首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strickler MA  Hillier W  Debus RJ 《Biochemistry》2006,45(29):8801-8811
In the recent X-ray crystallographic structural models of photosystem II, Glu189 of the D1 polypeptide is assigned as a ligand of the oxygen-evolving Mn(4) cluster. To determine if D1-Glu189 ligates a Mn ion that undergoes oxidation during one or more of the S(0) --> S(1), S(1) --> S(2), and S(2) --> S(3) transitions, the FTIR difference spectra of the individual S-state transitions in D1-E189Q and D1-E189R mutant PSII particles from the cyanobacterium Synechocystis sp. PCC 6803 were compared with those in wild-type PSII particles. Remarkably, the data show that neither mutation significantly alters the mid-frequency regions (1800-1200 cm(-)(1)) of any of the FTIR difference spectra. Importantly, neither mutation eliminates any specific symmetric or asymmetric carboxylate stretching mode that might have been assigned to D1-Glu189. The small spectral alterations that are observed are similar in amplitude to those that are observed in wild-type PSII particles that have been exchanged into FTIR analysis buffer by different methods or those that are observed in D2-H189Q mutant PSII particles (the residue D2-His189 is located >25 A from the Mn(4) cluster and accepts a hydrogen bond from Tyr Y(D)). The absence of significant mutation-induced spectral alterations in the D1-Glu189 mutants shows that the oxidation of the Mn(4) cluster does not alter the frequencies of the carboxylate stretching modes of D1-Glu189 during the S(0) --> S(1), S(1) --> S(2), or S(2) --> S(3) transitions. One explanation of these data is that D1-Glu189 ligates a Mn ion that does not increase its charge or oxidation state during any of these S-state transitions. However, because the same conclusion was reached previously for D1-Asp170, and because the recent X-ray crystallographic structural models assign D1-Asp170 and D1-Glu189 as ligating different Mn ions, this explanation requires that (1) the extra positive charge that develops on the Mn(4) cluster during the S(1) --> S(2) transition be localized on the Mn ion that is ligated by the alpha-COO(-) group of D1-Ala344 and (2) any increase in positive charge that develops on the Mn(4) cluster during the S(0) --> S(1) and S(2) --> S(3) transitions be localized on the one Mn ion that is not ligated by D1-Asp170, D1-Glu189, or D1-Ala344. An alternative explanation of the FTIR data is that D1-Glu189 does not ligate the Mn(4) cluster. This conclusion would be consistent with earlier spectroscopic analyses of D1-Glu189 mutants, but would require that the proximity of D1-Glu189 to manganese in the X-ray crystallographic structural models be an artifact of the radiation-induced reduction of the Mn(4) cluster that occurred during the collection of the X-ray diffraction data.  相似文献   

2.
Chu HA  Debus RJ  Babcock GT 《Biochemistry》2001,40(7):2312-2316
We report both mid-frequency (1800-1200 cm(-)(1)) and low-frequency (670-350 cm(-)(1)) S(2)/S(1) FTIR difference spectra of photosystem II (PSII) particles isolated from wild-type and D1-D170H mutant cells of the cyanobacterium Synechocystis sp. PCC 6803. Both mid- and low-frequency S(2)/S(1) spectra of the Synechocystis wild-type PSII particles closely resemble those from spinach PSII samples, which confirms an earlier result by Noguchi and co-workers [Noguchi, T., Inoue, Y., and Tang, X.-S. (1997) Biochemistry 36, 14705-14711] and indicates that the coordination environment of the oxygen evolving complex (OEC) in Synechocystis is very similar to that in spinach. We also found that there is no appreciable difference between the mid-frequency S(2)/S(1) spectra of wild-type and of D1-D170H mutant PSII particles, from which we conclude that D1-Asp170 does not undergo a significant structural change during the S(1) to S(2) transition. This result also suggests that, if D1-Asp170 ligates Mn, it does not ligate the Mn ion that is oxidized during the S(1) to S(2) state transition. Finally, we found that a mode at 606 cm(-)(1) in the low-frequency wild-type S(2)/S(1) spectrum shifts to 612 cm(-)(1) in the D1-D170H mutant spectrum. Because this 606 cm(-)(1) mode has been previously assigned to an Mn-O-Mn cluster mode of the OEC [Chu, H.-A., Sackett, H., and Babcock, G. T. (2000) Biochemistry 39, 14371-14376], we conclude that D1-Asp170 is structurally coupled to the Mn-O-Mn cluster structure that gives rise to this band. Our results suggest that D1-Asp170 either directly ligates Mn or Ca(2+) or participates in a hydrogen bond to the Mn(4)Ca(2+) cluster. Our results demonstrate that combining FTIR difference spectroscopy with site-directed mutagenesis has the potential to provide insights into structural changes in Mn and Ca(2+) coordination environments in the different S states of the OEC.  相似文献   

