首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
The telosome/shelterin, a six-protein complex formed by TRF1, TRF2, RAP1, TIN2, POT1, and TPP1, functions as the core of the telomere interactome, acting as the molecular platform for the assembly of higher order complexes and coordinating cross-talks between various protein subcomplexes. Within the telosome, there are two oligonucleotide- or oligosaccharide-binding (OB) fold-containing proteins, TPP1 and POT1. They can form heterodimers that bind to the telomeric single-stranded DNA, an activity that is central for telomere end capping and telomerase recruitment. Through proteomic analyses, we found that in addition to POT1, TPP1 can associate with another OB fold-containing protein, OBFC1/AAF44. The yeast homolog of OBFC1 is Stn1, which plays a critical role in telomere regulation. We show here that OBFC1/AAF44 can localize to telomeres in human cells and bind to telomeric single-stranded DNA in vitro. Furthermore, overexpression of an OBFC1 mutant resulted in elongated telomeres in human cells, implicating OBFC1/AAF4 in telomere length regulation. Taken together, our studies suggest that OBFC1/AAF44 represents a new player in the telomere interactome for telomere maintenance.Telomeres are specialized linear chromosome end structures, which are regulated and protected by networks of protein complexes (14). Telomere length, structure, and integrity are critical for the cells and the organism as a whole. Telomere dysregulation can lead to DNA damage response, cell cycle checkpoint, genome instability, and predisposition to cancer (59). Mammalian telomeres are composed of double-stranded (TTAGGG)n repeats followed by 3′-single-stranded overhangs (10). In addition to the telomerase that directly mediates the addition of telomere repeats to the end of chromosomes (11, 12), a multitude of telomere-specific proteins have been identified that form the telosome/shelterin complex and participate in telomere maintenance (9, 13). The telosome in turn acts as the platform onto which higher order telomere regulatory complexes may be assembled into the telomere interactome (14). The telomere interactome has been proposed to integrate the complex and labyrinthine network of protein signaling pathways involved in DNA damage response, cell cycle checkpoint, and chromosomal end maintenance and protection for telomere homeostasis and genome stability.Of the six telomeric proteins (TRF1, TRF2, RAP1, TIN2, POT1, and TPP1) that make up the telosome, TRF1 and TRF2 have been shown to bind telomeric double-stranded DNA (15, 16), whereas the OB3 fold-containing protein POT1 exhibits high affinities for telomeric ssDNA in vitro (17, 18). Although the OB fold of TPP1 does not show appreciable ssDNA binding activity, heterodimerization of TPP1 and POT1 enhances the POT1 ssDNA binding (17, 18). More importantly, POT1 depends on TPP1 for telomere recruitment, and the POT1-TPP1 heterodimer functions in telomere end protection and telomerase recruitment. Notably, the OB fold of TPP1 is critical for the recruitment of the telomerase (18). Disruption of POT1-TPP1 interaction by dominant negative inhibition, RNA interference, or gene targeting could lead to dysregulation of telomere length as well DNA damage responses at the telomeres (1821).In budding yeast, the homolog of mammalian POT1, Cdc13, has been shown to interact with two other OB fold-containing proteins, Stn1 and Ten1, to form a Cdc13-Stn1-Ten1 (CST) complex (22, 23). The CST complex participates in both telomere length control and telomere end capping (22, 23). The presence of multiple OB fold-containing proteins from yeast to human suggests a common theme for telomere ssDNA protection (4). Indeed, it has been proposed that the CST complex is structurally analogous to the replication factor A complex and may in fact function as a telomere-specific replication factor A complex (23). Notably, homologs of the CST complex have been found in other species such as Arabidopsis (24), further supporting the notion that multiple OB fold proteins may be involved in evolutionarily conserved mechanisms for telomere end protection and length regulation. It remains to be determined whether the CST complex exists in mammals.Although the circuitry of interactions among telosome components has been well documented and studied, how core telosome subunits such as TPP1 help to coordinate the cross-talks between telomere-specific signaling pathways and other cellular networks remains unclear. To this end, we carried out large scale immunoprecipitations and mass spectrometry analysis of the TPP1 protein complexes in mammalian cells. Through these studies, we identified OB fold-containing protein 1 (OBFC1) as a new TPP1-associated protein. OBFC1 is also known as α-accessory factor AAF44 (36). Sequence alignment analysis indicates that OBFC1 is a homolog of the yeast Stn1 protein (25). Further biochemical and cellular studies demonstrate the association of OBFC1 with TPP1 in live cells. Moreover, we showed that OBFC1 bound to telomeric ssDNA and localized to telomeres in mammalian cells. Dominant expression of an OBFC1 mutant led to telomere length dysregulation, indicating that OBFC1 is a novel telomere-associated OB fold protein functioning in telomere length regulation.  相似文献   

3.
