首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional solution-state structure is reported for the zinc-substituted form of rubredoxin (Rd) from the marine hyperthermophilic archaebacterium Pyrococcus furiosus, an organism that grows optimally at 100 degrees C. Structures were generated with DSPACE by a hybrid distance geometry (DG)-based simulated annealing (SA) approach that employed 403 nuclear Overhauser effect (NOE)-derived interproton distance restraints, including 67 interresidue, 124 sequential (i-j = 1), 75 medium-range (i-j = 2-5), and 137 long-range (i-j > 5) restraints. All lower interproton distance bounds were set at the sum of the van Der Waals radii (1.8 A), and upper bounds of 2.7 A, 3.3 A, and 5.0 A were employed to represent qualitatively observed strong, medium, and weak NOE cross peak intensities, respectively. Twenty-three backbone-backbone, six backbone-sulfur (Cys), two backbone-side chain, and two side chain-side chain hydrogen bond restraints were include for structure refinement, yielding a total of 436 nonbonded restraints, which averages to > 16 restraints per residue. A total of 10 structures generated from random atom positions and 30 structures generated by molecular replacement using the backbone coordinates of Clostridium pasteurianum Rd converged to a common conformation, with the average penalty (= sum of the square of the distance bounds violations; +/- standard deviation) of 0.024 +/- 0.003 A2 and a maximum total penalty of 0.035 A2. Superposition of the backbone atoms (C, C alpha, N) of residues A1-L51 for all 40 structures afforded an average pairwise root mean square (rms) deviation value (+/- SD) of 0.42 +/- 0.07 A. Superposition of all heavy atoms for residues A1-L51, including those of structurally undefined external side chains, afforded an average pairwise rms deviation of 0.72 +/- 0.08 A. Qualitative comparison of back-calculated and experimental two-dimensional NOESY spectra indicate that the DG/SA structures are consistent with the experimental spectra. The global folding of P. furiosus Zn(Rd) is remarkably similar to the folding observed by X-ray crystallography for native Rd from the mesophilic organism C. pasteurianum, with the average rms deviation value for backbone atoms of residues A1-L51 of P. furiosus Zn(Rd) superposed with respect to residues K2-V52 of C. pasteurianum Rd of 0.77 +/- 0.06 A. The conformations of aromatic residues that compose the hydrophobic cores of the two proteins are also similar. However, P. furiosus Rd contains several unique structural elements, including at least four additional hydrogen bonds and three potential electrostatic interactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Rubrerythrin was purified by multistep chromatography under anaerobic, reducing conditions from the hyperthermophilic archaeon Pyrococcus furiosus. It is a homodimer with a molecular mass of 39.2 kDa and contains 2.9 +/- 0.2 iron atoms per subunit. The purified protein had peroxidase activity at 85 degrees C using hydrogen peroxide with reduced P. furiosus rubredoxin as the electron donor. The specific activity was 36 micromol of rubredoxin oxidized/min/mg with apparent K(m) values of 35 and 70 microM for hydrogen peroxide and rubredoxin, respectively. When rubrerythrin was combined with rubredoxin and P. furiosus NADH:rubredoxin oxidoreductase, the complete system used NADH as the electron donor to reduce hydrogen peroxide with a specific activity of 7.0 micromol of H(2)O(2) reduced/min/mg of rubrerythrin at 85 degrees C. Strangely, as-purified (reduced) rubrerythrin precipitated when oxidized by either hydrogen peroxide, air, or ferricyanide. The gene (PF1283) encoding rubrerythrin was expressed in Escherichia coli grown in medium with various metal contents. The purified recombinant proteins each contained approximately three metal atoms/subunit, ranging from 0.4 Fe plus 2.2 Zn to 1.9 Fe plus 1.2 Zn, where the metal content of the protein depended on the metal content of the E. coli growth medium. The peroxidase activities of the recombinant forms were proportional to the iron content. P. furiosus rubrerythrin is the first to be characterized from a hyperthermophile or from an archaeon, and the results are the first demonstration that this protein functions in an NADH-dependent, hydrogen peroxide:rubredoxin oxidoreductase system. Rubrerythrin is proposed to play a role in the recently defined anaerobic detoxification pathway for reactive oxygen species.  相似文献   

