首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
Insect foreign materials in food are of great economic and hygienic significance. However, identifying these species with any certainty requires an expert taxonomist and can be a time consuming process. Furthermore, insects are found as body parts or they are immature specimens that cannot be identified by conventional means. For these reasons, a reference database and efficient means of identification by non‐specialists are necessary to control insect pests. In this study, we chose 15 important insect pest species, because they had a higher probability of being included in human foods. We tested the utility of the cytochrome c oxidase I (COI) DNA barcodes for the identification. A 658‐bp fragment of the COI gene was sequenced, aligned, and a sequence data bank was constructed. As a result, the COI barcode sequence was suitable for identifying insect pests as food foreign materials. Photographs of morphological key characters by stereoscopic microscope and a pictorial key of the species are provided.  相似文献   

2.
【目的】明确山西翅果油树Elaeagnus mollis上发生危害的3种鳞翅目害虫形态鉴定特征及生活史特性,并基于mtDNA COI基因DNA条形码对这3个种进行快速物种识别鉴定。【方法】通过观察山西翅果油树上3种鳞翅目害虫成虫外部形态和解剖拍照雌、雄性外生殖器特征,利用PCR扩增对待测样本COI基因DNA条形码序列进行测定,与GenBank数据库中同源序列进行比对,基于COI基因DNA条形码序列构建邻接树 (neighborjoining, NJ),结合形态学研究结果对这3种鳞翅目害虫开展种类鉴定。【结果】形态学鉴定结果表明,危害山西翅果油树的3种鳞翅目害虫为榆兴透翅蛾Synanthedon ulmicola、兴透翅蛾Synanthedon sp.和斜纹小卷蛾Apotomis sp.。对这3个种的外部形态和雌、雄性外生殖器鉴别特征进行了描述和绘图。DNA条形码序列比对分析结果显示,榆兴透翅蛾与GenBank数据库中Synanthedon sequoiae的COI基因核苷酸序列一致性为90.7%,兴透翅蛾与GenBank数据库中Synanthedon spheciformis的COI基因核苷酸序列一致性为90.0%,斜纹小卷蛾与GenBank数据库中Apotomis capreana的COI基因核苷酸序列一致性为92.7%,NJ树聚类分析结果显示3个种分别形成明显的单系分支,与形态学和序列比对鉴定结果相吻合。【结论】本研究基于形态学鉴定和COI基因DNA条形码分子鉴定明确了危害山西翅果油树的3种鳞翅目害虫——榆兴透翅蛾、兴透翅蛾和斜纹小卷蛾,并提供了3个种的形态鉴定特征、生活史资料,为重要经济树种翅果油树的害虫防治提供了理论依据和科学资料。  相似文献   

3.
Several recent studies have proposed that partial DNA sequences of the cytochrome c oxidase I (COI) mitochondrial gene might serve as DNA barcodes for identifying and differentiating between animal species, such as birds, fish and insects. In this study, we tested the effectiveness of a COI barcode to identify true bugs from 139 species collected from Korea and adjacent regions (Japan, Northeastern China and Fareast Russia). All the species had a unique COI barcode sequence except for the genus Apolygus (Miridae), and the average interspecific genetic distance between closely related species was about 16 times higher than the average intraspecific genetic distance. DNA barcoding identified one probable new species of true bug and revealed identical or very recently divergent species that were clearly distinguished by morphological characteristics. Therefore, our results suggest that COI barcodes can reveal new cryptic true bug species and are able to contribute for the exact identification of the true bugs.  相似文献   

