共查询到20条相似文献,搜索用时 0 毫秒
1.
The innate immune system in the intestine 总被引:1,自引:0,他引:1
The innate immune system provides the first line of host defense against invading pathogens. Innate immune responses are initiated by germline-encoded PRR, which recognize specific structures expressed by microorganisms. TLR are a family of PRR which sense a wide range of microorganisms, including bacteria, fungi, protozoa and viruses. TLR are also expressed in the intestine and are critical for intestinal homeostasis. Recently, cytoplasmic PRR, such as NLR and RLR, have been shown to detect pathogens that have invaded the cytosol. One of the NLR, NOD2, is thought to be involved in the pathogenesis of Crohn's disease. This review focuses on the innate immune responses triggered by PRR in the intestine. 相似文献
2.
Tae‐ho Jang Hyun Ho Park 《Acta Crystallographica. Section F, Structural Biology Communications》2014,70(8):1053-1055
Toll‐like receptor (TLR) proteins have been identified and shown to play a role in the innate immune response. TLR6 associated with TLR2 can recognize diacylated lipoprotein. In this study, the human TLR6 TIR domain corresponding to amino acids 640–796 was overexpressed in Escherichia coli using engineered C‐terminal His tags. The TLR6 TIR domain was then purified to homogeneity and crystallized at 20°C. Finally, X‐ray diffraction data were collected to a resolution of 2.2 Å from a crystal belonging to space group C2, with unit‐cell parameters a = 127.60, b = 44.20, c = 75.72 Å, β = 118.89° 相似文献
3.
Infective factors cause the perpetuation of inflammation as a result of the permanent exposure of the immune system to exogenous or endogenous products of virus or bacteria. Mesenchymal stem cells (MSCs) can be exposed to this infective environment, which may change the characteristics and therapeutic potency of these MSCs. MSCs have the ability to repair damaged and inflamed tissues and regulate immune responses. In this study, we demonstrated that MSCs express functional Toll‐like receptors (TLR) 3 and 4, the Toll‐like receptor families that recognize the signals of viral and bacterial mimics, respectively. The specific stimulations did not affect the self‐renewal and apoptosis capabilities of MSCs but instead promoted their differentiation into the adipocytes and osteoblasts with the TLR3 ligand. The reverse of these results were obtained with the TLR4 ligand. The migration of the MSCs to stimulate either of the two specific ligands was inhibited at different times, whereas the immunogenicity and immunosuppressive properties of the MSCs were not weakened unlike in the MSCs group. These results suggest that TLR3 and TLR4 stimulation affect the characterization of MSCs. 相似文献
4.
5.
Lipopolysaccharide (LPS) is a potent activator of cells of the immune and inflammatory systems, including macrophages, monocytes, and endothelial cells (EC). Toll-like receptor 4 (TLR4) has been identified as the primary receptor for LPS. Vascular smooth muscle cells (VSMCs) likely contribute significantly to the inflammation induced by low-level LPS in patients who are at risk for atherosclerosis. Previous study indicated that functional TLR4 was present in VSMCs. However, it remains unclear whether low levels of commercial LPS preparations can affect TLR4 expression in early stage. Here Real-time quantitative PCR analysis was used to detect TLR4 mRNA expression; Immunofluorescence, Western blot analysis and flow cytometry were used to examine TLR4 protein expression. It was shown that TLR4 was present in Human Aortic Smooth Muscle Cells (HASMCs). LPS can up-regulate TLR4 mRNA and protein expression in HASMCs in dose- and time-dependent manner. These data indicate that LPS regulate TLR4 expression in HASMCs. 相似文献
6.
Neutralization of pro‐inflammatory monocytes by targeting TLR2 dimerization ameliorates colitis
下载免费PDF全文

Avner Fink Ziv Porat Batya Zarmi Biana Bernshtein Ori Brenner Steffen Jung Yechiel Shai 《The EMBO journal》2016,35(6):685-698
Monocytes have emerged as critical driving force of acute inflammation. Here, we show that inhibition of Toll‐like receptor 2(TLR2) dimerization by a TLR2 transmembrane peptide (TLR2‐p) ameliorated DSS‐induced colitis by interfering specifically with the activation of Ly6C+ monocytes without affecting their recruitment to the colon. We report that TLR2‐p directly interacts with TLR2 within the membrane, leading to inhibition of TLR2–TLR6/1 assembly induced by natural ligands. This was associated with decreased levels of extracellular signal‐regulated kinases (ERK) signaling and reduced secretion of pro‐inflammatory cytokines, such as interleukin (IL)‐6, IL‐23, IL‐12, and IL‐1β. Altogether, our study provides insights into the essential role of TLR2 dimerization in the activation of pathogenic pro‐inflammatory Ly6Chi monocytes and suggests that inhibition of this aggregation by TLR2‐p might have therapeutic potential in the treatment of acute gut inflammation. 相似文献
7.