3.
The structure of the Gln25 variant of ribonuclease T1 (RNase T1) crystallized at pH 7 and at high ionic strength has been solved by molecular replacement using the coordinates of the Lys25-RNase T1/2'-guanylic acid (2'GMP) complex at pH 5 [Arni et al. (1988) J. Biol. Chem. 263, 15358-15368] and refined by energy minimization and stereochemically restrained least-squares minimization to a crystallographic R-factor of 14.4% at 1.84-A resolution. The asymmetric unit contains three molecules, and the final model consists of 2302 protein atoms, 3 sulfates (at the catalytic sites), and 179 solvent water molecules. The estimated root mean square (rms) error in the coordinates is 0.15 A, and the rms deviation from ideality is 0.018 A for bond lengths and 1.8 degrees for bond angles. Significant differences are observed between the three molecules in the asymmetric unit at the base recognition and catalytic sites.  相似文献   

4.
P J Loll  E E Lattman 《Proteins》1989,5(3):183-201
The structure of a complex of staphylococcal nuclease with Ca2+ and deoxythymidine 3',5'-bisphosphate (pdTp) has been refined by stereochemically restrained least-squares minimization to a crystallographic R value of 0.161 at 1.65 A resolution. The estimated root-mean-square (rms) error in the coordinates is 0.16 A. The final model comprises 1082 protein atoms, one calcium ion, the pdTp molecule, and 82 solvent water molecules; it displays an rms deviation from ideality of 0.017 A for bond distances and 1.8 degrees for bond angles. The mean distance between corresponding alpha carbons in the refined and unrefined structures is 0.6 A; we observe small but significant differences between the refined and unrefined models in the turn between residues 27 and 30, the loop between residues 44 and 50, the first helix, and the extended strand between residues 112 and 117 which forms part of the active site binding pocket. The details of the calcium liganding and solvent structure in the active site are clearly shown in the final electron density map. The structure of the catalytic site is consistent with the mechanism that has been proposed for this enzyme. However, we note that two lysines from a symmetry-related molecule in the crystal lattice may play an important role in determining the geometry of inhibitor binding, and that only one of the two required calcium ions is observed in the crystal structure; thus, caution is advised in extrapolating from the structure of the complex of enzyme and inhibitor to that of enzyme and substrate.  相似文献   

5.
The three-dimensional X-ray structures of the oxidized and reduced forms of rubredoxin from Pyrococcus furiosus, determined at -161 degrees C, and the NMR structure of the zinc-substituted protein, determined in solution at 45 degrees C, are compared. The NMR and X-ray structures, which were determined independently, are very similar and lead to similar conclusions regarding the interactions that confer hyperthermostability.  相似文献   