4.
Identification of Birds through DNA Barcodes   总被引:37,自引:2,他引:35       下载免费PDF全文
Short DNA sequences from a standardized region of the genome provide a DNA barcode for identifying species. Compiling a public library of DNA barcodes linked to named specimens could provide a new master key for identifying species, one whose power will rise with increased taxon coverage and with faster, cheaper sequencing. Recent work suggests that sequence diversity in a 648-bp region of the mitochondrial gene, cytochrome c oxidase I (COI), might serve as a DNA barcode for the identification of animal species. This study tested the effectiveness of a COI barcode in discriminating bird species, one of the largest and best-studied vertebrate groups. We determined COI barcodes for 260 species of North American birds and found that distinguishing species was generally straightforward. All species had a different COI barcode(s), and the differences between closely related species were, on average, 18 times higher than the differences within species. Our results identified four probable new species of North American birds, suggesting that a global survey will lead to the recognition of many additional bird species. The finding of large COI sequence differences between, as compared to small differences within, species confirms the effectiveness of COI barcodes for the identification of bird species. This result plus those from other groups of animals imply that a standard screening threshold of sequence difference (10× average intraspecific difference) could speed the discovery of new animal species. The growing evidence for the effectiveness of DNA barcodes as a basis for species identification supports an international exercise that has recently begun to assemble a comprehensive library of COI sequences linked to named specimens.  相似文献   

5.
A total of 103 barcode (mitochondrial COI) sequences were newly provided for 77 forest insect pests from 66 genera belonging to Coleoptera, Hemiptera, and Lepidoptera. All 77 species had distinct COI sequences, revealing low intraspecific genetic divergence (< 1.20%) and high interspecific genetic divergence (> 7.30%). Among the 66 genera, 32 COI sequences of 25 species belonging to 16 genera were compared with 280 COI sequences of 117 species belonging to the same 16 genera archived in GenBank, showing that most species were clearly distinguished by barcode sequences. Based on these results, we conclude that a DNA barcode is effective for identifying forest insect pest species.  相似文献   

6.
Accurate species-level identifications underpin many aspects of basic and applied biology;however,identifications can be hampered by a lack of discriminating morphological characters,taxonomic expertise or time.Molecular approaches,such as DNA"barcoding"of the cytochrome c oxidase(COI)gene,are argued to overcome these issues.However,nuclear encoding of mitochondrial genes(numts)and poor amplification success of suboptimally preserved specimens can lead to erroneous identifications.One insect group for which these molecular and morphological problems are significant are the dacine fruit flies(Diptera:Tephritidae:Dacini).We addressed these issues associated with COI barcoding in the dacines by first assessing several"universal"COI primers against public mitochondrial genome and numt sequences for dacine taxa.We then modified a set of four primers that more closely matched true dacine COI sequence and amplified two overlapping portions of the COI barcode region.Our new primers were tested alongside universal primers on a selection of dacine species,including both fresh preserved and decades-old dry specimens.Additionally,Bactrocera tiyoni mitochondrial and nuclear genomes were compared to identify putative numts.Four numt clades were identified,three of which were amplified using existing universal primers.In contrast,our new primers preferentially amplified the"true"mitochondrial COI barcode in all dacine species tested.The new primers also successfully amplified partial barcodes from dry specimens for which full length barcodes were unobtainable.Thus we recommend these new primers be incorporated into the suites of primers used by diagnosticians and quarantine labs for the accurate identification of dacine species.  相似文献   

7.
Taxonomic identification can be difficult when two or more species appear morphologically similar. DNA barcoding based on the sequence of the mitochondrial cytochrome c oxidase 1 gene (COI) is now widely used in identifying animal species. High‐resolution melting analysis (HRM) provides an alternative method for detecting sequence variations among amplicons without having to perform DNA sequencing. The purpose of this study was to determine whether HRM of the COI barcode can be used to distinguish animal species. Using anurans as a model, we found distinct COI melting profiles among three congeners of both Lithobates spp. and Hyla spp. Sequence variations within species shifted the melting temperature of one or more melting domains slightly but do not affect the distinctness of the melting profiles for each species. An NMDS ordination plot comparing melting peak profiles among eight Anuran species showed overlapping profiles for Lithobates sphenocephala and Gastrophryne carolinensis. The COI amplicon for both species contained two melting domains with melting temperatures that were similar between the two species. The two species belong to two different families, highlighting the fact that COI melting profiles do not reveal phylogenetic relationships but simply reflect DNA sequence differences among stretches of DNA within amplicons. This study suggests that high‐resolution melting analysis of COI barcodes (COI‐HRM) may be useful as a simple and rapid method to distinguish animal species that appear morphologically similar.  相似文献   