4.
5.
Telomere maintenance in cycling cells relies on both DNA replication and capping by the protein complex shelterin. Two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomere 1 (POT1) play critical roles in DNA replication and telomere capping, respectively. While RPA binds to ssDNA in a non-sequence-specific manner, POT1 specifically recognizes singlestranded TTAGGG telomeric repeats. Loss of POT1 leads to aberrant accumulation of RPA at telomeres and activation of the ataxia telangiectasia and Rad3-related kinase (ATR)-mediated checkpoint response, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. The requirement for both POT1 and RPA in telomere maintenance and the antagonism between the two proteins raises the important question of how they function in concert on telomeric ssDNA. Two interesting models were proposed by recent studies to explain the regulation of POT1 and RPA at telomeres. Here, we discuss how these models help unravel the coordination, and also the antagonism, between POT1 and RPA during the cell cycle.Key words: RPA, POT1, telomere, ATR, checkpointTelomeres, the natural ends of chromosomes, are composed of repetitive DNA sequences and “capped” by both specific proteins and non-coding RNAs.13 One of the critical functions of telomeres is to prevent chromosomal ends from recognition by the DNA damage response machinery. Critically short or improperly capped telomeres lead to telomere dysfunction and are a major source of genomic instability.4 While telomeres need to be properly capped to remain stable, they also need to be duplicated during each cell division by the DNA replication machinery. The requirement of these two seemingly competing processes for telomere maintenance suggests that the cell must coordinate DNA replication and capping of telomeres to ensure faithful telomere duplication yet avoid an inappropriate DNA damage response.Telomeric DNA is unique in several ways. The bulk of each human telomere is comprised of double-stranded TTA GGG repeats. At the very end of each telomere, a stretch of single-stranded TTAGGG repeats exists as a 3′ overhang. The TTA GGG repeats in the telomeric single-stranded DNA (ssDNA) allow it to loop back and invade telomeric double-stranded DNA (dsDNA), forming a structure called the t-loop.5 At the base of the t-loop, the TTAGGG strand of the telomeric dsDNA is displaced by the invading single-stranded 3′ overhang to form a single-stranded D-loop. Thus, the unique DNA sequence and structures of telomeres confer the ability to bind proteins in both sequence- and structure-specific manners, providing the basis for additional regulations.In human cells, telomere capping is orchestrated by the protein complex shelterin, which contains TRF1, TRF2, RAP1, TIN2, TPP1 and POT1.3 Among these shelterin components, TRF1 and TRF2 interact with telomeric dsDNA in a sequence-specific manner, whereas POT1, in a complex with TPP1, binds to telomeric ssDNA in a sequence-specific manner.68 While the human genome contains only one POT1 gene, the mouse genome contains two POT1-related genes, POT1a and POT1b.911 TIN2 functions to stabilize TRF1 and TRF2 DNA binding and also tethers the POT1-TPP1 heterodimer to the rest of the shelterin complex on telomeric dsDNA.12,13Unlike the properly capped telomeres, double-stranded DNA breaks (DSBs) with ssDNA overhangs are known to activate the ATR checkpoint kinase.14,15 In a complex with its functional partner ATRIP, ATR is recruited to ssDNA by RPA, a non-sequence-specific ssDNA-binding protein complex.16 In addition to the ATR-ATRIP kinase complex, several other checkpoint proteins involved in ATR activation are also recruited in the presence of RPA-ssDNA.15 The structural resemblance between DSBs and telomeres and the presence of ssDNA at telomeres raise the important question as to how ATR activation is repressed at telomeres.  相似文献   

6.