6.
A scheme for the detoxification of superoxide in Pyrococcus furiosus has been previously proposed in which superoxide reductase (SOR) reduces (rather than dismutates) superoxide to hydrogen peroxide by using electrons from reduced rubredoxin (Rd). Rd is reduced with electrons from NAD(P)H by the enzyme NAD(P)H:rubredoxin oxidoreductase (NROR). The goal of the present work was to reconstitute this pathway in vitro using recombinant enzymes. While recombinant forms of SOR and Rd are available, the gene encoding P. furiosus NROR (PF1197) was found to be exceedingly toxic to Escherichia coli, and an active recombinant form (rNROR) was obtained via a fusion protein expression system, which produced an inactive form of NROR until cleavage. This allowed the complete pathway from NAD(P)H to the reduction of SOR via NROR and Rd to be reconstituted in vitro using recombinant proteins. rNROR is a 39.9-kDa protein whose sequence contains both flavin adenine dinucleotide (FAD)- and NAD(P)H-binding motifs, and it shares significant similarity with known and putative Rd-dependent oxidoreductases from several anaerobic bacteria, both mesophilic and hyperthermophilic. FAD was shown to be essential for activity in reconstitution assays and could not be replaced by flavin mononucleotide (FMN). The bound FAD has a midpoint potential of -173 mV at 23 degrees C (-193 mV at 80 degrees C). Like native NROR, the recombinant enzyme catalyzed the NADPH-dependent reduction of rubredoxin both at high (80 degrees C) and low (23 degrees C) temperatures, consistent with its proposed role in the superoxide reduction pathway. This is the first demonstration of in vitro superoxide reduction to hydrogen peroxide using NAD(P)H as the electron donor in an SOR-mediated pathway.  相似文献   

7.
The structure of a crystal complex of recombinant human immunodeficiency virus type 1 (HIV-1) protease with a peptide-mimetic inhibitor containing a dihydroxyethylene isostere insert replacing the scissile bond has been determined. The inhibitor is Noa-His-Hch psi [CH(OH)CH(OH)]Vam-Ile-Amp (U-75875), and its Ki for inhibition of the HIV-1 protease is < 1.0 nM (Noa = 1-naphthoxyacetyl, Hch = a hydroxy-modified form of cyclohexylalanine, Vam = a hydroxy-modified form of valine, Amp = 2-pyridylmethylamine). The structure of the complex has been refined to a crystallographic R factor of 0.169 at 2.0 A resolution by using restrained least-squares procedures. Root mean square deviations from ideality are 0.02 A and 2.4 degrees, for bond lengths and angles, respectively. The bound inhibitor diastereomer has the R configurations at both of the hydroxyl chiral carbon atoms. One of the diol hydroxyl groups is positioned such that it forms hydrogen bonds with both the active site aspartates, whereas the other interacts with only one of them. Comparison of this X-ray structure with a model-built structure of the inhibitor, published earlier, reveals similar positioning of the backbone atoms and of the side-chain atoms in the P2-P2' region, where the interaction with the protein is strongest. However, the X-ray structure and the model differ considerably in the location of the P3 and P3' end groups, and also in the positioning of the second of the two central hydroxyl groups. Reconstruction of the central portion of the model revealed the source of the hydroxyl discrepancy, which, when corrected, provided a P1-P1' geometry very close to that seen in the X-ray structure.  相似文献   

8.
The formal equilibrium reduction potentials of recombinant electron transport protein, rubredoxin (MW = 7500 Da), from both the mesophilic Clostridium pasteurianum (Topt = 37 degrees C) and hyperthermophilic Pyrococcus furiosus (Topt = 95 degrees C) were recorded as a function of pressure and temperature. Measurements were made utilizing a specially designed stainless steel electrochemical cell that easily maintains pressures between 1 and 600 atm and a temperature-controlled cell that maintains temperatures between 4 and 100 degrees C. The reduction potential of P. furiosus rubredoxin was determined to be 31 mV at 25 degrees C and 1 atm, -93 mV at 95 degrees C and 1 atm, and 44 mV at 25 degrees C and 400 atm. Thus, the reduction potential of P. furiosus rubredoxin obtained under standard conditions is likely to be dramatically different from the reduction potential obtained under its normal operating conditions. Thermodynamic parameters associated with electron transfer were determined for both rubredoxins (for C. pasteurianum, DeltaV degrees = -27 mL/mol, DeltaS degrees = -36 cal K-1 mol-1, and DeltaH degrees = -10 kcal/mol, and for P. furiosus, DeltaV degrees = -31 mL/mol, DeltaS degrees = -41 cal K-1 mol-1, and DeltaH degrees = -13 kcal/mol) from its pressure- and temperature-reduction potential profiles. The thermodynamic parameters for electron transfer (DeltaV degrees, DeltaS degrees, and DeltaH degrees ) for both proteins were very similar, which is not surprising considering their structural similarities and sequence homology. Despite the fact that these two proteins exhibit dramatic differences in thermostability, it appears that structural changes that confer dramatic differences in thermostability do not significantly alter electron transfer reactivity. The experimental changes in reduction potential as a function of pressure and temperature were simulated using a continuum dielectric electrostatic model (DELPHI). A reasonable estimate of the protein dielectric constant (epsilonprotein) of 6 for both rubredoxins was determined from these simulations. A discussion is presented regarding the analysis of electrostatic interaction energies of biomolecules through pressure- and temperature-controlled electrochemical studies.  相似文献   