8.
Non-biting midges (Diptera: Chironomidae) are a diverse population that commonly causes respiratory allergies in humans. Chironomid larvae can be used to indicate freshwater pollution, but accurate identification on the basis of morphological characteristics is difficult. In this study, we constructed a mitochondrial cytochrome c oxidase subunit I (COI)-based DNA barcode library for Korean chironomids. This library consists of 211 specimens from 49 species, including adults and unidentified larvae. The interspecies and intraspecies COI sequence variations were analyzed. Sophisticated indexes were developed in order to properly evaluate indistinct barcode gaps that are created by insufficient sampling on both the interspecies and intraspecies levels and by variable mutation rates across taxa. In a variety of insect datasets, these indexes were useful for re-evaluating large barcode datasets and for defining COI barcode gaps. The COI-based DNA barcode library will provide a rapid and reliable tool for the molecular identification of Korean chironomid species. Furthermore, this reverse-taxonomic approach will be improved by the continuous addition of other speceis’ sequences to the library.  相似文献   

9.
Anthropogenic impacts are an increasing threat to the diversity of fishes, especially in areas around large urban centres, and many effective conservation actions depend on accurate species identification. Considering the utility of DNA barcoding as a global system for species identification and discovery, this study aims to assemble a DNA barcode reference sequence library for marine fishes from the coastal region of São Paulo State, Brazil. The standard 652 bp ‘barcode’ fragment of the cytochrome c oxidase subunit I (COI) gene was PCR amplified and bidirectionally sequenced from 678 individuals belonging to 135 species. A neighbour‐joining analysis revealed that this approach can unambiguously discriminate 97% of the species surveyed. Most species exhibited low intraspecific genetic distances (0.31%), about 43‐fold less than the distance among species within a genus. Four species showed higher intraspecific divergences ranging from 2.2% to 7.6%, suggesting overlooked diversity. Notably, just one species‐pair exhibited barcode divergences of <1%. This library is a first step to better know the molecular diversity of marine fish species from São Paulo, providing a basis for further studies of this fauna – extending the ability to identify these species from all life stages and even fragmentary remains, setting the stage for a better understanding of interactions among species, calibrating the estimations about species composition and richness in an ecosystem, and providing tools for authenticating bioproducts and monitoring illegal species exploitation.  相似文献   

10.
DNA barcoding Korean birds   总被引:6,自引:0,他引:6  
Yoo HS  Eah JY  Kim JS  Kim YJ  Min MS  Paek WK  Lee H  Kim CB 《Molecules and cells》2006,22(3):323-327
DNA barcoding, an inventory of DNA sequences from a standardized genomic region, provides a bio-barcode for identifying and discovering species. Several recent studies suggest that the sequence diversity in a 648 bp region of the mitochondrial gene for cytochrome c oxi- dase I (COI) might serve as a DNA barcode for identify- ing animal species such as North American birds, in- sects and fishes. The present study tested the effective- ness of a COI barcode in discriminating Korean bird species. We determined the 5' terminus of the COI bar- code for 92 species of Korean birds and found that spe- cies identification was unambiguous; the genetic differ- ences between closely related species were, on average, 25 times higher than the differences within species. We identified only one misidentified species out of 239 specimens in a genetic resource bank, so confirming the accuracy of species identification in the banking system. We also identified two potential composite species, calling for further investigation using more samples. The finding of large COI sequence differences between species confirms the effectiveness of COI barcodes for identifying Korean bird species. To bring greater reliability to the identification of species, increased in- tra- and interspecies sampling, as well as supplementa- tion of the mitochondrial barcodes with nuclear ones, is needed.  相似文献   