In all telomerases, the template region of the RNA subunit contains a region of telomere homology that is longer than the unit telomeric repeat. This allows a newly synthesized telomeric repeat to translocate back to the 3′ end of the template prior to a second round of telomeric repeat synthesis. In the yeast Kluyveromyces lactis, the telomerase RNA (Ter1) template has 30 nucleotides of perfect homology to the 25-bp telomeric repeat. Here we provide strong evidence that three additional nucleotides at positions −2 through −4 present on the 3′ side of the template form base-pairing interactions with telomeric DNA. Mutation of these bases can lead to opposite effects on telomere length depending on the sequence permutation of the template in a manner consistent with whether the mutation increases or decreases the base-pairing potential with the telomere. Additionally, mutations in the −2 and −3 positions that restore base-pairing potential can suppress corresponding sequence changes in the telomeric repeat. Finally, multiple other yeast species were found to also have telomerase RNAs that encode relatively long 7- to 10-nucleotide domains predicted to base pair, often with imperfect pairing, with telomeric DNA. We further demonstrate that K. lactis telomeric fragments produce banded patterns with a 25-bp periodicity. This indicates that K. lactis telomeres have preferred termination points within the 25-bp telomeric repeat.Telomeres are DNA and protein complexes present at the ends of eukaryotic chromosomes that function to protect chromosome ends from terminal sequence losses and fusions (3, 36). Telomeric DNA is typically composed of tandem 5- to 26-bp repeats that are sufficient for telomere function and that serve as binding sites for telomeric proteins (32). The ribonucleoprotein enzyme telomerase adds telomeric repeats to chromosome ends and prevents the gradual shortening that would otherwise occur. Telomerase synthesizes new telomeric repeats onto chromosome ends by using part of its RNA subunit as a template (13, 14, 31). Cells without telomerase encounter growth and viability problems once telomeres begin to become too short to properly function. In most human cells, telomerase activity is greatly reduced or absent and the ensuing telomere shortening functions to inhibit the formation of cancer by limiting the number of divisions that cells can undergo (4, 7, 16, 30).Recognition of a telomeric end by telomerase in vivo is complex and requires a number of different interactions between components of telomerase and components of the telomere (32). Specialized proteins that bind the 3′ single-stranded overhangs of telomeres, including the yeast Cdc13 protein, can interact directly with telomerase (9, 28). A critical aspect of telomerase''s interaction with the telomeres comes through base pairing between the telomeric overhang and the template region of the telomerase RNA. In all known telomerases, the template region of the RNA subunit contains a region of telomere homology that is longer than the unit telomeric repeat. This presence of short sequence identities at the 3′ and 5′ borders of the template allow a newly synthesized telomeric repeat to translocate back to the 3′ end of the template prior to a second round of telomeric repeat synthesis (38).Kluyveromyces lactis is an ascomycetous yeast species that is a valuable model organism for studying telomeres and telomerase. Unlike the better-studied yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, K. lactis has telomeres composed of repeats of uniform size (25 bp) and sequence (24). This indicates that the translocation step during a round of DNA synthesis by the telomerase enzyme normally occurs between precise positions at the two ends of the telomerase RNA template region. Point mutations at any of multiple positions within either of the two 5-nucleotide (nt)-long direct repeats that border the telomerase RNA template result in telomeric repeats of abnormal size (35). These appear to result from disruption of the normal base-pairing interactions between template and telomeric DNA during the translocation step.Here we present genetic data that argue strongly that three additional nucleotides 3′ of the template and outside the region of continuous homology with the telomeric repeat are involved in the base pairing between telomeric DNA and the telomerase RNA template in K. lactis. Sequence data suggest that similar extended base-pairing regions are widespread in other yeast species.  相似文献   

7.
8.
9.