9.
Crystal structure of human alpha-lactalbumin at 1.7 A resolution   总被引:7,自引:0,他引:7  
The three-dimensional X-ray structure of human alpha-lactalbumin, an important component of milk, has been determined at 1.7 A (0.17 nm) resolution by the method of molecular replacement, using the refined structure of baboon alpha-lactalbumin as the model structure. The two proteins are known to have more than 90% amino acid sequence identity and crystallize in the same orthorhombic space group, P2(1)2(1)2. The crystallographic refinement of the structure using the simulated annealing method, resulted in a crystallographic R-factor of 0.209 for the 11,373 observed reflections (F greater than or equal to 2 sigma (F)) between 8 and 1.7 A resolution. The model comprises 983 protein atoms, 90 solvent atoms and a bound calcium ion. In the final model, the root-mean-square deviations from ideality are 0.013 A for covalent bond distances and 2.9 degrees for bond angles. Superposition of the human and baboon alpha-lactalbumin structures yields a root-mean-square difference of 0.67 A for the 123 structurally equivalent C alpha atoms. The C terminus is flexible in the human alpha-lactalbumin molecule. The striking structural resemblance between alpha-lactalbumins and C-type lysozymes emphasizes the homologous evolutionary relationship between these two classes of proteins.  相似文献   

10.
The purification, amino acid sequence, and two-dimensional 1H NMR results are reported for the rubredoxin (Rd) from the hyperthermophilic archaebacterium Pyrococcus furiosus, an organism that grows optimally at 100 degrees C. The molecular mass (5397 Da), iron content (1.2 +/- 0.2 g-atom of Fe/mol), UV-vis spectrophotometric properties, and amino acid sequence (60% sequence identity with Clostridium pasteurianum Rd) are found to be typical of this class of redox protein. However, P. furiosus Rd is remarkably thermostable, being unaffected after incubation for 24 h at 95 degrees C. One- and two-dimensional 1H nuclear magnetic resonance spectra of the oxidized [Fe(III)Rd] and reduced [Fe(II)Rd] forms of P. furiosus Rd exhibited substantial paramagnetic line broadening, and this precluded detailed 3D structural studies. The apoprotein was not readily amenable to NMR studies due to apparent protein oxidation involving the free cysteine sulfhydryls. However, high-quality NMR spectra were obtained for the Zn-substituted protein, Zn(Rd), enabling detailed NMR signal assignment for all backbone amide and alpha and most side-chain protons. Secondary structural elements were determined from qualitative analysis of 2D Overhauser effect spectra. Residues A1-K6, Y10-E14, and F48-E51 form a three-strand antiparallel beta-sheet, which comprises ca. 30% of the primary sequence. Residues C5-Y10 and C38-A43 form types I and II amide-sulfur tight turns common to iron-sulfur proteins. These structural elements are similar to those observed by X-ray crystallography for native Rd from the mesophile C. pasteurianum. However, the beta-sheet domain in P. furiosus Rd is larger than that in C. pasteurianum Rd and appears to begin at the N-terminal residue. From analysis of the secondary structure, potentially stabilizing electrostatic interactions involving the charged groups of residues Ala(1), Glu(14), and Glu(52) are proposed. These interactions, which are not present in rubredoxins from mesophilic organisms, may prevent the beta-sheet from "unzipping" at elevated temperatures.  相似文献   