11.
DNA barcoding was used in the identification of 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. A total of 1765 DNA barcodes using a 654‐bp‐long fragment of the mitochondrial cytochrome c oxidase subunit I gene were generated for 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. These species belong to 70 genera, 40 families and 19 orders from class Actinopterygii, and all were associated with a distinct DNA barcode. Nine and 12 of the COI barcode clusters represent the first species records submitted to the BOLD and GenBank databases, respectively. All COI barcodes (except sequences of first species records) were matched with reference sequences of expected species, according to morphological identification. Average nucleotide frequencies of the data set were calculated as T = 29.7%, C = 28.2%, A = 23.6% and G = 18.6%. Average pairwise genetic distance among individuals were estimated as 0.32%, 9.62%, 17,90% and 22.40% for conspecific, congeneric, confamilial and within order, respectively. Kimura 2‐parameter genetic distance values were found to increase with taxonomic level. For most of the species analysed in our data set, there is a barcoding gap, and an overlap in the barcoding gap exists for only two genera. Neighbour‐joining trees were drawn based on DNA barcodes and all the specimens clustered in agreement with their taxonomic classification at species level. Results of this study supported DNA barcoding as an efficient molecular tool for a better monitoring, conservation and management of fisheries.  相似文献   

12.
DNA barcoding involves the use of one or more short, standardized DNA fragments for the rapid identification of species. A 648‐bp segment near the 5′ terminus of the mitochondrial cytochrome c oxidase subunit I (COI) gene has been adopted as the universal DNA barcode for members of the animal kingdom, but its utility in mushrooms is complicated by the frequent occurrence of large introns. As a consequence, ITS has been adopted as the standard DNA barcode marker for mushrooms despite several shortcomings. This study employed newly designed primers coupled with cDNA analysis to examine COI sequence diversity in six species of Pleurotus and compared these results with those for ITS. The ability of the COI gene to discriminate six species of Pleurotus, the commonly cultivated oyster mushroom, was examined by analysis of cDNA. The amplification success, sequence variation within and among species, and the ability to design effective primers was tested. We compared ITS sequences to their COI cDNA counterparts for all isolates. ITS discriminated between all six species, but some sequence results were uninterpretable, because of length variation among ITS copies. By comparison, a complete COI sequences were recovered from all but three individuals of Pleurotus giganteus where only the 5′ region was obtained. The COI sequences permitted the resolution of all species when partial data was excluded for P. giganteus. Our results suggest that COI can be a useful barcode marker for mushrooms when cDNA analysis is adopted, permitting identifications in cases where ITS cannot be recovered or where it offers higher resolution when fresh tissue is. The suitability of this approach remains to be confirmed for other mushrooms.  相似文献   

13.
线粒体COⅠ基因在昆虫DNA条形码中的研究与应用   总被引:2,自引:0,他引:2  
杨倩倩  李志红  伍祎  柳丽君 《昆虫知识》2012,49(6):1687-1695
自2003年DNA条形码(DNA barcodes)概念出现以来,DNA条形码技术(DNA barcoding)受到生物分类学领域普遍关注,线粒体细胞色素氧化酶亚基I(mtDNACOⅠ)被用作动物类群的主要条形码序列,基于该基因片段的昆虫条形码研究在国内外广泛开展。本文在概述DNA条形码、条形码技术及已开展的昆虫条形码研究计划的基础上,总结了昆虫mtDNACOⅠ条形码及其技术在发现和描述隐种、种类分子鉴定以及系统发育等方面的研究进展,分析了细胞核线粒体假基因(Numts)对mtDNACOⅠ条形码扩增的影响,提出检测和避免Numts的方法,并对DNA条形码技术的进一步研究和应用进行了讨论和展望。  相似文献   