3.
Aspartate 170 of the D1 polypeptide provides part of the high-affinity binding site for the first Mn(II) ion that is photooxidized during the light-driven assembly of the (Mn)(4) cluster in photosystem II [Campbell, K. A., Force, D. A., Nixon, P. J., Dole, F., Diner, B. A., and Britt, R. D. (2000) J. Am. Chem. Soc. 122, 3754-3761]. However, despite a wealth of data on D1-Asp170 mutants accumulated over the past decade, there is no consensus about whether this residue ligates the assembled (Mn)(4) cluster. To address this issue, we have conducted an EPR and ESEEM (electron spin-echo envelope modulation) study of D1-D170H PSII particles purified from the cyanobacterium Synechocystis sp. PCC 6803. The line shapes of the S(1) and S(2) state multiline EPR signals of D1-D170H PSII particles are unchanged from those of wild-type PSII particles, and the signal amplitudes correlate approximately with the lower O(2) evolving activity of the mutant PSII particles (40-60% compared to that of the wild type). These data provide further evidence that the assembled (Mn)(4) clusters in D1-D170H cells function normally, even though the assembly of the (Mn)(4) cluster is inefficient in this mutant. In the two-pulse frequency domain ESEEM spectrum of the 9.2 GHz S(2) state multiline EPR signal of D1-D170H PSII particles, the histidyl nitrogen modulation observed at 4-5 MHz is unchanged from that of wild-type PSII particles and no significant new modulation is observed. Three scenarios are presented to explain this result. (1) D1-Asp170 ligates the assembled (Mn)(4) cluster, but the hyperfine couplings to the ligating histidyl nitrogen of D1-His170 are too large or anisotropic to be detected by ESEEM analyses conducted at 9.2 GHz. (2) D1-Asp170 ligates the assembled (Mn)(4) cluster, but D1-His170 does not. (3) D1-Asp170 does not ligate the assembled (Mn)(4) cluster.  相似文献   

4.
On the basis of mutagenesis and X-ray crystallographic studies, Asp170 of the D1 polypeptide is widely believed to ligate the (Mn)4 cluster that is located at the catalytic site of water oxidation in photosystem II. Recent proposals for the mechanism of water oxidation postulate that D1-Asp170 ligates a Mn ion that undergoes oxidation during one or more of the S0 --> S1, S1 --> S2, and S2 --> S3 transitions. To test these hypotheses, we have compared the FTIR difference spectra of the individual S state transitions in wild-type* PSII particles from the cyanobacterium Synechocystis sp. PCC 6803 with those in D1-D170H mutant PSII particles. Remarkably, our data show that the D1-D170H mutation does not significantly alter the mid-frequency regions (1800-1000 cm(-1)) of any of the FTIR difference spectra. Therefore, we conclude that the oxidation of the (Mn)4 cluster does not alter the frequencies of the carboxylate stretching modes of D1-Asp170 during the S0 --> S1, S1 --> S2, or S2 --> S3 transitions. The simplest explanation for these data is that the Mn ion that is ligated by D1-Asp170 does not increase its charge or oxidation state during any of these S state transitions. These data have profound implications for the mechanism of water oxidation. Either (1) the oxidation of the Mn ion that is ligated by D1-Asp170 occurs only during the transitory S3 --> S4 transition and serves as the critical step in the ultimate formation of the O-O bond or (2) the oxidation increments and O2 formation chemistry that occur during the catalytic cycle involve only the remaining Mn3Ca portion of the Mn4Ca cluster. Our data also show that, if the increased positive charge on the (Mn)4 cluster that is produced during the S1 --> S2 transition is delocalized over the (Mn)4 cluster, it is not delocalized onto the Mn ion that is ligated by D1-Asp170.  相似文献   