TEL1 is important in Saccharomyces cerevisiae telomere maintenance, and its kinase activity is required. Tel1p associates with telomeres in vivo, is enriched at short telomeres, and enhances the binding of telomerase components to short telomeres. However, it is unclear how the kinase activity and telomere association contribute to Tel1p''s overall function in telomere length maintenance. To investigate this question, we generated a set of single point mutants and a double point mutant (tel1KD) of Tel1p that were kinase deficient and two Xrs2p mutants that failed to bind Tel1p. Using these separation-of-function alleles in a de novo telomere elongation assay, we found, surprisingly, that the tel1KD allele and xrs2 C-terminal mutants were both partially functional. Combining the tel1KD and xrs2 C-terminal mutants had an additive effect and resembled the TEL1 null (tel1Δ) phenotype. These data indicate that Tel1p has two separate functions in telomere maintenance and that the Xrs2p-dependent recruitment of Tel1p to telomeres plays an important role even in the absence of its kinase activity.The telomere is a highly ordered complex of proteins and DNA found at the ends of linear chromosomes that functions to protect the ends and prevents them from being recognized as double-strand DNA breaks (51). Telomeres shorten gradually due to incomplete replication (1, 20), and this shortening is counteracted by telomerase, which elongates telomeres (18, 19).Saccharomyces cerevisiae telomeres are composed of 300 ± 50 bp of the sequence TG1-3/C1-3A. The yeast telomerase complex consists of Est2p (catalytic subunit), the RNA component TLC1, and two accessory proteins, Est1p and Est3p (50). Cells deficient for any of these telomerase components undergo progressive telomere shortening and a simultaneous decrease in growth rate, described as senescence (24, 27). Typically, a small fraction of cells, termed survivors, escape senescence and maintain telomere length by utilizing RAD52-dependent recombination (24, 26).In addition to the telomerase complex, a number of yeast proteins are important in maintaining telomere length and integrity. These include Tel1p and Mec1p, the yeast homologues of mammalian ATM and ATR, respectively (39). While deletion of TEL1 results in short but stable telomeres, MEC1 deletion has little effect on average telomere length. However, cells lacking TEL1 that have a mutant mec1-21 allele undergo senescence, similar to telomerase null cells (36), suggesting that MEC1 plays a minor but essential role in telomere length maintenance in tel1Δ cells. It has been shown that the protein kinase activities of Tel1p and Mec1p are essential in telomere maintenance, since tel1KD cells have short telomeres and tel1Δ mec1KD cells undergo senescence (29).In current models, Tel1p acts to maintain telomere length by regulating the access of telomerase to short telomeres. TEL1 is required for the association of Est1p and Est2p with telomeres in the late S/G2 phase of the cell cycle (16), the time when telomeres are elongated (9, 31). Additionally, in both yeast and mammalian cells, telomerase preferentially elongates the shortest telomeres (22, 30, 47). Therefore, TEL1 seems to be required mainly for the association of telomerase to short telomeres in yeast. Indeed, Tel1p preferentially binds to short telomeres (4, 21, 38) and is essential for the increased association of Est1p and Est2p to short telomeres during late S/G2 (38). However, the kinase activity of Tel1p is not required for the telomere association (21). In addition to its role in telomerase recruitment, TEL1 may also regulate telomere length by enhancing the processivity of telomerase at short telomeres (7).The Mre11p, Rad50p, and Xrs2p (MRX) complex also plays important roles in telomere maintenance. Cells lacking any one of these components (mrxΔ) have short and stable telomeres. Since combining mrxΔ with tel1Δ has no synergistic effect on telomere shortening and mrxΔ mec1Δ cells undergo senescence, it was proposed that the MRX complex and Tel1p function in the same telomere maintenance pathway (37). In agreement with this model, the C-terminal region of Xrs2p is essential in recruiting Tel1p both to double-strand breaks (32) and to short telomeres (38). Interestingly, the mammalian functional homologue of Xrs2p, NBS1, interacts with ATM via its extreme C terminus (13), suggesting that the recruitment of Tel1p to telomeres and the recruitment of ATM to DNA damage sites are conserved.It remains a question what exact roles the kinase activity of Tel1p and its telomere binding play in telomere maintenance. Tel1p''s telomere maintenance function seems to be dependent on its kinase activity, since tel1KD cells have short telomeres (29). It has been proposed that Tel1p may regulate the recruitment of Est1p, and thus the rest of the telomerase complex (12, 23, 54), to telomeres by phosphorylating Cdc13p (3, 48). Other experiments suggest the association of Tel1p to the telomere plays a major role. The preferential binding of Tel1p to short telomeres is lost in xrs2-664 cells (38), which lack the C-terminal 190 amino acids of Xrs2p and have short telomeres, similar to xrs2Δ (41). It has been suggested that the association of Tel1p to telomeres is required for its substrate phosphorylation and, therefore, telomere length maintenance (3, 39).To further analyze the functions of Tel1p in telomere maintenance, we generated a novel kinase-dead allele of TEL1 and new alleles of XRS2 that do not interact with Tel1p. Through these separation-of-function mutants, we show that both sets of alleles are partially active in a de novo telomere elongation assay. However, combining both the tel1KD and either of the Tel1p interaction-deficient xrs2 alleles resulted in a phenotype resembling the tel1Δ phenotype, suggesting that Tel1p has kinase-dependent and kinase-independent, but telomere binding-dependent, functions in telomere maintenance.  相似文献   

10.