Macrophages are essential for the development of innate immune responses against a variety of infectious factors. They detect invading pathogens via their pattern recognition receptors such as toll-like receptors (TLRs). TLR7/8 recognizes ssRNA from various viruses. In the present study, we have used 2-DE gel-based proteomics to find novel TLR7/8 target proteins in human monocyte-derived macrophages in order to improve our understanding of the virus recognition by this TLR. A total of 27 protein spots were found to be reproducibly differentially expressed between control and TLR7/8 activated 2-DE gel pairs, 18 spots being more than two-fold upregulated and nine spots being at least two-fold downregulated. Several proteins involved in defense against toxic superoxide (O2-) and other reactive oxygen species, such as manganese-containing superoxide dismutase (SOD2), glutathione peroxidase, and peroxiredoxins 1 and 6 were highly upregulated after TLR7/8 activation. Western blot analysis showed that activation of macrophages with TLR2, TLR3, TLR4, and TLR7/8 ligands also strongly upregulated SOD2 protein expression. In conclusion, our results show that the activation of pattern recognition receptors of the innate immune system results in strong upregulation of SOD2 gene expression suggesting that SOD2 protects macrophages from oxidative stress during microbial infection. 相似文献
8.
9.
Henriques ES Brito RM Soares H Ventura S de Oliveira VL Parkhouse RM 《Protein science : a publication of the Protein Society》2011,20(2):247-255
African swine fever virus (ASFV) is a large double-stranded DNA virus responsible for a lethal pig disease, to which no vaccine has ever been obtained. Its genome encodes a number of proteins involved in virus survival and transmission in its hosts, in particular proteins that inhibit signaling pathways in infected macrophages and, thus, interfere with the host's innate immune response. A recently identified novel ASFV viral protein (pI329L) was found to inhibit the Toll-like receptor 3 (TLR3) signaling pathway, TLR3 being a crucial \"danger detector.\" pI329L has been predicted to be a transmembrane protein containing extracellular putative leucine-rich repeats similar to TLR3, suggesting that pI329L might act as a TLR3 decoy. To explore this idea, we used comparative modeling and other structure prediction protocols to propose (a) a model for the TLR3-Toll-interleukin-1 receptor homodimer and (b) a structural fold for pI329L, detailed at atomistic level for its cytoplasmic domain. As this later domain shares only remote sequence relationships with the available TLR3 templates, a more complex modeling strategy was employed that combines the iterative implementation of (multi)threading/assembly/refinement (I-TASSER) structural prediction with expertise-guided posterior refinement. The final pI329L model presents a plausible fold, good structural quality, is consistent with the available experimental data, and it corroborates our hypothesis of pI329L being a TLR3 antagonist. 相似文献
10.
Xiaoqian Yu Jiang Lin Qing Yu Toshihisa Kawai Martin A. Taubman Xiaozhe Han 《Microbiology and immunology》2014,58(1):51-60
B lymphocytes express multiple TLRs that regulate their cytokine production. We investigated the effect of TLR4 and TLR9 activation on receptor activator of NF‐κB ligand (RANKL) expression by rat spleen B cells. Splenocytes or purified spleen B cells from Rowett rats were cultured with TLR4 ligand Escherichia coli LPS and/or TLR9 ligand CpG‐oligodeoxynucleotide (CpG‐ODN) for 2 days. RANKL mRNA expression and the percentage of RANKL‐positive B cells were increased in rat splenocytes challenged by E. coli LPS alone. The increases were less pronounced when cells were treated with both CpG‐ODN and E. coli LPS. Microarray analysis showed that expressions of multiple cyclin‐dependent kinase (CDK) pathway‐related genes were up‐regulated only in cells treated with both E. coli LPS and CpG‐ODN. This study suggests that CpG‐ODN inhibits LPS‐induced RANKL expression in rat B cells via regulation of the CDK pathway. 相似文献
11.
