首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pathogenic Leptospira strains are responsible for leptospirosis, a worldwide emerging zoonotic disease. These spirochetes are unique amongst bacteria because of their corkscrew-like cell morphology and their periplasmic flagella. Motility is reported as an important virulence determinant, probably favoring entry and dissemination of pathogenic Leptospira in the host. However, proteins constituting the periplasmic flagella and their role in cell shape, motility and virulence remain poorly described. In this study, we characterized a spontaneous L. interrogans mutant strain lacking motility, correlated with the loss of the characteristic hook-shaped ends, and virulence in the animal model. Whole genome sequencing allowed the identification of one nucleotide deletion in the fliM gene resulting in a premature stop codon, thereby preventing the production of flagellar motor switch protein FliM. Genetic complementation restored cell morphology, motility and virulence comparable to those of wild type cells. Analyses of purified periplasmic flagella revealed a defect in flagella assembly, resulting in shortened flagella compared to the wild type strain. This also correlated with a lower amount of major filament proteins FlaA and FlaB. Altogether, these findings demonstrate that FliM is required for full and correct assembly of the flagella which is essential for motility and virulence.  相似文献   

2.

Background  

Leptospira is the causative genus of the disease, leptospirosis. Species identification of pathogenic Leptospira in the past was generally performed by either DNA-DNA hybridisation or 16s rRNA gene sequencing. Both methods have inherent disadvantages such as the need for radio-labelled isotopes or significant homology between species. A conventional and real-time PCR amplification and sequencing method was developed for an alternate gene target: DNA gyrase subunit B (gyrB). Phylogenetic comparisons were undertaken between pathogenic Leptospira 16srRNA and gyrB genes using clustering and minimum evolution analysis. In addition 50 unidentified Leptospira isolates were characterised by gyrB sequencing and compared with conventional 16s rRNA sequencing.  相似文献   

3.

Background

Bacteria of the genus Leptospira, the causative agents of leptospirosis, are categorized into pathogenic and non-pathogenic species. However, the benefit of using a clinical diagnostic that is specific for pathogenic species remains unclear. In this study, we present the development of a real-time PCR (rtPCR) for the detection of pathogenic Leptospira (the pathogenic rtPCR), and we perform a comparison of the pathogenic rtPCR with a published assay that detects all Leptospira species [the undifferentiated febrile illness (UFI) assay] and a reference 16S Leptospira rtPCR, which was originally designed to detect pathogenic species.

Methodology/Principal Findings

For the pathogenic rtPCR, a new hydrolysis probe was designed for use with primers from the UFI assay, which targets the 16S gene. The pathogenic rtPCR detected Leptospira DNA in 37/37 cultured isolates from 5 pathogenic and one intermediate species. Two strains of the non-pathogenic L. biflexa produced no signal. Clinical samples from 65 patients with suspected leptospirosis were then tested using the pathogenic rtPCR and a reference Leptospira 16S rtPCR. All 65 samples had tested positive for Leptospira using the UFI assay; 62 (95.4%) samples tested positive using the pathogenic rtPCR (p = 0.24). Only 24 (36.9%) samples tested positive in the reference 16S rtPCR (p<0.0001 for comparison with the pathogenic rtPCR and UFI assays). Amplicon sequencing confirmed the detection of pathogenic Leptospira species in 49/50 cases, including 3 cases that were only detected using the UFI assay.

Conclusions/Significance

The pathogenic rtPCR displayed similar sensitivity to the UFI assay when testing clinical specimens with no difference in specificity. Both assays proved significantly more sensitive than a real-time molecular test used for comparison. Future studies are needed to investigate the clinical and epidemiologic significance of more sensitive Leptospira detection using these tests.  相似文献   

4.
It is not known how Leptospira react to wound or a cut infected with microbes, such as pathogenic Staphylococcus, or their common habitat on oral or nasal mucosal membranes. In the present study, Staphylococcus aureus MTCC‐737 showed strong co‐aggregation with leptospiral strains (>75%, visual score of + 4) in vitro. All tested strains of Leptospira were able to form biofilm with S. aureus. Scanning electron microscopy analysis revealed intertwined networks of attached cells of L. interrogans and S. aureus, thus providing evidence of a matrix‐like structure. This phenomenon may have implications in Leptospira infection, which occurs via cuts and wounds of the skin.  相似文献   