5.
Chloride-dependent α-amylases, angiotensin-converting enzyme (ACE), and photosystem II (PSII) are activated by bound chloride. Chloride-binding sites in these enzymes contain a positively charged Arg or Lys residue crucial for chloride binding. In α-amylases and ACE, removal of chloride from the binding site triggers formation of a salt bridge between the positively charged Arg or Lys residue involved in chloride binding and a nearby carboxylate residue. The mechanism for chloride activation in ACE and chloride-dependent α-amylases is 2-fold: (i) correctly positioning catalytic residues or other residues involved in stabilizing the enzyme-substrate complex and (ii) fine-tuning of the pKa of a catalytic residue. By using examples of how chloride activates α-amylases and ACE, we can gain insight into the potential mechanisms by which chloride functions in PSII. Recent structural evidence from cyanobacterial PSII indicates that there is at least one chloride-binding site in the vicinity of the oxygen-evolving complex (OEC). Here we propose that, in the absence of chloride, a salt bridge between D2:K317 and D1:D61 (and/or D1:E333) is formed. This can cause a conformational shift of D1:D61 and lower the pKa of this residue, making it an inefficient proton acceptor during the S-state cycle. Movement of the D1:E333 ligand and the adjacent D1:H332 ligand due to chloride removal could also explain the observed change in the magnetic properties of the manganese cluster in the OEC upon chloride depletion.  相似文献   

6.
The oxygen-evolving manganese cluster (OEC) of photosynthesis is oxidised by the photochemically generated primary oxidant (P(+*)(680)) of photosystem II via a tyrosine residue (Y(Z), Tyr161 on the D1 subunit of Synechocystis sp. PCC6803). The redox span between these components is rather small and probably tuned by protonic equilibria. The very efficient electron transfer from Y(Z) to P(+*)(680) in nanoseconds requires the intactness of a hydrogen bonded network involving Y(Z), D1-His190, and presumably D1-Glu189. We studied photosystem II core particles from photoautotrophic mutants where the residue D1-E189 was replaced by glutamine, arginine and lysine which were expected to electrostatically differ from the glutamate in the wild-type (WT). Surprisingly, the rates of electron transfer from Y(Z) to P(+*)(680) as well as from the OEC to Y(ox)(Z) were the same as in the WT. With the generally assumed proximity between D1-His190 (and thus D1-Glu189) and Y(Z), the lack of any influence on the electron transfer around Y(Z) straightforwardly implies a strongly hydrophobic environment forcing Glu (acid) and Lys, Arg (basic) at position D1-189 into electro-neutrality. As one alternative, D1-Glu189 could be located at such a large distance from the OEC, Y(Z) and P(+*)(680) that a charge on D1-189X does not influence the electron transfer. This seems less likely in the light of the drastic influence of its direct neighbour, D1-His190, on Y(Z) function. Another alternative is that D1-Glu189 is negatively charged, but is located in a cluster of acid/base groups that compensates for an alteration of charge at position 189, leaving the overall net charge unchanged in the Gln, Lys, and Arg mutants.  相似文献   

7.
P J Nixon  B A Diner 《Biochemistry》1992,31(3):942-948
Eleven site-directed mutations were constructed at aspartate 170 of the D1 polypeptide of the photosystem II (PSII) reaction center of the cyanobacterium Synechocystis sp. PCC 6803. The light-saturated rates of O2 evolution (VO2) measured in whole cells range from close to that of wild-type for Asp170Glu to zero for Asp170Ser and Ala. Those mutant strains that are best able to evolve O2 are also those that show the lowest Km in PSII core complexes for the oxidation of Mn2+ by oxidized Tyr161, the normal oxidant of the Mn cluster responsible for O2 evolution. To a first approximation, the lower the pKa of the residue at position 170, the higher the VO2 and the lower the Km. D1-Asp170 appears to participate in the early steps associated with the assembly of the Mn cluster. It is also the first reported example of an amino acid residue critical to the function and assembly of the oxygen-evolving complex.  相似文献   

