首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
It could be argued that the greatest transformative aspect of the Human Genome Project has been not the sequencing of the genome itself, but the resultant development of new technologies. A host of new approaches has fundamentally changed the way we approach problems in basic and translational research. Now, a new generation of high-throughput sequencing technologies promises to again transform the scientific enterprise, potentially supplanting array-based technologies and opening up many new possibilities. By allowing DNA/RNA to be assayed more rapidly than previously possible, these next-generation platforms promise a deeper understanding of genome regulation and biology. Significantly enhancing sequencing throughput will allow us to follow the evolution of viral and bacterial resistance in real time, to uncover the huge diversity of novel genes that are currently inaccessible, to understand nucleic acid therapeutics, to better integrate biological information for a complete picture of health and disease at a personalized level and to move to advances that we cannot yet imagine.  相似文献   

3.
The EMBO/EMBL symposium ‘Human Variation: Cause and Consequence’ highlighted advances in understanding the molecular basis of human genetic variation and its myriad implications for biology, human origins and disease. As high‐throughput sequencing allows us to define genetic variation and its functional consequences at genome‐wide resolution for a large number of people, important questions need to be asked about how to use new technologies to maximize the translational relevance of genetic research for society and the individual patient.  相似文献   

4.
The ability to read and quantify nucleic acids such as DNA and RNA using sequencing technologies has revolutionized our understanding of life. With the emergence of synthetic biology, these tools are now being put to work in new ways — enabling de novo biological design. Here, we show how sequencing is supporting the creation of a new wave of biological parts and systems, as well as providing the vast data sets needed for the machine learning of design rules for predictive bioengineering. However, we believe this is only the tip of the iceberg and end by providing an outlook on recent advances that will likely broaden the role of sequencing in synthetic biology and its deployment in real-world environments.  相似文献   

5.
6.
The ability to comprehensively profile cellular heterogeneity in functional proteome is crucial in advancing the understanding of cell behavior, organism development, and disease mechanisms. Conventional bulk measurement by averaging the biological responses across a population often loses the information of cellular variations. Single‐cell proteomic technologies are becoming increasingly important to understand and discern cellular heterogeneity. The well‐established methods for single‐cell protein analysis based on flow cytometry and fluorescence microscopy are limited by the low multiplexing ability owing to the spectra overlap of fluorophores for labeling antibodies. Recent advances in mass spectrometry (MS), microchip, and reiterative staining‐based techniques for single‐cell proteomics have enabled the evaluation of cellular heterogeneity with high throughput, increased multiplexity, and improved sensitivity. In this review, the principles, developments, advantages, and limitations of these advanced technologies in analysis of single‐cell proteins, along with their biological applications to study cellular heterogeneity, are described. At last, the remaining challenges, possible strategies, and future opportunities that will facilitate the improvement and broad applications of single‐cell proteomic technologies in cell biology and medical research are discussed.  相似文献   

7.
Museum specimens play a crucial role in addressing key questions in systematics, evolution, ecology, and conservation. With the advent of high‐throughput sequencing technologies, specimens that have long been the foundation of important biological discoveries can inform new perspectives as sources of genomic data. Despite the many possibilities associated with analyzing DNA from historical specimens, several challenges persist. Using avian systems as a model, we review DNA extraction protocols, sequencing technologies, and capture methods that are helping researchers overcome some of these difficulties. We highlight empirical examples in which researchers have used these technologies to address fundamental questions related to avian conservation and evolution. Increasing accessibility to new sequencing technologies will provide researchers with tools to tap into the wealth of information contained within our valuable natural history collections.  相似文献   

8.
Gene‐editing techniques are currently revolutionizing biology, allowing far greater precision than previous mutagenic and transgenic approaches. They are becoming applicable to a wide range of plant species and biological processes. Gene editing can rapidly improve a range of crop traits, including disease resistance, abiotic stress tolerance, yield, nutritional quality and additional consumer traits. Unlike transgenic approaches, however, it is not facile to forensically detect gene‐editing events at the molecular level, as no foreign DNA exists in the elite line. These limitations in molecular detection approaches are likely to focus more attention on the products generated from the technology than on the process in itself. Rapid advances in sequencing and genome assembly increasingly facilitate genome sequencing as a means of characterizing new varieties generated by gene‐editing techniques. Nevertheless, subtle edits such as single base changes or small deletions may be difficult to distinguish from normal variation within a genotype. Given these emerging scenarios, downstream ‘omics’ technologies reflective of edited affects, such as metabolomics, need to be used in a more prominent manner to fully assess compositional changes in novel foodstuffs. To achieve this goal, metabolomics or ‘non‐targeted metabolite analysis’ needs to make significant advances to deliver greater representation across the metabolome. With the emergence of new edited crop varieties, we advocate: (i) concerted efforts in the advancement of ‘omics’ technologies, such as metabolomics, and (ii) an effort to redress the use of the technology in the regulatory assessment for metabolically engineered biotech crops.  相似文献   

9.
Recent advances in DNA sequencing techniques and automated informatics has led to clarification of all genome sequence of some model organisms in a very short period. The demonstration of the first draft sequence of the human genome has prompted us to elaborate new approaches in biology, pharmacology and medicine. Such new research will focus on high throughput methods to function on collections of genes, and hopefully, on a genome-wide, quantitative modeling of the cell system as a whole. In this review article, we discuss the present status of "post genome sequencing" approaches in line with our strategies for understanding the molecular mechanism of fertilization and activation of development using the African clawed frog, Xenopus laevis, as a model system.  相似文献   