Mammalian telomeres are protected by the shelterin complex, which contains single-stranded telomeric DNA binding proteins (POT1a and POT1b in rodents, POT1 in other mammals). Mouse POT1a prevents the activation of the ATR kinase and contributes to the repression of the nonhomologous end-joining pathway (NHEJ) at newly replicated telomeres. POT1b represses unscheduled resection of the 5′-ended telomeric DNA strand, resulting in long 3′ overhangs in POT1b KO cells. Both POT1 proteins bind TPP1, forming heterodimers that bind to other proteins in shelterin. Short hairpin RNA (shRNA)-mediated depletion had previously demonstrated that TPP1 contributes to the normal function of POT1a and POT1b. However, these experiments did not establish whether TPP1 has additional functions in shelterin. Here we report on the phenotypes of the conditional deletion of TPP1 from mouse embryo fibroblasts. TPP1 deletion resulted in the release of POT1a and POT1b from chromatin and loss of these proteins from telomeres, indicating that TPP1 is required for the telomere association of POT1a and POT1b but not for their stability. The telomere dysfunction phenotypes associated with deletion of TPP1 were identical to those of POT1a/POT1b DKO cells. No additional telomere dysfunction phenotypes were observed, establishing that the main role of TPP1 is to allow POT1a and POT1b to protect chromosome ends.Mammalian cells solve the chromosome end protection problem through the binding of shelterin to the telomeric TTAGGG repeat arrays at chromosome ends (5). Shelterin contains two double-stranded telomeric DNA binding proteins, TRF1 and TRF2, which both interact with the shelterin subunit TIN2. These three shelterin components, as well as the TRF2 interacting factor Rap1, are abundant, potentially covering the majority of the TTAGGG repeat sequences at chromosome ends (30). TIN2 interacts with the less abundant TPP1/POT1 heterodimers and is thought to facilitate the recruitment of the single-stranded telomeric DNA binding proteins to telomeres (15, 21, 35).Shelterin represses the four major pathways that threaten mammalian telomeres (6). It prevents activation of the ATM and ATR kinases, which can induce cell cycle arrest in response to double-strand breaks (DSBs). Shelterin also blocks the two major repair pathways that act on DSBs: nonhomologous end joining (NHEJ) and homology-directed repair (HDR). Removal of individual components of shelterin leads to highly specific telomere dysfunction phenotypes, allowing assignment of shelterin functions to each of its components.The POT1 proteins are critical for the repression of ATR signaling (20). Concurrent deletion of POT1a and POT1b from mouse embryo fibroblasts (POT1a/b DKO cells [12]) activates the ATR kinase at most telomeres, presumably because the single-stranded telomeric DNA is exposed to RPA. POT1a/b DKO cells also have a defect in the structure of the telomere terminus, showing extended 3′ overhangs that are thought to be due to excessive resection of the 5′-ended strand in the absence of POT1b (11-13). The combination of these two phenotypes, activation of the ATR kinase and excess single-stranded telomeric DNA, is not observed when either TRF1 or TRF2 is deleted.In contrast to the activation of ATR signaling in POT1a/b DKO cells, TRF2 deletion results in activation of the ATM kinase at telomeres (3, 16, 20). In addition, TRF2-deficient cells show widespread NHEJ-mediated telomere-telomere fusions (3, 31). This phenotype is readily distinguished from the consequences of POT1a/b loss. POT1a/b DKO cells have a minor telomere fusion phenotype that primarily manifests after DNA replication, resulting in the fusion of sister telomeres (12). In TRF2-deficient cells, most telomere fusions take place in G1 (18), resulting in chromosome-type telomere fusions in the subsequent metaphase. Chromosome-type fusions also occur in the POT1a/b DKO setting, but they are matched in frequency by sister telomere fusions.The type of telomere dysfunction induced by TRF1 loss is also distinct. Deletion of TRF1 gives rise to DNA replication problems at telomeres that activate the ATR kinase in S phase and leads to