11.
Molecular dynamics simulations of Clostridium pasteurianum rubredoxin in the oxidized and reduced forms have been performed. Good agreement between both forms and crystal data has been obtained (rms deviation of backbone atoms of 1.06 and 1.42 Å, respectively), which was due in part to the use of explicit solvent and counterions. The reduced form exhibits an unexpected structural change: the redox site becomes much more solvent-accessible, so that water enters a channel between the surface and the site, but with little actual structural rearrangement (the rms deviation of backbone atoms between the oxidized and reduced is 0.77 Å). The increase in solvent accessibility is also seen, although to a much lesser extent, between the oxidized and reduced crystal structures of Pyrococcus furiosus rubredoxin, but no high resolution crystal or nuclear magnetic resonance solution data exist for reduced C. pasteurianum rubredoxin. The electrostatic potential at the iron site and fluctuations in the potential, which contribute to both the redox and electron transfer properties, have also been evaluated for both the oxidized and the reduced simulations. These results show that the backbone plays a significant role (62–70 kcall/mol/e) and the polar sidechains contribute relatively little (0–4 kcal/mol/e) to the absolute electrostatic potential at the iron of rubredoxin for both forms. However, both groups contribute significantly to the change in redox state by becoming more polarized and more densely packed around the redox site upon reduction. Furthermore, these results show that the solvent becomes much more polarized in the reduced form than in the oxidized form, even excluding the penetrating water. Finally, the simulation indicates that the contribution of the charged side chains to the electrostatic potential is largely canceled by that of the counterions. © 1995 Wiley-Liss, Inc.  相似文献   

12.
The crystal structure of L-chiro-inositol is monoclinic, P21, with a = 6.867(3), b = 9.133(4), c = 6.217(3) A, beta = 106.59(4) degrees, Z = 2. The structure was solved by using MULTAN, and refined to R = 0.028 for 1065 intensities observed with Ni-filtered MoK alpha radiation. The molecule has the expected chair conformation, with puckering parameters Q = 0.561 A, theta = 4.4 degrees, phi = 51.2 degrees. The non-hydrogen molecular symmetry is close to C2, with deviations of less than 0.07 A from a weighted fit. The intramolecular hydrogen-bonding forms infinite chains which are cross-linked through the weaker component of a three-center bond. The C-C bond lengths range from 1.515 to 1.528 A, and the C-O bond lengths from 1.418 to 1.436 A. The C-C-C angles range from 109.7 to 113.1 degrees, and the C-C-O angles from 106.5 to 112.0 degrees.  相似文献   

13.
Structure of the SHV-1 beta-lactamase   总被引:5,自引:0,他引:5  
Kuzin AP  Nukaga M  Nukaga Y  Hujer AM  Bonomo RA  Knox JR 《Biochemistry》1999,38(18):5720-5727
The X-ray crystallographic structure of the SHV-1 beta-lactamase has been established. The enzyme crystallizes from poly(ethylene glycol) at pH 7 in space group P212121 with cell dimensions a = 49.6 A, b = 55.6 A, and c = 87.0 A. The structure was solved by the molecular replacement method, and the model has been refined to an R-factor of 0.18 for all data in the range 8.0-1.98 A resolution. Deviations of model bonds and angles from ideal values are 0.018 A and 1.8 degrees, respectively. Overlay of all 263 alpha-carbon atoms in the SHV-1 and TEM-1 beta-lactamases results in an rms deviation of 1.4 A. Largest deviations occur in the H10 helix (residues 218-224) and in the loops between strands in the beta-sheet. All atoms in residues 70, 73, 130, 132, 166, and 234 in the catalytic site of SHV-1 deviate only 0.23 A (rms) from atoms in TEM-1. However, the width of the substrate binding cavity in SHV-1, as measured from the 104-105 and 130-132 loops on one side to the 235-238 beta-strand on the other side, is 0.7-1.2 A wider than in TEM-1. A structural analysis of the highly different affinity of SHV-1 and TEM-1 for the beta-lactamase inhibitory protein BLIP focuses on interactions involving Asp/Glu104.  相似文献   