5.
Leptospira were isolated from soil obtained from Hokkaido, the northernmost island, to Okinawa, the southernmost island, of Japan using sulfamethoxazole, trimethoprim, amphotericin B, fosfomycin, and 5‐ fluorouracil. Fifty of 132 soil samples (37.9%) were culture‐positive. On the basis of 16S‐rDNA sequences, 12 of the isolated Leptospira were classified into a pathogenic species clade that is closely associated with L. alstonii and L. kmetyi. Nine isolates were classified as intermediate species and were found to be similar to L. licerasiae. Twenty‐seven isolates were classified as non‐pathogenic species, of which 23 were found to be related to L. wolbachii. Non‐pathogenic Leptospira are commonly distributed in environmental soil.  相似文献   

6.

Background  

The usefulness of available vaccine and serological tests for leptospirosis is limited by the low cross-reactivity of antigens from numerous serovars of pathogenic Leptospira spp. Identification of genus-specific protein antigens (GP-Ag) of Leptospira would be important for development of universal vaccines and serodiagnostic methods. OmpL1, a transmembrane porin of pathogenic leptospires, was identified as a possible GP-Ag, but its sequence diversity and immune cross-reactivity among different serovars of pathogenic leptospires remains largely unknown.  相似文献   

7.

Background  

Leptospirosis is a zoonosis of worldwide distribution caused by infection with pathogenic serovars of Leptospira spp. The most common species, L. interrogans, can survive in the environment for lengthy periods of time in between infection of mammalian hosts. Transmission of pathogenic Leptospira to humans mostly occurs through abraded skin or mucosal surfaces after direct or indirect contact with infected animals or contaminated soil or water. The spirochete then spreads hematogenously, resulting in multi-organ failure and death in severe cases. Previous DNA microarray studies have identified differentially expressed genes required for adaptation to temperature and osmolarity conditions inside the host compared to those of the environment.  相似文献   

8.
The inter-simple-sequence repeat (ISSR) primers that anneal to a simple repeat of various length and at non-repetitive motifs at 3 and 5 end were attempted for PCR amplification of Leptospira genome. Of the six ISSR primers tested, namely, (AG)8T, (AG)8C, (AG)8G, (CA)8A, (TG)8C and (TG)8G, only primer (AG)8T produced amplification of 1000 bp in the two non-pathogenic Leptospira species tested, viz; Leptospira biflexa serovar patoc and L. meyeri serovar ranarum, with no amplification in any of the 16 standard pathogenic serovars tested. The remaining five ISSR primers did not exhibit any amplification of the Leptospira genome in either pathogenic or non-pathogenic species. From among 35 Leptospira isolates recovered from hospitalized patients with pyrexia of unknown origin and/or febrile jaundice (12 in number) and from different environmental water sources (23 in number), (AG)8T ISSR-PCR correctly identified all the 22 isolates from water sources that were confirmed to be non-pathogenic by conventional tests. The results therefore, confirmed the ability of a primer, based on simple-sequence repeat motif, to produce a fragment that is useful as a group genetic marker in Leptospira species. The single nucleotide anchor, T, at the 3 end of the primer appeared to play an important role in differentiation of pathogenic and non-pathogenic species of Leptospira. Multiplex PCR, using ISSR primer, (AG)8T and the reported 16S rRNA gene primers, specific for pathogenic Leptospira species, or the 23S rRNA Leptospira genus specific primers, provided clear identification of serovars and isolates into pathogenic or non-pathogenic groups.  相似文献   