aberrant telomere structures in metaphase (referred to as “fragile telomeres”) (28). This fragile telomere phenotype is not observed upon deletion of POT1a and POT1b, and the activation of the ATR kinase at telomeres in POT1a/b DKO cells is not dependent on the progression through S phase (Y. Gong and T. de Lange, unpublished data). Furthermore, deletion of TRF1 does not induce excess single-stranded DNA.These phenotypic distinctions bear witness to the separation of functions within shelterin and also serve as a guide to understanding the contribution of the other shelterin proteins, including TPP1. TPP1 is an oligonucleotide/oligosaccharide-binding fold (OB fold) protein in shelterin that forms a heterodimer with POT1 (32). TPP1 and POT1 are distantly related to the TEBPα/β heterodimer, which is bound to telomeric termini of certain ciliates (2, 32, 33). Several lines of evidence indicate that TPP1 mediates the recruitment of POT1 to telomeres. Mammalian TPP1 was discovered based on its interaction with TIN2, and diminished TPP1 levels affect the ability of POT1 to bind to telomeres and protect chromosome ends (14, 15, 21, 26, 33, 35). Since TPP1 enhances the in vitro DNA binding activity of POT1 (32), it might mediate the recruitment of POT1 through improving its interaction with the single-stranded telomeric DNA. However, POT1 does not require its DNA binding domain for telomere recruitment, although this domain is critical for telomere protection (23, 26). Thus, it is more likely that the TPP1-TIN2 interaction mediates the binding of POT1 to telomeres. However, POT1 has also been shown to bind to TRF2 in vitro, and this interaction has been suggested to constitute a second mechanism for the recruitment of POT1 to telomeres (1, 34).TPP1 has been suggested to have additional functions at telomeres. Biochemical data showed that TPP1 promotes the interaction between TIN2, TRF1, and TRF2 (4, 25). Therefore, it was suggested that TPP1 plays an essential organizing function in shelterin, predicting that its deletion would affect TRF1 and TRF2 (25). Furthermore, cytogenetic data on cells from the adrenocortical dysplasia (Acd) mouse strain, which carries a hypomorphic mutation for TPP1 (14), revealed complex chromosomal rearrangements in addition to telomere fusions, leading to the suggestion that TPP1 might have additional telomeric or nontelomeric functions (9).In order to determine the role of TPP1 at telomeres and possibly elsewhere in the genome, we generated a conditional knockout setting in mouse embryo fibroblasts. The results indicate that the main function of TPP1 is to ensure the protection of telomeres by POT1 proteins. Each of the phenotypes of TPP1 loss was also observed in the POT1a/b DKO cells. No evidence was found for a role of TPP1 in stabilizing or promoting the function of other components of shelterin. Furthermore, the results argue against a TPP1-independent mode of telomeric recruitment of POT1.  相似文献   

11.
Ku is a heterodimeric protein involved in nonhomologous end-joining of the DNA double-stranded break repair pathway. It binds to the double-stranded DNA ends and then activates a series of repair enzymes that join the broken DNA. In addition to its function in DNA repair, the yeast Saccharomyces cerevisiae Ku (Yku) is also a component of telomere protein-DNA complexes that affect telomere function. The yeast telomeres are composed of duplex C1–3(A/T)G1–3 telomeric DNA repeats plus single-stranded TG1–3 telomeric DNA tails. Here we show that Yku is capable of binding to a tailed-duplex DNA formed by telomeric DNA that mimics the structure of telomeres. Addition of Cdc13p, a single-stranded telomeric DNA-binding protein, to the Yku-DNA complex enables the formation of a ternary complex with Cdc13p binding to the single-stranded tail of the DNA substrate. Because pre-loading of Cdc13p to the single-stranded telomeric tail inhibits the binding of Yku, the results suggested that loading of Yku and Cdc13p to telomeres is sequential. Through generating a double-stranded break near telomeric DNA sequences, we found that Ku protein appears to bind to the de novo synthesized telomeres earlier than that