Yu Kawanishi Akira Tominaga Hiromi Okuyama Satoshi Fukuoka Takahiro Taguchi Yutaka Kusumoto Toshio Yawata Yasunori Fujimoto Shiro Ono Keiji Shimizu 《Microbiology and immunology》2013,57(1):63-73
This study is the first to report that Spirulina complex polysaccharides (CPS) suppress glioma growth by down‐regulating angiogenesis via a Toll‐like receptor 4 signal. Murine RSV‐M glioma cells were implanted s.c. into C3H/HeN mice and TLR4 mutant C3H/HeJ mice. Treatment with either Spirulina CPS or Escherichia coli (E. coli) lipopolysaccharides (LPS) strongly suppressed RSV‐M glioma cell growth in C3H/HeN, but not C3H/HeJ, mice. Glioma cells stimulated production of interleukin (IL)‐17 in both C3H/HeN and C3H/HeJ tumor‐bearing mice. Treatment with E. coli LPS induced much greater IL‐17 production in tumor‐bearing C3H/HeN mice than in tumor‐bearing C3H/HeJ mice. In C3H/HeN mice, treatment with Spirulina CPS suppressed growth of re‐transplanted glioma; however, treatment with E. coli LPS did not, suggesting that Spirulina CPS enhance the immune response. Administration of anti‐cluster of differentiation (CD)8, anti‐CD4, anti‐CD8 antibodies, and anti‐asialo GM1 antibodies enhanced tumor growth, suggesting that T cells and natural killer cells or macrophages are involved in suppression of tumor growth by Spirulina CPS. Although anti‐interferon‐γ antibodies had no effect on glioma cell growth, anti‐IL‐17 antibodies administered four days after tumor transplantation suppressed growth similarly to treatment with Spirulina CPS. Less angiogenesis was observed in gliomas from Spirulina CPS‐treated mice than in those from saline‐ or E. coli LPS‐treated mice. These findings suggest that, in C3H/HeN mice, Spirulina CPS antagonize glioma cell growth by down‐regulating angiogenesis, and that this down‐regulation is mediated in part by regulating IL‐17 production. 相似文献
12.
13.
14.
动脉粥样硬化(atherosclerosis,AS)是多种细胞、炎性介质参与形成的慢性炎症性疾病。Toll样受体家族(Toll like receptors,TLRs)中的TLR4是机体重要的诱导分泌多种炎性因子的模式识别受体。现有证据表明,TLR4不仅产生多种炎性因子诱发血管炎症反应,而且促进AS斑块形成和发展,造成斑块不稳定,甚至破裂,对AS的发生、发展具有重要作用。因此,了解TLR4对AS的影响有助于发现新的治疗靶点和对策。主要对TLR4在AS发病机制和易损斑块发展中的作用进行综述。 相似文献
15.
Badrinarayanan Raghavan Stefan F Martin Philipp R Esser Matthias Goebeler Marc Schmidt 《EMBO reports》2012,13(12):1109-1115
Development of contact allergy requires cooperation of adaptive and innate immunity. Ni2+ stimulates innate immunity via TLR4/MD2, the bacterial LPS receptor. This likely involves receptor dimerization, but direct proof is pending and it is unclear if related haptens share this mechanism. We reveal Co2+ as second metal stimulating TLR4 and confirm necessity of H456/H458 therein. Experiments with a new TLR4 dimerization mutant established dimerization as a mechanism of metal‐ and LPS‐induced TLR4 activation. Yet, in interaction studies only LPS‐ but not metal‐induced dimerization required MD2. Consistently, soluble TLR4 expressed without MD2 inhibited metal‐ but not LPS‐induced responses, opening new therapeutic perspectives. 相似文献
16.