14.
15.
This paper reports the first tests of the suitability of the standardized mitochondrial cytochrome c oxidase subunit I (COI) barcoding system for the identification of Canadian deerflies and horseflies. Two additional mitochondrial molecular markers were used to determine whether unambiguous species recognition in tabanids can be achieved. Our 332 Canadian tabanid samples yielded 650 sequences from five genera and 42 species. Standard COI barcodes demonstrated a strong A + T bias (mean 68.1%), especially at third codon positions (mean 93.0%). Our preliminary test of this system showed that the standard COI barcode worked well for Canadian Tabanidae: the target DNA can be easily recovered from small amounts of insect tissue and aligned for all tabanid taxa. Each tabanid species possessed distinctive sets of COI haplotypes which discriminated well among species. Average conspecific Kimura two‐parameter (K2P) divergence (0.49%) was 12 times lower than the average divergence within species. Both the neighbour‐joining and the Bayesian methods produced trees with identical monophyletic species groups. Two species, Chrysops dawsoni Philip and Chrysops montanus Osten Sacken (Diptera: Tabanidae), showed relatively deep intraspecific sequence divergences (~10 times the average) for all three mitochondrial gene regions analysed. We suggest provisional differentiation of Ch. montanus into two haplotypes, namely, Ch. montanus haplomorph 1 and Ch. montanus haplomorph 2, both defined by their molecular sequences and by newly discovered differences in structural features near their ocelli.  相似文献   

16.

Background

Detecting and controlling the movements of invasive species, such as insect pests, relies upon rapid and accurate species identification in order to initiate containment procedures by the appropriate authorities. Many species in the tussock moth genus Lymantria are significant forestry pests, including the gypsy moth Lymantria dispar L., and consequently have been a focus for the development of molecular diagnostic tools to assist in identifying species and source populations. In this study we expand the taxonomic and geographic coverage of the DNA barcode reference library, and further test the utility of this diagnostic method, both for species/subspecies assignment and for determination of geographic provenance of populations.

Methodology/Principal Findings

Cytochrome oxidase I (COI) barcodes were obtained from 518 individuals and 36 species of Lymantria, including sequences assembled and generated from previous studies, vouchered material in public collections, and intercepted specimens obtained from surveillance programs in Canada. A maximum likelihood tree was constructed, revealing high bootstrap support for 90% of species clusters. Bayesian species assignment was also tested, and resulted in correct assignment to species and subspecies in all instances. The performance of barcoding was also compared against the commonly employed NB restriction digest system (also based on COI); while the latter is informative for discriminating gypsy moth subspecies, COI barcode sequences provide greater resolution and generality by encompassing a greater number of haplotypes across all Lymantria species, none shared between species.

Conclusions/Significance

This study demonstrates the efficacy of DNA barcodes for diagnosing species of Lymantria and reinforces the view that the approach is an under-utilized resource with substantial potential for biosecurity and surveillance. Biomonitoring agencies currently employing the NB restriction digest system would gather more information by transitioning to the use of DNA barcoding, a change which could be made relatively seamlessly as the same gene region underlies both protocols.  相似文献   

17.
Ceroplastes Gray (wax scales) is one of the genera of Coccidae, most species of which are considered to be serious economic pests. However, identification of Ceroplastes species is always difficult owing to the shortage of easily distinguishable morphological characters. Mitochondrial cytochrome c oxidase I (COI) sequences (or DNA barcodes) and the D2 expansion segments of the large subunit ribosomal RNA gene 28S were used for accurate identification of six Ceroplastes species (C. floridensis Comstock, C. japonicus Green, C. ceriferus (Fabricius), C. pseudoceriferus Green, C. rubens Maskell and C. kunmingensis Tang et Xie) from 20 different locations in China. For COI data, low G·C content was found in all species, averaging about 20.4%. Sequence divergences (K2P) between congeneric species averaged 12.19%, while intra‐specific divergences averaged 0.42%. All 112 samples fell into six reciprocally monophyletic clades in the COI neighbour‐joining (NJ) tree. The NJ tree inferred from 28S showed almost same results, but samples of two closely related species, C. ceriferus and C. pseudoceriferus, were clustered together. This research indicates that the standard barcode region of COI can efficiently identify similar Ceroplastes species. This study provides an example of the usefulness of barcoding for Ceroplastes identification.  相似文献   