14.
Structure of Paramecium tetraurelia calmodulin at 1.8 A resolution.   总被引:5,自引:4,他引:1       下载免费PDF全文
The crystal structure of calmodulin (CaM; M(r) 16,700, 148 residues) from the ciliated protozoan Paramecium tetraurelia (PCaM) has been determined and refined using 1.8 A resolution area detector data. The crystals are triclinic, space group P1, a = 29.66, b = 53.79, c = 25.49 A, alpha = 92.84, beta = 97.02, and gamma = 88.54 degrees with one molecule in the unit cell. Crystals of the mammalian CaM (MCaM; Babu et al., 1988) and Drosophila CaM (DCaM; Taylor et al., 1991) also belong to the same space group with very similar cell dimensions. All three CaMs have 148 residues, but there are 17 sequence changes between PCaM and MCaM and 16 changes between PCaM and DCaM. The initial difference in the molecular orientation between the PCaM and MCaM crystals was approximately 7 degrees as determined by the rotation function. The reoriented Paramecium model was extensively refitted using omit maps and refined using XPLOR. The R-value for 11,458 reflections with F > 3 sigma is 0.21, and the model consists of protein atoms for residues 4-147, 4 calcium ions, and 71 solvent molecules. The root mean square (rms) deviations in the bond lengths and bond angles in the model from ideal values are 0.016 A and 3 degrees, respectively. The molecular orientation of the final PCaM model differs from MCaM by only 1.7 degrees. The overall Paramecium CaM structure is very similar to the other calmodulin structures with a seven-turn long central helix connecting the two terminal domains, each containing two Ca-binding EF-hand motifs. The rms deviation in the backbone N, Ca, C, and O atoms between PCaM and MCaM is 0.52 A and between PCaM and DCaM is 0.85 A. The long central helix regions differ, where the B-factors are also high, particularly in PCaM and MCaM. Unlike the MCaM structure, with one kink at D80 in the middle of the linker region, and the DCaM structure, with two kinks at K75 and I85, in our PCaM structure there are no kinks in the helix; the distortion appears to be more gradually distributed over the entire helical region, which is bent with an apparent radius of curvature of 74.5(2) A. The different distortions in the central helical region probably arise from its inherent mobility.  相似文献   

15.
S Aono  F O Bryant    M W Adams 《Journal of bacteriology》1989,171(6):3433-3439
The archaebacterium Pyrococcus furiosus is a strict anaerobe that grows optimally at 100 degrees C by a fermentative-type metabolism in which H2 and CO2 are the only detectable products. A ferredoxin, which functions as the electron donor to the hydrogenase of this organism was purified under anaerobic reducing conditions. It had a molecular weight of approximately 12,000 and contained 8 iron atoms and 8 cysteine residues/mol but lacked histidine or arginine residues. Reduction and oxidation of the ferredoxin each required 2 electrons/mol, which is consistent with the presence of two [4Fe-4S] clusters. The reduced protein gave rise to a broad rhombic electronic paramagnetic resonance spectrum, with gz = 2.10, gy = 1.86, gx = 1.80, and a midpoint potential of -345 mV (at pH 8). However, this spectrum represented a minor species, since it quantitated to only approximately 0.3 spins/mol. P. furiosus ferredoxin is therefore distinct from other ferredoxins in that the bulk of its iron is not present as iron-sulfur clusters with an S = 1/2 ground state. The apoferredoxin was reconstituted with iron and sulfide to give a protein that was indistinguishable from the native ferredoxin by its iron content and electron paramagnetic resonance properties, which showed that the novel iron-sulfur clusters were not artifacts of purification. The reduced ferredoxin also functioned as an electron donor for H2 evolution catalyzed by the hydrogenase of the mesophilic eubacterium Clostridium pasteurianum. P. furiosus ferredoxin was resistant to denaturation by sodium dodecyl sulfate (20%, wt/vol) and was remarkably thermostable. Its UV-visible absorption spectrum and electron carrier activity to P. furiosus hydrogenase were unaffected by a 12-h incubation of 95 degrees C.  相似文献   