of Cdc13p in vivo. Thus, our results indicated that Yku interacts directly with telomeres and that sequential loading of Yku followed by Cdc13p to telomeres is required for both proteins to form a ternary complex on telomeres. Our results also offer a mechanism that the binding of Cdc13p to telomeres might prevent Yku from initiating DNA double-stranded break repair pathway on telomeres.DNA damages in the form of double-stranded breaks (DSBs)4 compromise the integrity of genomes. Failure in repairing or mis-repairing double-stranded breaks can lead to chromosome instability and eventually cell death or cancer (1). Double-stranded breaks are repaired by two main pathways, the homologous recombination and nonhomologous DNA end-joining. In nonhomologous DNA end-joining, Ku is the first protein to bind to the DNA ends to initiate the repair pathway (2). Upon binding, Ku then recruits a series of repair enzymes to join the broken ends (2). Ku is a heterodimeric protein composed of 70- and ∼80-kDa subunits. In Saccharomyces cerevisiae, Ku includes Yku70 and Yku80 subunits. Because the biochemical configuration of the broken ends could be very diverse on DSBs, Ku binds to double-stranded ends in a sequence- and energy-independent manner. It is capable of binding to DNA ends with blunt 3′-overhangs or 5′-overhangs as well as double-stranded DNA with nicks, gaps, or internal loops (37). However, Ku does not have high affinity to single-stranded DNA. The crystal structure of human Ku heterodimer indicates that it forms a ring structure that encircles duplex DNA (7). This unique structure feature enables Ku to recognize DNA ends and achieves its high affinity binding.In additional to the role in double-stranded break repair, Ku was shown to be a component of telomeric protein-DNA complex in yeast and mammals (810). Telomeres are terminal structures of chromosomes composed of short tandem repeated sequences (11, 12). Mutation of YKU70 or YKU80 causes defects in telomere structure (1315), telomere silencing (1619), and replication timing of telomeres (20). The function of yeast Ku (Yku) on telomeres could mediate through protein-protein interaction with Sir4p or protein-RNA interaction with Tlc1 RNA (21, 22). For example, through the interaction with Sir4p, Yku selectively affects telomeres silencing but not the silent mating type loci (17). Yku could also bind to telomerase Tlc1 RNA for telomere length maintenance (22). Judged by the DNA binding activity of Yku, it is reasonable to suggest that it may bind directly to telomeric DNA. Indeed, it was shown that human Ku is capable of binding directly to telomeric DNA in vitro (15). Moreover, because the deletion of SIR4 in budding yeast (23) or Taz1 in fission yeast (24) does not abolish the association of Ku with chromosomal ends, this suggests that Ku might bind directly to telomeric DNA in cells. However, because yeast telomeres have a short 12–14-mer single-stranded tail (25), it is uncertain whether Yku could pass the single-stranded region to reach its binding site. The direct binding of Yku to telomeric DNA has not been experimentally determined.In contrast to double-stranded breaks, the ends of linear chromosomes are not recognized by repair enzymes as DNA damage. In S. cerevisiae, Cdc13p is the single-stranded TG1–3 DNA-binding protein that enables cells to differentiate whether the ends of a linear DNA are telomeres or broken ends (2629). Thus, although the mechanism of how cells prevent the activation of DSB repair pathway in telomere is unclear, it is likely that binding of Cdc13p to telomeres might inhibit the initiation of DNA damage response by the Ku protein. Here, using a tailed-duplex DNA synthesized by telomeric DNA sequences to mimic telomere structure, we showed that Yku binds directly to this tailed-duplex DNA substrate and forms a ternary complex with Cdc13p. Our results also showed that Yku loaded to a de novo synthesized telomere earlier than Cdc13p in vivo. These results support the direct binding of Yku to telomeric DNA and that the spatial orientation of Cdc13p might block the activation of DSB repair pathway on telomeres.  相似文献   

12.
13.
14.
15.
16.