18.
Identification of adult fruit flies primarily involves microscopic examination of diagnostic morphological characters, while immature stages, such as larvae, can be more problematic. One of the Australia’s most serious horticultural pests, the Queensland Fruit Fly (Bactrocera tryoni: Tephritidae), is of particular biosecurity/quarantine concern as the immature life stages occur within food produce and can be difficult to identify using morphological characteristics. DNA barcoding of the mitochondrial Cytochrome Oxidase I (COI) gene could be employed to increase the accuracy of fruit fly species identifications. In our study, we tested the utility of standard DNA barcoding techniques and found them to be problematic for Queensland Fruit Flies, which (i) possess a nuclear copy (a numt pseudogene) of the barcoding region of COI that can be co‐amplified; and (ii) as in previous COI phylogenetic analyses closely related B. tryoni complex species appear polyphyletic. We found that the presence of a large deletion in the numt copy of COI allowed an alternative primer to be designed to only amplify the mitochondrial COI locus in tephritid fruit flies. Comparisons of alternative commonly utilized mitochondrial genes, Cytochrome Oxidase II and Cytochrome b, revealed a similar level of variation to COI; however, COI is the most informative for DNA barcoding, given the large number of sequences from other tephritid fruit fly species available for comparison. Adopting DNA barcoding for the identification of problematic fly specimens provides a powerful tool to distinguish serious quarantine fruit fly pests (Tephritidae) from endemic fly species of lesser concern.  相似文献   

19.
DNA barcodes are widely used in taxonomy, systematics, species identification, food safety, and forensic science. Most of the conventional DNA barcode sequences contain the whole information of a given barcoding gene. Most of the sequence information does not vary and is uninformative for a given group of taxa within a monophylum. We suggest here a method that reduces the amount of noninformative nucleotides in a given barcoding sequence of a major taxon, like the prokaryotes, or eukaryotic animals, plants, or fungi. The actual differences in genetic sequences, called single nucleotide polymorphism (SNP) genotyping, provide a tool for developing a rapid, reliable, and high‐throughput assay for the discrimination between known species. Here, we investigated SNPs as robust markers of genetic variation for identifying different pigeon species based on available cytochrome c oxidase I (COI) data. We propose here a decision tree‐based SNP barcoding (DTSB) algorithm where SNP patterns are selected from the DNA barcoding sequence of several evolutionarily related species in order to identify a single species with pigeons as an example. This approach can make use of any established barcoding system. We here firstly used as an example the mitochondrial gene COI information of 17 pigeon species (Columbidae, Aves) using DTSB after sequence trimming and alignment. SNPs were chosen which followed the rule of decision tree and species‐specific SNP barcodes. The shortest barcode of about 11 bp was then generated for discriminating 17 pigeon species using the DTSB method. This method provides a sequence alignment and tree decision approach to parsimoniously assign a unique and shortest SNP barcode for any known species of a chosen monophyletic taxon where a barcoding sequence is available.  相似文献   

20.
This study represents the first comprehensive molecular assessment of freshwater fishes and lampreys from Germany. We analysed COI sequences for almost 80% of the species mentioned in the current German Red List. In total, 1056 DNA barcodes belonging to 92 species from all major drainages were used to (i) build a reliable DNA barcode reference library, (ii) test for phylogeographic patterns, (iii) check for the presence of barcode gaps between species and (iv) evaluate the performance of the barcode index number (BIN) system, available on the Barcode of Life Data Systems. For over 78% of all analysed species, DNA barcodes are a reliable means for identification, indicated by the presence of barcode gaps. An overlap between intra‐ and interspecific genetic distances was present in 19 species, six of which belong to the genus Coregonus. The Neighbour‐Joining phenogram showed 60 nonoverlapping species clusters and three singleton species, which were related to 63 separate BIN numbers. Furthermore, Barbatula barbatula, Leucaspius delineatus, Phoxinus phoxinus and Squalius cephalus exhibited remarkable levels of cryptic diversity. In contrast, 11 clusters showed haplotype sharing, or low levels of divergence between species, hindering reliable identification. The analysis of our barcode library together with public data resulted in 89 BINs, of which 56% showed taxonomic conflicts. Most of these conflicts were caused by the use of synonymies, inadequate taxonomy or misidentifications. Moreover, our study increased the number of potential alien species in Germany from 14 to 21 and is therefore a valuable groundwork for further faunistic investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号