8.
A mechanism for photosynthetic water oxidation is proposed based on a structural model of the oxygen-evolving complex (OEC) and its placement into the modeled structure of the D1/D2 core of photosystem II. The structural model of the OEC satisfies many of the geometrical constraints imposed by spectroscopic and biophysical results. The model includes the tetranuclear manganese cluster, calcium, chloride, tyrosine Z, H190, D170, H332 and H337 of the D1 polypeptide and is patterned after the reversible O2-binding diferric site in oxyhemerythrin. The mechanism for water oxidation readily follows from the structural model. Concerted proton-coupled electron transfer in the S2-->S3 and S3-->S4 transitions forms a terminal Mn(V)=O moiety. Nucleophilic attack on this electron-deficient Mn(V)=O by a calcium-bound water molecule results in a Mn(III)-OOH species, similar to the ferric hydroperoxide in oxyhemerythrin. Dioxygen is released in a manner analogous to that in oxyhemerythrin, concomitant with reduction of manganese and protonation of a mu-oxo bridge.  相似文献   

9.
A carboxylate group of D1-Glu-189 in photosystem II has been proposed to serve as a direct ligand for the manganese cluster. Here we constructed a mutant that eliminates the carboxylate by replacing D1-Glu-189 with Gln in the cyanobacterium Synechocystis sp. PCC 6803, and we examined the resulting effects on the structural and functional properties of the oxygen-evolving complex (OEC) in photosystem II. The E189Q mutant grew photoautotrophically, and isolated photosystem II core particles evolved oxygen at approximately 70% of the rate of control wild-type particles. The E189Q OEC showed typical S(2) state electron spin resonance signals, and the spin center distance between the S(2) state manganese cluster and the Y(D) (D2-Tyr-160), detected by electron-electron double resonance spectroscopy, was not affected by this mutation. However, the redox potential of the E189Q OEC was considerably lower than that of the control OEC, as revealed by the elevated peak temperature of the S(2) state thermoluminescence bands. The mutation resulted in specific changes to bands ascribed to the putative carboxylate ligands for the manganese cluster and to a few carbonyl bands in mid-frequency (1800 to 1100 cm(-1)) S(2)/S(1) Fourier transform infrared difference spectrum. Notably, the low frequency (650 to 350 cm(-1)) S(2)/S(1) Fourier transform infrared difference spectrum was also uniquely changed by this mutation in the frequencies for the manganese cluster core vibrations. These results suggested that the carboxylate group of D1-Glu-189 ligates the manganese ion, which is influenced by the redox change of the oxidizable manganese ion upon the S(1) to S(2) transition.  相似文献   

10.
In the recent X-ray crystallographic structural models of photosystem II, Asp342 of the D1 polypeptide is assigned as a ligand of the oxygen-evolving Mn4 cluster. To determine if D1-Asp342 ligates a Mn ion that undergoes oxidation during one or more of the S0 --> S1, S1 --> S2, and S2 --> S3 transitions, the FTIR difference spectra of the individual S state transitions in D1-D342N mutant PSII particles from the cyanobacterium Synechocystis sp. PCC 6803 were compared with those in wild-type PSII particles. Remarkably, the data show that the mid-frequency (1800-1200 cm-1) FTIR difference spectra of wild-type and D1-D342N PSII particles are essentially identical. Importantly, the mutation alters none of the carboxylate vibrational modes that are present in the wild-type spectra. The absence of significant mutation-induced spectral alterations in D1-D342N PSII particles shows that the oxidation of the Mn4 cluster does not alter the frequencies of the carboxylate stretching modes of D1-Asp342 during the S0 --> S1, S1 --> S2, or S2 --> S3 transitions. One explanation of these data is that D1-Asp342 ligates a Mn ion that does not increase its charge or oxidation state during any of these S state transitions. However, because the same conclusion was reached previously for D1-Asp170, and because the recent X-ray crystallographic structural models assign D1-Asp170 and D1-Asp342 as ligating different Mn ions, this explanation requires that (1) the extra positive charge that develops on the Mn4 cluster during the S1 --> S2 transition be localized on the Mn ion that is ligated by the alpha-COO- group of D1-Ala344 and (2) any increase in positive charge that develops on the Mn4 cluster during the S0 --> S1 and S2 --> S3 transitions be localized on the one Mn ion that is not ligated by D1-Asp170, D1-Asp342, or D1-Ala344. In separate experiments that were conducted with l-[1-13C]alanine, we found no evidence that D1-Asp342 ligates the same Mn ion that is ligated by the alpha-COO- group of D1-Ala344.  相似文献   