16.
N-acetyl-tauryl-L-phenylalanine methyl ester 1 has been synthesized. The crystal structure and molecular conformation of 1 have been determined. Crystals are monoclinic, space group P2(1) with a = 5.088(2), b = 17.112(17), c = 9.581(6) A, beta = 92.34(4) degrees, Z = 2. The structure has been solved by direct methods and refined to R = 0.043 for 2279 reflections with I greater than 1.5 sigma(I). The sulphonamide junction maintains the peptide backbone folded with Tau and Phe C alpha atoms in a cisoidal arrangement, the torsion angle around the S-N bond being 65.4 degrees. In this conformation the p-orbital of the sulphonamide nitrogen lies in the region of the plane bisecting the O-S-O angle, thus favouring d pi-p pi interactions between nitrogen and sulphur atoms. The S-N bond with a length of 1.618 A has significant pi-bond character. The CO-NH is planar and adopts trans conformation. The Tau residue is extended with the Tau-C1 alpha-Ca beta bond anti-periplanar to the S-N bond. The Phe side chain conformation corresponds to the statistically most favoured g- rotamer and exhibits a chi 1 torsion angle of -67.5 degrees. The packing is characterized by intermolecular H-bonds which the Tau and Phe NH groups form with the acetyl carbonyl and one of the two sulphonamide oxygens, respectively.  相似文献   

17.
A theoretical investigation of the protein contribution to the redox potential of the iron–sulfur protein rubredoxin is presented. Structures of the oxidized and reduced forms of the protein were obtained by energy minimizing the oxidized crystal structure of Clostridium pasteurianum rubredoxin with appropriate charges and parameters. By including 102 crystal waters, structures close to the original crystal structure were obtained (rms difference of 1.16 Å), even with extensive minimization, thus allowing accurate calculations of comparative energies. Our calculations indicate an energy change of about –60 kcal/mol (2.58 eV) in the protein alone upon reduction. This energy change was due to both the change in charge of the redox site and the subsequent relaxation of the protein. An energy minimization procedure for the relaxation gives rms differences between the oxidized and reduced states of about 0.2 Å. The changes were small and occurred in both the backbone and sidechain mainly near the Fe–S center but contributed about – 16 kcal/mol (0.69 eV) to the total protein contribution. Although the neglect of certain effects such as electronic polarization may make the relaxation energies calculated an upper limit, the results indicate that protein relaxation contributes substantially to the redox potential. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Crystal structures of pheasant and guinea fowl egg-white lysozymes.   总被引:2,自引:2,他引:0       下载免费PDF全文
The crystal structures of pheasant and guinea fowl lysozymes have been determined by X-ray diffraction methods. Guinea fowl lysozyme crystallizes in space group P6(1)22 with cell dimensions a = 89.2 A and c = 61.7 A. The structure was refined to a final crystallographic R-factor of 17.0% for 8,854 observed reflections in the resolution range 6-1.9 A. Crystals of pheasant lysozyme are tetragonal, space group P4(3)2(1)2, with a = 98.9 A, c = 69.3 A and 2 molecules in the asymmetric unit. The final R-factor is 17.8% to 2.1 A resolution. The RMS deviation from ideality is 0.010 A for bond lengths and 2.5 degrees for bond angles in both models. Three amino acid positions beneath the active site are occupied by Thr 40, Ile 55, and Ser 91 in hen, pheasant, and other avian lysozymes, and by Ser 40, Val 55, and Thr 91 in guinea fowl and American quail lysozymes. In spite of their internal location, the structural changes associated with these substitutions are small. The pheasant enzyme has an additional N-terminal glycine residue, probably resulting from an evolutionary shift in the site of cleavage of prelysozyme. In the 3-dimensional structure, this amino acid partially fills a cleft on the surface of the molecule, close to the C alpha atom of Gly 41 and absent in lysozymes from other species (which have a large side-chain residue at position 41: Gln, His, Arg, or Lys). The overall structures are similar to those of other c-type lysozymes, with the largest deviations occurring in surface loops. Comparison of the unliganded and antibody-bound models of pheasant lysozyme suggests that surface complementarity of contacting surfaces in the antigen-antibody complex is the result of local, small rearrangements in the epitope. Structural evidence based upon this and other complexes supports the notion that antigenic variation in c-type lysozymes is primarily the result of amino acid substitutions, not of gross structural changes.  相似文献   