10.
11.
The advent of any new technology is typically met with great excitement. So it was a few years ago, when the combination of advances in sequencing technology and the development of microarray technology made measurements of global gene expression in ecologically relevant species possible. Many of the review papers published around that time promised that these new technologies would revolutionize environmental biology as they had revolutionized medicine and related fields. A few years have passed since these technological advancements have been made, and the use of microarray studies in non‐model fish species has been adopted in many laboratories internationally. Has the relatively widespread adoption of this technology really revolutionized the fields of environmental biology, including ecotoxicology, aquaculture and ecology, as promised? Or have these studies merely become a novelty and a potential distraction for scientists addressing environmentally relevant questions? In this review, the promises made in early review papers, in particular about the advances that the use of microarrays would enable, are summarized; these claims are compared to the results of recent studies to determine whether the forecasted changes have materialized. Some applications, as discussed in the paper, have been realized and have led to advances in their field, others are still under development.  相似文献   

12.
13.
A cell's phenotype is the culmination of several cellular processes through a complex network of molecular interactions that ultimately result in a unique morphological signature. Visual cell phenotyping is the characterization and quantification of these observable cellular traits in images. Recently, cellular phenotyping has undergone a massive overhaul in terms of scale, resolution, and throughput, which is attributable to advances across electronic, optical, and chemical technologies for imaging cells. Coupled with the rapid acceleration of deep learning–based computational tools, these advances have opened up new avenues for innovation across a wide variety of high-throughput cell biology applications. Here, we review applications wherein deep learning is powering the recognition, profiling, and prediction of visual phenotypes to answer important biological questions. As the complexity and scale of imaging assays increase, deep learning offers computational solutions to elucidate the details of previously unexplored cellular phenotypes.  相似文献   

14.
15.
Advances in sequencing technologies have led to the increased use of high throughput sequencing in characterizing the microbial communities associated with our bodies and our environment. Critical to the analysis of the resulting data are sequence assembly algorithms able to reconstruct genes and organisms from complex mixtures. Metagenomic assembly involves new computational challenges due to the specific characteristics of the metagenomic data. In this survey, we focus on major algorithmic approaches for genome and metagenome assembly, and discuss the new challenges and opportunities afforded by this new field. We also review several applications of metagenome assembly in addressing interesting biological problems.  相似文献   

16.
The high-throughput - next generation sequencing (HT-NGS) technologies are currently the hottest topic in the field of human and animals genomics researches, which can produce over 100 times more data compared to the most sophisticated capillary sequencers based on the Sanger method. With the ongoing developments of high throughput sequencing machines and advancement of modern bioinformatics tools at unprecedented pace, the target goal of sequencing individual genomes of living organism at a cost of $1,000 each is seemed to be realistically feasible in the near future. In the relatively short time frame since 2005, the HT-NGS technologies are revolutionizing the human and animal genome researches by analysis of chromatin immunoprecipitation coupled to DNA microarray (ChIP-chip) or sequencing (ChIP-seq), RNA sequencing (RNA-seq), whole genome genotyping, genome wide structural variation, de novo assembling and re-assembling of genome, mutation detection and carrier screening, detection of inherited disorders and complex human diseases, DNA library preparation, paired ends and genomic captures, sequencing of mitochondrial genome and personal genomics. In this review, we addressed the important features of HT-NGS like, first generation DNA sequencers, birth of HT-NGS, second generation HT-NGS platforms, third generation HT-NGS platforms: including single molecule Heliscope™, SMRT™ and RNAP sequencers, Nanopore, Archon Genomics X PRIZE foundation, comparison of second and third HT-NGS platforms, applications, advances and future perspectives of sequencing technologies on human and animal genome research.  相似文献   

17.
18.
DNA sequencing can be used to gain important information on genes, genetic variation and gene function for biological and medical studies. The growing collection of publicly available reference genome sequences will underpin a new era of whole genome re-sequencing, but sequencing costs need to fall and throughput needs to rise by several orders of magnitude. Novel technologies are being developed to meet this need by generating massive amounts of sequence that can be aligned to the reference sequence. The challenge is to maintain the high standards of accuracy and completeness that are hallmarks of the previous genome projects. One or more new sequencing technologies are expected to become the mainstay of future research, and to make DNA sequencing centre stage as a routine tool in genetic research in the coming years.  相似文献   

19.
Genome‐modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre‐defined locations across the genome. The handful of methods capable of targeted gene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome‐scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering.  相似文献   

20.
蓝洋  胡江涛  张玉娟 《遗传》2017,39(2):89-97
化学计量基因组学是一个新兴的研究领域,研究基因组、转录组、蛋白质组及代谢组等组学数据中生物大分子的元素使用偏好。不同生物大分子的元素组成与数量不同,当元素供应受到限制,自然选择偏好性利用某些单体(氨基酸或核苷酸)来合成生物大分子(DNA、RNA和蛋白质等),从而减少元素成本。随着高通量测序技术和组装技术的大量应用,越来越多的宏基因组、宏转录组数据被公开报道,以及新的分析手段的应用,使得该领域蓬勃发展。作为一门新兴的交叉学科,化学计量  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号