11.
This paper reports computational studies of substrate water binding to the oxygen-evolving centre (OEC) of photosystem II (PSII), completely ligated by amino acid residues, water, hydroxide and chloride. The calculations are based on quantum mechanics/molecular mechanics hybrid models of the OEC of PSII, recently developed in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The model OEC involves a cuboidal Mn3CaO4Mn metal cluster with three closely associated manganese ions linked to a single mu4-oxo-ligated Mn ion, often called the 'dangling manganese'. Two water molecules bound to calcium and the dangling manganese are postulated to be substrate molecules, responsible for dioxygen formation. It is found that the energy barriers for the Mn(4)-bound water agree nicely with those of model complexes. However, the barriers for Ca-bound waters are substantially larger. Water binding is not simply correlated to the formal oxidation states of the metal centres but rather to their corresponding electrostatic potential atomic charges as modulated by charge-transfer interactions. The calculations of structural rearrangements during water exchange provide support for the experimental finding that the exchange rates with bulk 18 O-labelled water should be smaller for water molecules coordinated to calcium than for water molecules attached to the dangling manganese. The models also predict that the S1-->S2 transition should produce opposite effects on the two water-exchange rates.  相似文献   

12.
Hydroxylamine at low concentrations causes a two-flash delay in the first maximum flash yield of oxygen evolved from spinach photosystem II (PSII) subchloroplast membranes that have been excited by a series of saturating flashes of light. Untreated PSII membrane preparations exhibit a multiline EPR signal assigned to a manganese cluster and associated with the S2 state when illuminated at 195 K, or at 273 K in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). We used the extent of suppression of the multiline EPR signal observed in samples illuminated at 195 K to determine the fraction of PSII reaction centers set back to a hydroxylamine-induced S0-like state, which we designate S0*. The manganese K-edge X-ray absorption edges for dark-adapted PSII preparations with or without hydroxylamine are virtually identical. This indicates that, despite its high binding affinity to the oxygen-evolving complex (OEC) in the dark, hydroxylamine does not reduce chemically the manganese cluster within the OEC in the dark. After a single turnover of PSII, a shift to lower energy is observed in the inflection of the Mn K-edge of the manganese cluster. We conclude that, in the presence of hydroxylamine, illumination causes a reduction of the OEC, resulting in a state resembling S0. This lower Mn K-edge energy of S0*, relative to the edge of S1, implies the storage and stabilization of an oxidative equivalent within the manganese cluster during the S0----S1 state transition. An analysis of the extended X-ray absorption fine structure (EXAFS) of the S0* state indicates that a significant structural rearrangement occurs between the S0* and S1 states. The X-ray absorption edge position and the structure of the manganese cluster in the S0* state are indicative of a heterogeneous mixture of formal valences of manganese including one Mn(II) which is not present in the S1 state.  相似文献   

13.
To identify amino acid residues that influence the assembly or stability of the manganese cluster in photosystem II, we have generated site-directed mutations in the D1 polypeptide of the cyanobacterium, Synechocystis sp. PCC 6803. Indirect evidence has suggested that the D1 polypeptide provides some of the ligands that are required for metal binding. Mutations at position 170 of D1 were selected for characterization, since an aspartate to asparagine mutation (DN170D1) at this position completely abolishes photoautotrophic growth, while retention of a carboxylic acid at this position (aspartate to glutamate, DE170D1) supports photoautotrophic growth. Photosystem II particles were purified from control, DE170D1, and DN170D1 cells by a procedure that retains high rates of oxygen evolution activity in control particles [Noren, G.H., Boerner, R.J., & Barry, B.A. (1991) Biochemistry 30, 3943-3950]. Spectroscopic analysis shows that the tyrosine radical, Z+, which normally oxidizes the manganese cluster, is rapidly reduced in the DE170D1 mutant, but not in the DN170D1 mutant. A possible explanation of this block or dramatic decrease in the rate of electron transfer between the manganese cluster and tyrosine Z is an alteration in the properties of the metal center. Quantitation of manganese in these particles is consistent with aspartate 170 influencing the stability or assembly of the manganese cluster, since the aspartate to asparagine mutation results in a decrease in the manganese content per reaction center. Photosystem II particles from DN170D1 show a 60% decrease in the amount of specifically bound manganese per reaction center, when compared to control particles. Also, we observe a 70% decrease in the amount of specifically bound manganese per reaction center in partially purified DN170D1 particles and at least an 80% decrease in the amount of hydroxylamine-reducible manganese in DN170D1 thylakoid membranes. Single-turnover fluorescence assays and steady-state EPR measurements demonstrate that the remaining, endogenous manganese does not rapidly reduce tyrosine Z+ in the DN170D1 mutant. Additional evidence that aspartate 170 influences the assembly or stability of the metal site comes from analysis of the DE170D1 mutant. Although this mutant assembles a functional manganese cluster, as assessed by oxygen evolution and spectroscopic assays, the properties of the manganese site are perturbed.  相似文献   