9.
Biodiversity hotspots and associated endemism are ideal systems for the study of parasite diversity within host communities. Here, we investigated the ecological and evolutionary forces acting on the diversification of an emerging bacterial pathogen, Leptospira spp., in communities of endemic Malagasy small mammals. We determined the infection rate with pathogenic Leptospira in 20 species of sympatric rodents (subfamily Nesomyinae) and tenrecids (family Tenrecidae) at two eastern humid forest localities. A multilocus genotyping analysis allowed the characterization of bacterial diversity within small mammals and gave insights into their genetic relationships with Leptospira infecting endemic Malagasy bats (family Miniopteridae and Vespertilionidae). We report for the first time the presence of pathogenic Leptospira in Malagasy endemic small mammals, with an overall prevalence of 13%. In addition, these hosts harbour species of Leptospira (L. kirschneri, Lborgpetersenii and L. borgpetersenii group B) which are different from those reported in introduced rats (L. interrogans) on Madagascar. The diversification of Leptospira on Madagascar can be traced millions of years into evolutionary history, resulting in the divergence of endemic lineages and strong host specificity. These observations are discussed in relation to the relative roles of endemic vs. introduced mammal species in the evolution and epidemiology of Leptospira on Madagascar, specifically how biodiversity and biogeographical processes can shape community ecology of an emerging pathogen and lead to its diversification within native animal communities.  相似文献   

10.
Leptospirosis is a bacterial zoonotic disease caused by spirochetes in the genus Leptospira. To date, factors determining the pathogenicity and virulence of leptospires remain unclear. We performed a gel‐based proteomic analysis to evaluate differential leptospiral proteomes in the pathogenic L. interrogans (serovars Australis, Bratislava, Autumnalis, and Icterohaemorrhagiae) and the non‐pathogenic L. biflexa (serovar Patoc). Quantitative proteome analysis and MS protein identification revealed 42 forms of 33 unique proteins whose levels were significantly greater in the pathogenic serovars compared with the non‐pathogenic serovar. Among the four pathogenic serovars, the more virulent serovar Icterohaemorrhagiae (which is most commonly associated with severe leptospirosis in patients) had significantly greater levels of 14 forms of 12 unique proteins, when compared with the other three pathogenic serovars. Some of these identified proteins may serve as the pathogenic and/or virulence factors of leptospirosis.  相似文献   

11.
BackgroundLeptospirosis is a neglected zoonosis affecting animals and humans caused by infection with Leptospira. The bacteria can survive outside of hosts for long periods of time in soil and water. While identification of Leptospira species from human cases and animal reservoirs are increasingly reported, little is known about the diversity of pathogenic Leptospira species in the environment and how surveillance of the environment might be used for monitoring and controlling disease.ConclusionsThis study reports the presence of pathogenic Leptospira in the peri-domestic environment of households in three community types and the differences in Leptospira diversity at the community level. Systematic environmental surveillance of Leptospira can be used for detecting changes in pathogen diversity and to identify and monitor contaminated areas where an increased risk of human infection exists.  相似文献   

12.
Leptospirosis is the most widespread zoonotic disease in the world. It is caused by pathogenic spirochetes of the genus Leptospira spp. and is maintained in nature through chronic renal infection of carrier animals. Rodents and other small mammals are the main reservoirs. Information on leptospirosis in marine mammals is scarce; however, cases of leptospirosis have been documented in pinniped populations from the Pacific coast of North America from southern California to British Columbia. We report the isolation of a Leptospira spp. strain, here named Manara, from a kidney sample obtained from a Southern Right Whale (Eubalaena australis) calf, which stranded dead in Playa Manara, Península Valdés, Argentina. This strain showed motility and morphology typical of the genus Leptospira spp. under dark-field microscopy; and grew in Ellinghausen-McCullough-Johnson-Harris (EMJH) medium and Fletcher medium after 90 days of incubation at 28°C. Considering the source of this bacterium, we tested its ability to grow in Fletcher medium diluted with seawater at different percentages (1%, 3%, 5%, 7% and 10% v/v). Bacterial growth was detected 48 h after inoculation of Fletcher medium supplemented with 5% sea water, demonstrating the halophilic nature of the strain Manara. Phylogenetic analysis of 16S rRNA gene sequences placed this novel strain within the radiation of the pathogenic species of the genus Leptospira spp., with sequence similarities within the range 97–100%, and closely related to L. interrogans. Two different PCR protocols targeting genus-specific pathogenic genes (G1-G2, B64I-B64II and LigB) gave positive results, which indicates that the strain Manara is likely pathogenic. Further studies are needed to confirm this possibility as well as determine its serogroup. These results could modify our understanding of the epidemiology of this zoonosis. Until now, the resistance and ability to grow in seawater for long periods of time had been proven for the strain Muggia of L. biflexa, a saprophytic species. To the best of our knowledge, this is the first isolation of a Leptospira sp. from cetaceans. Our phenotypic data indicate that strain Manara represents a novel species of the genus Leptospira, for which the name Leptospira brihuegai sp. nov. is proposed.  相似文献   