Günes C  Rudolph KL 《The EMBO journal》2012,31(13):2833-2834
EMBO J 31 13, 2839–2851 (2012); published online May082012Senescence represents a major tumour suppressor checkpoint activated by telomere dysfunction or cellular stress factors such as oncogene activation. In this issue of The EMBO Journal, Suram et al (2012) reveal a surprising interconnection between oncogene activation and telomere dysfunction induced senescence. The study supports an alternative model of tumour suppression, indicating that oncogene-induced accumulation of telomeric DNA damage contributes to the induction of senescence in telomerase-negative tumours.Telomere shortening limits the proliferative capacity of primary human cells after 50–70 cell divisions by induction of replicative senescence activated by critically short, dysfunctional telomeres. Different mechanisms were thought to initiate senescence in response to oncogene activation, which occurs abruptly within a few cell doublings (Serrano et al, 1997). Oncogene-induced senescence (OIS) involves an activation of DNA damage signals at stalled replication forks induced by DNA replication stress (Bartkova et al, 2006; Di Micco et al, 2006). Replication fork stalling in response to oncogene activation preferentially affects common fragile sites of the DNA (Tsantoulis et al, 2008). The ends of eukaryotic chromosomes—the telomeres–represent common fragile sites that are sensitive to replication fork stalling (Sfeir et al, 2009). These data made it tempting to speculate whether replication fork stalling at telomeres was causatively involved in OIS. Studies on replicative senescence in human fibroblast also supported this possibility showing that mitogenic signals amplify DNA damage responses in senescent cells (Satyanarayana et al, 2004).Multiple studies revealed experimental evidences that senescence suppresses tumour progression in mouse models and early human tumours (for review see Collado and Serrano, 2010). The relative contribution of OIS and telomere dysfunction induced senescence (TDIS) to tumour suppression and possible interconnections between the two pathways at the level of checkpoint induction were not investigated in previous studies. In this issue of The EMBO Journal, Suram et al (2012) describe the presence of TDIS in human precursor lesions but not in the corresponding malignant tumours. Mechanistically, the study shows that oncogenic signals cause replication fork stalling, resulting in telomeric DNA damage accumulation and activation of DNA damage checkpoints reminiscent to TDIS. Telomerase expression does not rescue replication fork stalling but prevents the accumulation of DNA damage at telomeres allowing a bypass of OIS.The study has several important implications for molecular pathways and therapeutic approaches in cancer that need to be further explored (Figure 1):Open in a separate windowFigure 1Traditional and new models of senescence in tumour suppression. (A) Traditional model of replicative senescence: Telomerase-negative tumour cell clones experience telomere shortening as a consequence of cell division. After a lack period depending on the initial telomere length, tumour cells accumulate telomere dysfunction and activation of senescence impairs tumour growth. Telomerase activation represents a late event allowing tumour progression. (B) New model of oncogene induced, telomere-dependent senescence: Oncogene activation leads to abrupt accumulation of DNA damage at telomeres resulting in senescence and tumour suppression. Telomerase-positive stem cells could be resistant to OIS and may be selected as the cell type of origin of tumour development.(i) Telomere length independent roles of telomeres in tumour suppressionThe classical model of telomere-dependent tumour suppression indicates that proliferation-dependent telomere shortening leads to telomere dysfunction, activation of DNA damage checkpoints, and induction of senescence suppressing the growth of telomerase-negative tumour clones. Studies on mouse models supported this concept showing that telomere shortening impairs the progression of initiated tumours in a telomere length-dependent manner (Feldser and Greider, 2007). The new data from Suram et al (2012) indicate that oncogene-induced replication fork stalling activates a telomere-dependent senescence checkpoint, which is independent of telomere length. The study shows that replication forks stall in response to oncogene activation throughout the genome. However, stalled replication forks are resolved in non-telomeric regions, whereas fork stalling inside telomeres leads to un-repairable DNA damage in telomerase-negative cells. These findings are in line with recent publication showing accumulation of un-repairable DNA damage in telomeric DNA in response to aging and stress-induced DNA damage (Fumagalli et al, 2012).(ii) Telomere length independent roles of telomerase in tumour progressionFollowing the classical model telomeres in tumour suppression (Figure 1A), telomerase re-activation is required for tumour progression by limiting telomere dysfunction and the induction of DNA damage checkpoints in response to telomere shortening. The new data from Suram et al (2012) indicate that telomerase has an additional telomere length independent role in tumour progression. The study shows that catalytically active telomerase prevents the activation of DNA damage signals originating from stalled replication forks inside telomeres in response to oncogene activation (Figure 1B). The exact mechanisms of telomerase-dependent healing of stalled replication forks at telomeres remain to be elucidated. It is also unclear whether telomerase activity can prevent any type of DNA damage at telomeres as an over-expression of TERT could not suppress irradiation-induced cellular senescence or the persistence of telomeric DDR following irradiation, H2O2, or chemotherapy induced DNA damage (Hewitt et al, 2012).The data could provide a plausible explanation for the increased tumorigenesis in telomerase transgenic mice—a finding which is difficult to explain by telomere length dependent effects of telomerase given the long telomere reserves in mouse tissues (Gonzalez-Suarez et al, 2001). According to the findings of Suram et al (2012), anti-telomerase therapies could have immediate anti-cancer effects in tumours depending on telomerase-mediated healing of stalled replication forks at telomeres. Specific markers for this dependency could be of clinical value. In addition, the data support the concept that somatic stem cells could represent the cell type of origin of cancers. In contrast to differentiated somatic cells, tissues stem cells are often telomerase-positive, indicating that stem cells might be less sensitive to OIS.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号