14.
18 O isotope exchange measurements of photosystem II (PSII) in thylakoids from wild-type and mutant Synechocystis have been performed to investigate binding of substrate water to the high-affinity Mn4 site in the oxygen-evolving complex (OEC). The mutants investigated were D1-D170H, a mutation of a direct ligand to the Mn4 ion, and D1-D61N, a mutation in the second coordination sphere. The substrate water 18 O exchange rates for D61N were found to be 0.16+/-0.02 s(-1) and 3.03+/-0.32 s(-1) for the slow and fast phases of exchange, respectively, compared with 0.47+/-0.04 s(-1) and 19.7+/-1.3 s(-1) for the wild-type. The D1-D170H rates were found to be 0.70+/-0.16 s(-1) and 24.4+/-4.6 s(-1) and thus are almost within the error limits for the wild-type rates. The results from the D1-D170H mutant indicate that the high-affinity Mn4 site does not directly bind to the substrate water molecule in slow exchange, but the binding of non-substrate water to this Mn ion cannot be excluded. The results from the D61N mutation show an interaction with both substrate water molecules, which could be an indication that D61 is involved in a hydrogen bonding network with the substrate water. Our results provide limitations as to where the two substrate water molecules bind in the OEC of PSII.  相似文献   

15.
Kulik LV  Lubitz W  Messinger J 《Biochemistry》2005,44(26):9368-9374
The temperature dependence of the electron spin-lattice relaxation time T1 was measured for the S0 state of the oxygen-evolving complex (OEC) in photosystem II and for two dinuclear manganese model complexes by pulse EPR using the inversion-recovery method. For [Mn(III)Mn(IV)(mu-O)2 bipy4]ClO4, the Raman relaxation process dominates at temperatures below 50 K. In contrast, Orbach type relaxation was found for [Mn(II)Mn(III)(mu-OH)(mu-piv)2(Me3 tacn)2](ClO4)2 between 4.3 and 9 K. For the latter complex, an energy separation of 24.7-28.0 cm(-1) between the ground and the first excited electronic state was determined. In the S0 state of photosystem II, the T1 relaxation times were measured in the range of 4.3-6.5 K. A comparison with the relaxation data (rate and pre-exponential factor) of the two model complexes and of the S2 state of photosystem II indicates that the Orbach relaxation process is dominant for the S0 state and that its first excited state lies 21.7 +/- 0.4 cm(-1) above its ground state. The results are discussed with respect to the structure of the OEC in photosystem II.  相似文献   

16.
Ifuku K  Sato F 《Plant & cell physiology》2002,43(10):1244-1249
One function of the extrinsic 23-kDa protein in photosystem II (OEC23) is to retain Ca(2+ )and Cl(-), two essential cofactors for photosynthetic oxygen evolution. A truncated mutant of OEC23 (OEC23 Delta19) revealed that 19 residues of the N-terminus of OEC23 were necessary for Ca(2+ )retention but not for its proper interaction with OEC17, the extrinsic 17-kDa protein in photosystem II. The lost ability of OEC23 Delta19 to reconstitute the oxygen-evolving activity was partially restored by OEC17 binding, suggesting the involvement of OEC17 in Ca(2+ )retention in photosystem II.  相似文献   