13.
14.
Leptospires are a group of bacteria with a unique ultrastructure and a fascinating swimming behavior that cause a number of emerging and re-emerging diseases worldwide called leptospirosis. The unusual form of motility is thought to play a critical role in the infection process. However, the inhibition mechanism of antiserum on the motility of Leptospira to attenuate the infection efficiency is unknown. In this study, effect of antiserum on motility was quantitatively investigated by swimming speed. Relatively low concentration of antiserum was found to inhibit leptospiral motility, suggesting that the basic immunization can affect the infection efficiency. Recovery of motility a few hours later after the addition of antiserum was observed. This raises a hypothesis that Leptospira carries surface molecules bound with antibodies toward the cell end to escape and recovers the motility.  相似文献   

15.
Leptospira was isolated from environmental water in central Japan using selective medium comprising five antibiotics, namely sulfamethoxazole, trimethoprim, amphotericin B, fosfomycin, and 5‐fluorouracil. Of 100 water samples 57 (57%) were culture‐positive and 50 pure cultures were isolated. Of the 50 cultures isolated from water 48 were classified into a saprophytic clade on the basis of 16S ribosomal RNA gene sequences. However, it was previously reported that isolates from soil in Japan belonged to pathogenic, intermediate, and saprophytic clades, the current findings suggest less diversity of Leptospira species in environmental water than that in soil in Japan.  相似文献   

16.
Leptospirosis is an important epidemic zoonosis worldwide. Currently, there are more than 250 Leptospira pathogenic serovars known that can potentially infect humans. Conventional classification of leptospires with the serovar as the basic taxon, based on serological recognition of lipopolysaccharide (LPS) composition does not correlate well with species determination, based on general genomic features. Here, we investigate the selective amplification of polymorphic regions from the LPS biosynthesis loci (rfb) as a potential tool for serovar typing of Leptospira interrogans species. Eight pairs of primers were designed to target six ORFs from the rfb operon with varying levels of sequence polymorphism. They were tested both separately and multiplexed. Half of these primer pairs produced serovar-specific amplicons, allowing the identification of some specific serovars and also groups of serovars. It was shown that the serovar classification of Leptospira can be accessed by selective amplification of rfb operons in some cases, which may permit a parallel between the serological and the genomic classifications of Leptospira. As a conclusion, the selective amplification of rfb generated promising and already useful results, but it appears necessary to characterize a larger variety of Leptospira genomes or rfb operons to fully develop this method.  相似文献   

17.
In filamentous fungi, early endosomes are continuously trafficked to, and from, the growing hyphal tip by microtubule‐based motor proteins, serving as platforms for the long‐distance transport of diverse cargos including mRNA, signaling molecules, and other organelles which hitchhike on them. While the cellular machinery for early endosome motility in filamentous fungi is fairly well characterized, the broader physiological significance of this process remains less well understood. We set out to determine the importance of long‐distance early endosome trafficking in Aspergillus fumigatus, an opportunistic human pathogenic fungus that can cause devastating pulmonary infections in immunocompromised individuals. We first characterized normal early endosome motile behavior in A. fumigatus, then generated a mutant in which early endosome motility is severely perturbed through targeted deletion of the gene encoding for FtsA, one of a complex of proteins that links early endosomes to their motor proteins. Using a microfluidics‐based approach we show that contact‐induced hyphal branching behaviors are impaired in ΔftsA mutants, but that FtsA‐mediated early endosome motility is dispensable for virulence in an invertebrate infection model. Overall, our study provides new insight into early endosome motility in an important human pathogenic fungus.  相似文献   