Elise E. Bruning Janet K. Coller Hannah R. Wardill Joanne M. Bowen 《Journal of cellular physiology》2021,236(2):877-888
Toll‐like receptor 4 (TLR4) is a highly conserved protein of innate immunity, responsible for the regulation and maintenance of homeostasis, as well as immune recognition of external and internal ligands. TLR4 is expressed on a variety of cell types throughout the gastrointestinal tract, including on epithelial and immune cell populations. In a healthy state, epithelial cell expression of TLR4 greatly assists in homeostasis by shaping the host microbiome, promoting immunoglobulin A production, and regulating follicle‐associated epithelium permeability. In contrast, immune cell expression of TLR4 in healthy states is primarily centred on the maturation of dendritic cells in response to stimuli, as well as adequately priming the adaptive immune system to fight infection and promote immune memory. Hence, in a healthy state, there is a clear distinction in the site‐specific roles of TLR4 expression. Similarly, recent research has indicated the importance of site‐specific TLR4 expression in inflammation and disease, particularly the impact of epithelial‐specific TLR4 on disease progression. However, the majority of evidence still remains ambiguous for cell‐specific observations, with many studies failing to provide the distinction of epithelial versus immune cell expression of TLR4, preventing specific mechanistic insight and greatly impacting the translation of results. The following review provides a critical overview of the current understanding of site‐specific TLR4 activity and its contribution to intestinal/immune homeostasis and inflammatory diseases. 相似文献
17.
18.
Tiandi Wei Jing Gong Ferdinand Jamitzky Wolfgang M. Heckl Robert W. Stark Shaila C. Rössle 《Protein science : a publication of the Protein Society》2009,18(8):1684-1691
Toll‐like receptors (TLRs) play a key role in the innate immune system. The TLR7, 8, and 9 compose a family of intracellularly localized TLRs that signal in response to pathogen‐derived nucleic acids. So far, there are no crystallographic structures for TLR7, 8, and 9. For this reason, their ligand‐binding mechanisms are poorly understood. To enable first predictions of the receptor–ligand interaction sites, we developed three‐dimensional structures for the leucine‐rich repeat ectodomains of human TLR7, 8, and 9 based on homology modeling. To achieve a high sequence similarity between targets and templates, structural segments from all known TLR ectodomain structures (human TLR1/2/3/4 and mouse TLR3/4) were used as candidate templates for the modeling. The resulting models support previously reported essential ligand‐binding residues. They also provide a basis to identify three potential receptor dimerization mechanisms. Additionally, potential ligand‐binding residues are identified using combined procedures. We suggest further investigations of these residues through mutation experiments. Our modeling approach can be extended to other members of the TLR family or other repetitive proteins. 相似文献
19.
Fibroblast control on epithelial differentiation is gradually lost during in vitro tumor progression 总被引:3,自引:0,他引:3
Costea DE Johannessen AC Vintermyr OK 《Differentiation; research in biological diversity》2005,73(4):134-141
This study aimed to investigate the role of underlying fibroblasts on morphogenesis of in vitro epithelium reconstituted with normal and neoplastic human oral keratinocytes at various stages of malignant transformation. Primary normal human oral keratinocytes (NOKs), early neoplastic/dysplastic human oral keratinocytes (DOK cell line), and neoplastic human oral keratinocytes (PE/CA-PJ 15 cell line) were organotypically grown on top of a collagen type I matrix with or without primary normal human oral fibroblasts. Morphogenesis of the reconstituted epithelia was assessed by histomorphometry, immunohistochemistry (Ki-67, cyclin D1, cytokeratin 13 (CK13), collagen IV, E-cadherin, p53, CD40), and the terminal deoxynucleotidyl transferase-mediated dUTP in situ nick end-labelling method. Reproducible in vitro models of multistage oral carcinogenesis were established. Presence of fibroblasts in the collagen matrix significantly increased cell proliferation in all three models (p<0.05), and induced an invasive pattern of growth in the neoplastic cell lines (p<0.05). In normal, but not in neoplastic oral keratinocytes fibroblasts induced the expression of CD40, and polarized the expression of E-cadherin and p53 to the basal cell layer. In both normal and early neoplastic keratinocytes (DOK cell line), fibroblasts induced the expression of CK13 and collagen IV. In the neoplastic oral keratinocytes (PE/CA-PJ 15 cell line), the presence of underlying fibroblasts did not change the expression of any of the protein markers assessed. This study showed that (1) major steps of oral carcinogenesis can be reproduced in vitro, and (2) the tight control exerted by fibroblasts on epithelial morphogenesis of in vitro reconstituted normal human oral mucosa is gradually lost during neoplastic progression. 相似文献