17.
The crystal structure of photosystem II (PSII) at 3.0-A resolution suggests that titratable residues on the lumenal side of D1/D2 and PsbO form a polar channel, which might serve as a proton exit pathway associated with water oxidation on the Mn-cluster. With full account of protein environment, we calculated the pK(a) of these residues by solving the linearized Poisson-Boltzmann equation. Along the prospective proton channel, the calculated pK(a) of titratable residues (namely via D1-Asp61, D1-Glu65, D2-Glu312, D2-Lys317 D1-Asp59, D1-Arg64, PsbO-Arg152, and PsbO-Asp224) monotonically increase from the Mn-cluster to the lumenal bulk side. We suggest that these residues form the exit pathway guiding protons, which are released at the Mn-cluster as a product of water oxidation, in an exergonic process out of PSII. Upon the S2 to S3 transition, CP43-Arg357 showed a dramatic deprotonation of ca. one H(+), suggesting that this residue is coupled to the redox states of the Mn-cluster and the tyrosine Y(Z). The calculated pK(a) values of 4.2-4.4 for D2-Glu312 and those of approximately 8-10.9 for D1-Asp59 and D1-Arg64 are indicative of the experimentally determined pK(a) values for inhibition of S-state transitions. Upon removal of the atomic coordinates of PsbO, the pK(a) of these residues are dramatically affected, indicating a significant role of PsbO in tuning the pK(a) of those residues in the proton exit pathway.  相似文献   

18.
During the donor-side photoinhibition of spinach photosystem II, the reaction center D1 protein cross-linked with the antenna chlorophyll binding protein CP43 of photosystem II lacking the oxygen-evolving complex (OEC) subunit proteins. The cross-linking did not occur upon illumination of photosystem II samples that retained the OEC33, nor when OEC33-depleted photosystem II samples were reconstituted with the OEC33 prior to illumination. These results suggest that the D1 protein, CP43 and the OEC33 are located in close proximity at the lumenal side of photosystem II, and that the OEC33 suppresses the unnecessary contact between the D1 protein and CP43. Previously we presented data showing the D1 protein located adjacent to CP43 on the stromal side of photosystem II [Ishikawa et al. (1999) BIOCHIM: Biophys. Acta 1413: 147]. The present data suggest that the spatial arrangement of the D1 protein and CP43 at the lumenal side of photosystem II in spinach chloroplasts is similar to that at the stromal side of photosystem II and is consistent with the assignment of these proteins recently proposed on the crystal structures of the photosystem II complexes from cyanobacteria [Zouni et al. (2001) Nature 409: 739, Kamiya and Shen 2003 PROC: Natl. Acad. Sci. USA, 100: 98]. Moreover, the data suggest that the binding condition and positioning of the OEC33 in the photosystem II complex from higher plants may be different from those in cyanobacteria.  相似文献   

19.
The recently published X-ray absorption fine structure of photosystem II provides a more detailed architecture of the oxygen-evolving complex (OEC) and the surrounding amino acids. In this paper, a comparison between manganese superoxide dismutase, dinuclear manganese catalase enzymes and the oxygen evolving complex in photosystem II is reported. The author suggests that the development of oxygenic photosynthesis occurred in steps, the first of which involved only one manganese ion (Mn(II)) that oxidized two water molecules to hydrogen peroxide and then oxygen.  相似文献   

20.
The function of the extrinsic 23 kDa polypeptide (OEC23) in Photosystem II (PS II) is to retain Ca(2+) and Cl(-) during the S-state turnover of the Mn cluster in photosynthetic oxygen evolution. Recombinant OEC23s from several plant species were produced in Escherichia coli to characterize the molecular mechanism of the OEC23 function then used in reconstitution experiments. One tobacco isoform, OEC23 (2AF), had much less oxygen-evolving activity than the spinach and cucumber OEC23s when PS II activities were reconstituted in salt-washed spinach PS II particles. The fact that the OEC23s had similar binding affinities for PS II particles suggests different ion-retention capacities for the individual OEC23s: The chimeric OEC23s produced between spinach and 2AF and those produced between cucumber and 2AF show that 58 N-terminal amino acid residues are important for PS II activity. Further dissection of the sequence and site-directed mutagenesis indicated the importance of 20 N-terminal amino acid residues for activity, in particular the asparagine at the 15th position. In spinach the N15D mutation decreased PS II activity, whereas in 2AF the D15N mutation increased it. This shows the importance of the N-terminal sequence of OEC23 in ion retention during the water-splitting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号