19.
A solution molecular model for the conformationally dynamically heterogeneous Pyrococcus furiosus ferredoxin with an intact disulfide bond has been constructed on the basis of reported (1)H NMR spectral parameters using distance geometry and simulated annealing protocols. Conventional long-mixing time NOESY and H-bonding constraints have been augmented by previously reported short-mixing time NOESY, steady-state NOE, and cluster paramagnetism-induced relaxation. The family of 15 structures with inconsequential violations exhibited low rms deviations for backbone atoms for the overwhelming majority of the residues, including the cluster ligating loop with the unprecedented ligated Asp14. Larger rms deviations were observed across the disulfide bond, but closer inspection revealed that the 15 structures can be factored into 10 substructures exhibiting an "S" or right-handed disulfide orientation and 5 exhibiting an "R" or left-handed disulfide orientation. The remainder of the structure is indistinguishable for the two disulfide orientations but confirms stabilizing extensions of secondary structural elements in the lengthening of the long helix and both the lengthening and incorporation of a third strand into the beta-sheet involving the termini, with these extensions interacting strongly in a modular fashion through the rings of Tyr46 and Trp2. These extensions of stabilizing interactions in Pyrococcus furiosus Fd, however, lead to strong destabilization of the disulfide bond and destabilization of the highly conserved first and last beta-turns in the sequence. It is concluded that the structural alternations in Pyrococcus Fd relative to other hyperthermostable Fds are not to increase thermostability but to place "stress" on the disulfide bond and render it more reducible. The possible physiological implications of this unique reducible disulfide bond are discussed.  相似文献   

20.
The recently redetermined structure of the 7 Fe ferredoxin from Azotobacter vinelandii has been refined against a new 1.9 A data set. The crystallographic R-factor is 0.215 for all 9586 observed reflections 8.0 to 1.9 A. The model contains 106 amino acid residues, two Fe-S clusters and 21 water molecules. The root-mean-square deviations from ideality of bonds and angles are 0.014 A and 3.3 degrees, respectively. The refinement confirms the presence of two free cysteines: the thiol of C11 is in association with the side-chain of K100; the thiol of C24 is 3.35 A from inorganic sulfur of the [4 Fe-4 S] cluster. The refinement confirms a [3 Fe-4 S] model for the 3 Fe cluster. The two Fe-S clusters have similar bond distances and angles. The structure of the protein for residues 1 to 57 superposes within 0.85 A on residues 1 to 53 of the 8 Fe ferredoxin structure for main-chain N, CA and C atoms, if residues 9, 10, 29 and 30 of 7 Fe ferredoxin are omitted. These residues are part of two loops in contact with residues of the extended C-terminal chain of 7 Fe ferredoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号