.  相似文献   

19.
Erythropoietin receptor (EpoR) activation is crucial for mature red blood cell production. The murine EpoR can also be activated by the envelope protein of the polycythemic (P) spleen focus forming virus (SFFV), gp55-P. Due to differences in the TM sequence, gp55 of the anemic (A) strain SFFV, gp55-A, cannot efficiently activate the EpoR. Using antibody-mediated immunofluorescence co-patching, we show that the majority of EpoR forms hetero-oligomers at the cell surface with gp55-P and, surprisingly, with gp55-A. The EpoR TM domain is targeted by gp55-P and -A, as only chimeric receptors containing EpoR TM sequences oligomerized with gp55 proteins. Both gp55-P and gp55-A are homodimers on the cell surface, as shown by co-patching. However, when the homomeric interactions of the isolated TM domains were assayed by TOXCAT bacterial reporter system, only the TM sequence of gp55-P was dimerized. Thus, homo-oligomerization of gp55 proteins is insufficient for full EpoR activation, and a correct conformation of the dimer in the TM region is required. This is supported by the failure of gp55-A-->P, a mutant protein whose TM domain can homo-oligomerize, to fully activate EpoR. As unliganded EpoR forms TM-dependent but inactive homodimers, we propose that the EpoR can be activated to different extents by homodimeric gp55 proteins, depending on the conformation of the gp55 protein dimer in the TM region.  相似文献   

20.
Hematopoietic cell development and function is dependent on cytokines and on intercellular interactions with the microenvironment. Although the intracellular signaling pathways stimulated by cytokine receptors are well described, little is known about the mechanisms through which these pathways modulate hematopoietic cell adhesion events in the microenvironment. Here we show that cytokine-activated Stat3 stimulates the expression and function of cell surface adhesion molecules in the myeloid progenitor cell line 32D. We generated an erythropoietin receptor (EpoR) isoform (ER343/401-S3) that activates Stat3 rather than Stat5 by substituting the Stat3 binding/activation sequence motif from gp130 for the sequences surrounding tyrosines 343 and 401 in the receptor cytoplasmic region. Activation of Stat3 leads to homotypic cell aggregation, increased expression of intercellular adhesion molecule 1 (ICAM-1), CD18, and CD11b, and activation of signaling through CD18-containing integrins. Unlike the wild type EpoR, ER343/401-S3 is unable to support long term Epo-dependent proliferation in 32D cells. Instead, Epo-treated ER343/401-S3 cells undergo G(1) arrest and express elevated levels of the cyclin-dependent kinase inhibitor p27(Kip1). Sustained activation of Stat3 in these cells is required for their altered morphology and growth properties since constitutive SOCS3 expression abrogates homotypic cell aggregation, signaling through CD18-containing integrins, G(1) arrest, and accumulation of p27(Kip1). Collectively, our results demonstrate that cytokine-activated Stat3 stimulates the expression and function of cell surface adhesion molecules, indicating that a role for Stat3 is to regulate intercellular contacts in myeloid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号