18.
Leptospirosis is a re-emerging and globally spread zoonosis caused by pathogenic genomospecies of Leptospira. Wild boar (Sus scrofa) are an important Leptospira host and are increasing in population all over Europe. The aim of this investigation was to evaluate Leptospira spp. infection in the reproductive systems of wild boar hunted in two Italian regions: Tuscany and Sardinia. From 231 animals, reproductive system tissue samples (testicles, epididymides, uteri) as well as placentas and fetuses were collected. Bacteriological examination and Real-Time PCR were performed to detect pathogenic Leptospira (lipL32 gene). Leptospires were isolated from the testicles and epididymides of one adult and two subadult wild boar. Four isolates from the two subadult males were identified as Leptospira interrogans serogroup Australis by MLST, whereas Leptospira kirschneri serogroup Grippotyphosa was identified from the adult testicles and epididymis. Using Real-Time PCR, 70 samples were positive: 22 testicles (23.16%) and 22 epididymides (23.16%), 10 uteri (7.35%), 3 placentas (6.66%), and 13 fetuses (28.88%). Amplification of the rrs2 gene identified L. interrogans and L. kirschneri species. The results from this investigation confirmed that wild boar represent a potential source of pathogenic Leptospira spp. Isolation of Leptospira serogroups Australis and Grippotyphosa from the male reproductive system and the positive Real-Time PCR results from both male and female samples could suggest venereal transmission, as already demonstrated in pigs. Furthermore, placentas and fetuses were positive for the lipL32 target, and this finding may be related to a possible vertical transmission of pathogenic Leptospira.  相似文献   

19.
S10-spc-α is a 17.5 kb cluster of 32 genes encoding ribosomal proteins. This locus has an unusual composition and organization in Leptospira interrogans. We demonstrate the highly conserved nature of this region among diverse Leptospira and show its utility as a phylogenetically informative region. Comparative analyses were performed by PCR using primer sets covering the whole locus. Correctly sized fragments were obtained by PCR from all L. interrogans strains tested for each primer set indicating that this locus is well conserved in this species. Few differences were detected in amplification profiles between different pathogenic species, indicating that the S10-spc-α locus is conserved among pathogenic Leptospira. In contrast, PCR analysis of this locus using DNA from saprophytic Leptospira species and species with an intermediate pathogenic capacity generated varied results. Sequence alignment of the S10-spc-α locus from two pathogenic species, L. interrogans and L. borgpetersenii, with the corresponding locus from the saprophyte L. biflexa serovar Patoc showed that genetic organization of this locus is well conserved within Leptospira. Multilocus sequence typing (MLST) of four conserved regions resulted in the construction of well-defined phylogenetic trees that help resolve questions about the interrelationships of pathogenic Leptospira. Based on the results of secY sequence analysis, we found that reliable species identification of pathogenic Leptospira is possible by comparative analysis of a 245 bp region commonly used as a target for diagnostic PCR for leptospirosis. Comparative analysis of Leptospira strains revealed that strain H6 previously classified as L. inadai actually belongs to the pathogenic species L. interrogans and that L. meyeri strain ICF phylogenetically co-localized with the pathogenic clusters. These findings demonstrate that the S10-spc-α locus is highly conserved throughout the genus and may be more useful in comparing evolution of the genus than loci studied previously.  相似文献   

20.
Leptospirosis is a global zoonosis caused by pathogenic Leptospira. Neutrophils are key cells against bacterial pathogens but can also contribute to tissue damage. Because the information regarding the role of human neutrophils in leptospirosis is scant, we comparatively analysed the human neutrophil's response to saprophytic Leptospira biflexa serovar Patoc (Patoc) and the pathogenic Leptospira interrogans serovar Copenhageni (LIC). Both species triggered neutrophil responses involved in migration, including the upregulation of CD11b expression, adhesion to collagen, and the release of IL‐8. In addition, both species increased levels of pro‐inflammatory IL‐1β and IL‐6 associated with the inflammasome and NFκB pathway activation and delayed neutrophil apoptosis. LIC was observed on the neutrophil surface and not phagocytized. In contrast, Patoc generated intracellular ROS associated with its uptake. Neutrophils express the TYRO3, AXL, and MER receptor protein tyrosine kinases (TAM), but only LIC selectively increased the level of AXL. TLR2 but not TLR4‐blocking antibodies abrogated the IL‐8 secretion triggered by both Leptospira species. In summary, we demonstrate that Leptospira species trigger a robust neutrophil activation and pro‐inflammatory response. These findings may be useful to find new diagnostic markers and therapeutic strategies against leptospirosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号